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Gauge Invariance

1.1
Introduction

Gauge field theories have revolutionized our understanding of elementary particle
interactions during the second half of the twentieth century. There is now in place
a satisfactory theory of strong and electroweak interactions of quarks and leptons
at energies accessible to particle accelerators at least prior to LHC.

All research in particle phenomenology must build on this framework. The pur-
pose of this book is to help any aspiring physicist acquire the knowledge necessary
to explore extensions of the standard model and make predictions motivated by
shortcomings of the theory, such as the large number of arbitrary parameters, and
testable by future experiments.

Here we introduce some of the basic ideas of gauge field theories, as a starting
point for later discussions. After outlining the relationship between symmetries of
the Lagrangian and conservation laws, we first introduce global gauge symmetries
and then local gauge symmetries. In particular, the general method of extending
global to local gauge invariance is explained.

For global gauge invariance, spontaneous symmetry breaking gives rise to mass-
less scalar Nambu–Goldstone bosons. With local gauge invariance, these unwanted
particles are avoided, and some or all of the gauge particles acquire mass. The sim-
plest way of inducing spontaneous breakdown is to introduce scalar Higgs fields
by hand into the Lagrangian.

1.2
Symmetries and Conservation Laws

A quantum field theory is conveniently expressed in a Lagrangian formulation. The
Lagrangian, unlike the Hamiltonian, is a Lorentz scalar. Further, important conser-
vation laws follow easily from the symmetries of the Lagrangian density, through
the use of Noether’s theorem, which is our first topic. (An account of Noether’s
theorem can be found in textbooks on quantum field theory, e.g., Refs. [1] and [2].)
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2 1 Gauge Invariance

Later we shall become aware of certain subtleties concerning the straightforward
treatment given here. We begin with a Lagrangian density

L
(
φk(x), ∂μφk(x)

)
(1.1)

where φk(x) represents genetically all the local fields in the theory that may be of
arbitrary spin. The Lagrangian L(t) and the action S are given, respectively, by

L(t) =
∫

d3xL
(
φk(x), ∂kφk(x)

)
(1.2)

and

s

∫ t2

t1

dtL(t) (1.3)

The equations of motion follow from the Hamiltonian principle of stationary
action,

δS = δ

∫ t2

t1

dt d3xL
(
φk(x), ∂μφk(x)

)
(1.4)

= 0 (1.5)

where the field variations vanish at times t1 and t2 which may themselves be chosen
arbitrarily.

It follows that (with repeated indices summed)

0 =
∫ t2

t1

dt d3x

[
∂L

∂φk

δφk + ∂L

∂(∂μφk)
δ(∂μφk)

]
(1.6)

=
∫ t2

t1

dt d3x

[
∂L

∂φk

− ∂μ

∂L

∂(∂μφk)

]
δφk +

[
∂L

∂(∂μφk)
δφk

]t=t2

t=t1

(1.7)

and hence

∂L

∂φk

= ∂μ

∂L

∂(∂μφk)
(1.8)

which are the Euler–Lagrange equations of motion. These equations are Lorentz
invariant if and only if the Lagrangian density L is a Lorentz scalar.

The statement of Noether’s theorem is that to every continuous symmetry of
the Lagrangian there corresponds a conservation law. Before discussing internal
symmetries we recall the treatment of symmetry under translations and rota-
tions.
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Since L has no explicit dependence on the space–time coordinate [only an im-
plicit dependence through φk(x)], it follows that there is invariance under the trans-
lation

xμ → x′
μ = xμ + aμ (1.9)

where aμ is a four-vector. The corresponding variations in L and φk(x) are

δL = aμ∂μL (1.10)

δφk(x) = aμ∂μφk(x) (1.11)

Using the equations of motion, one finds that

aμ∂μL = ∂L

∂φk

δφk + ∂L

∂(∂μφk)
δ(∂μφk) (1.12)

= ∂μ

[
∂L

∂(∂μφk)
δφk

]
(1.13)

= aν∂μ

[
∂L

∂(∂μφk)
∂νφk

]
(1.14)

If we define the tensor

Tμν = −gμνL + ∂L

∂(∂μφk)
∂νφk (1.15)

it follows that

∂μTμν = 0 (1.16)

This enables us to identify the four-momentum density as

Pμ = T0μ (1.17)

The integrated quantity is given by

Pμ =
∫

d3xPμ (1.18)

=
∫

d3x(−g0μL + πk∂μφk) (1.19)

where πk = ∂L /∂φk is the momentum conjugate to φk . Notice that the time
component is

P0 = πk∂0φk − L (1.20)

= H (1.21)
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where H is the Hamiltonian density. Conservation of linear momentum follows
since

∂

∂t
Pμ = 0 (1.22)

This follows from Pi = J0i and ∂
∂t

J0i becomes a divergence that vanishes after
integration

∫
d3x.

Next we consider an infinitesimal Lorentz transformation

xμ → x′
μ = xμ + εμνxν (1.23)

where εμν = −ενμ. Under this transformation the fields that may have nonzero
spin will transform as

φk(x) →
(

δkl − 1

2
εμν�

μν
kl

)
φl(x

′) (1.24)

Here �
μν
kl is the spin transformation matrix, which is zero for a scalar field. The

factor 1
2 simplifies the final form of the spin angular momentum density.

The variation in L is, for this case,

δL = εμνxν∂μL (1.25)

= ∂μ(εμνxνL ) (1.26)

since εμν∂μxν = εμνδμν = 0 by antisymmetry.
We know, however, from an earlier result that

δL = ∂μ

[
∂L

∂(∂μφk)
δφk

]
(1.27)

= ∂μ

[
∂L

∂(∂μφk)

(
ελνxν∂λφk − 1

2
�λν

kl ελνφl

)]
(1.28)

It follows by subtracting the two expressions for δL that if we define

M λνν = (
xνgλμ − xμgλν

)
L + ∂

∂(∂λφk)

[(
xμ∂ν − xν∂μ

)
φk + �

μν
kl φl

]
(1.29)

= xμT λν − xνT λμ + ∂L

∂(∂λπk)
�

μν
kl φl (1.30)

then

∂λM
λμν = 0 (1.31)
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The Lorentz generator densities may be identified as

Mμν = M 0μν (1.32)

Their space integrals are

Mμν =
∫

d3xMμν (1.33)

=
∫

d3x
(
xμPν − xνPμ + πk�

μν
kl φl

)
(1.34)

and satisfy

∂

∂t
Mμν = 0 (1.35)

The components Mij (i, j = 1, 2, 3) are the generators of rotations and yield
conservation of angular momentum. It can be seen from the expression above that
the contribution from orbital angular momentum adds to a spin angular momen-
tum part involving �

μν
kl .

The components M0i generate boosts, and the associated conservation law [3]
tells us that for a field confined within a finite region of space, the “average” or
center of mass coordinate moves with the uniform velocity appropriate to the result
of the boost transformation (see, in particular, Hill [4]). This then completes the
construction of the 10 Poincaré group generators from the Lagrangian density by
use of Noether’s theorem.

Now we may consider internal symmetries, that is, symmetries that are not re-
lated to space–time transformations. The first topic is global gauge invariance; in
Section 1.3 we consider the generalization to local gauge invariance.

The simplest example is perhaps provided by electric charge conservation. Let
the finite gauge transformation be

φk(x) → φ′
k(x) = e−iqk φk(x) (1.36)

where qk is the electric charge associated with the field φk(x). Then every term in
the Lagrangian density will contain a certain number m of terms

φk1(x)φk2(x) · · ·φkm(x) (1.37)

which is such that

m∑
i=1

qki
= 0 (1.38)

and hence is invariant under the gauge transformation. Thus the invariance im-
plies that the Lagrangian is electrically neutral and all interactions conserve elec-
tric charge. The symmetry group is that of unitary transformations in one dimen-
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sion, U(1). Quantum electrodynamics possesses this invariance: The uncharged
photon has qk = 0, while the electron field and its conjugate transform, respec-
tively, according to

ψ → e−iqθψ (1.39)

ψ̄ → e+iqθ ψ̄ (1.40)

where q is the electronic charge.
The infinitesimal form of a global gauge transformation is

φk(x) → φk(x) − iεiλi
klφl(x) (1.41)

where we have allowed a nontrivial matrix group generated by λi
kl . Applying

Noether’s theorem, one then observes that

δL = ∂μ

[
∂L

∂(∂μφk)
δφk

]
(1.42)

= −iεi∂μ

[
∂L

∂(∂μφk)
λi

klφl

]
(1.43)

The currents conserved are therefore

J i
μ = −i

∂L

∂(∂μφk)
λi

klφl (1.44)

and the charges conserved are

Qi =
∫

d3xj i
0 (1.45)

= −i

∫
d3xπkλ

i
klφl (1.46)

satisfying

∂

∂t
Qi = 0 (1.47)

The global gauge group has infinitesimal generators Qi ; in the simplest case, as in
quantum electrodynamics, where the gauge group is U(1), there is only one such
generator Q of which the electric charges qk are the eigenvalues.
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1.3
Local Gauge Invariance

In common usage, the term gauge field theory refers to a field theory that possesses
a local gauge invariance. The simplest example is provided by quantum electrody-
namics, where the Lagrangian is

L = ψ̄(i/∂ − e/A − m)ψ − 1

4
FμνFμν (1.48)

Fμν = ∂μAν − ∂νAν (1.49)

Here the slash notation denotes contraction with a Dirac gamma matrix: /A ≡
γμAμ. The Lagrangian may also be written

L = ψ̄(i/D − m)ψ − 1

4
FμνFμν (1.50)

where Dμψ is the covariant derivative (this terminology will be explained shortly)

Dμψ = ∂μψ + ieAμψ (1.51)

The global gauge invariance of quantum electrodynamics follows from the fact
that L is invariant under the replacement

ψ → ψ ′ = eiθψ (1.52)

ψ̄ → ψ̄ ′ = e−iθ ψ̄ (1.53)

where θ is a constant; this implies electric charge conservation. Note that the pho-
ton field, being electrically neutral, remains unchanged here.

The crucial point is that the Lagrangian L is invariant under a much larger
group of local gauge transformations, given by

ψ → ψ ′ = eiθ(x)ψ (1.54)

ψ̄ → ψ̄ ′ = e−iθ(x)ψ̄ (1.55)

Aμ → A′
μ = Aμ − 1

e
∂μθ(x) (1.56)

Here the gauge function θ(x) is an arbitrary function of x. Under the transfor-
mation, Fμν is invariant, and it is easy to check that

ψ̄ ′(i/∂ − e/A′)ψ ′ = ψ̄(i/∂ − e/A)ψ (1.57)
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so that ψ̄/Dψ is invariant also. Note that the presence of the photon field is essential
since the derivative is invariant only because of the compensating transformation
of Aμ. By contrast, in global transformations where θ is constant, the derivative
terms are not problematic.

Note that the introduction of a photon mass term −m2AμAμ into the Lagrangian
would lead to a violation of local gauge invariance; in this sense we may say that
physically the local gauge invariance corresponds to the fact that the photon is
precisely massless.

It is important to realize, however, that the requirement of local gauge invari-
ance does not imply the existence of the spin-1 photon, since we may equally well
introduce a derivative

Aμ = ∂μ (1.58)

where the scalar  transforms according to

 → ′ =  − 1

e
θ (1.59)

Thus to arrive at the correct L for quantum electrodynamics, an additional as-
sumption, such as renormalizability, is necessary.

The local gauge group in quantum electrodynamics is a trivial Abelian U(1)

group. In a classic paper, Yang and Mills [5] demonstrated how to construct a field
theory locally invariant under a non-Abelian gauge group, and that is our next topic.

Let the transformation of the fields φk(x) be given by

δφk(x) = −iθ i(x)λi
klφl(x) (1.60)

so that

φk(x) → φ′
k(x) = �klφl (1.61)

with

�kl = δkl − iθ i(x)λi
kl (1.62)

where the constant matrices λi
kl satisfy a Lie algebra (i, j, k = 1, 2, . . . , n)

[
λi, λj

] = icijkλ
k (1.63)

and where the θi(x) are arbitrary functions of x.
Since � depends on x, a derivative transforms as

∂μφk → �kl(∂μφl) + (∂μ�kl)φl (1.64)

We now wish to construct a covariant derivative Dμφk that transforms according to

Dμφk → �kl(Dμφl) (1.65)
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To this end we introduce n gauge fields Ai
μ and write

Dμφk = (∂μ − igAμ)φk (1.66)

where

Aμ = Ai
μλi (1.67)

The required transformation property follows provided that

(∂μ�)φ − igA′
μ�φ = −ig(�Aμ)φ (1.68)

Thus the gauge field must transform according to

Aμ → A′
μ = �Aμ�−1 − i

g
(∂μ�)�−1 (1.69)

Before discussing the kinetic term for Ai
μ it is useful to find explicitly the infinites-

imal transformation. Using

�kl = δkl − iλi
klθ

i (1.70)

�−1
kl = δkl + iλi

klθ
i (1.71)

one finds that

λi
klA

′ i
μ = �kmλi

mnA
i
μ

(
�−1) − i

g
(∂μ�km)

(
�−1)

ml
(1.72)

so that (for small θi )

λi
klδA

i
μ = iθj

[
λi, λj

]
kl

Ai
μ − 1

g
λi

kl∂μθi (1.73)

= − 1

g
λi

kl∂μθi − cijmθjAi
μλm

kl (1.74)

This implies that

δAi
μ = − 1

g
∂μθi + cijkθ

jAk
μ (1.75)

For the kinetic term in Ai
μ it is inappropriate to take simply the four-dimensional

curl since

δ
(
∂μAi

μ − ∂νA
i
μ

) = cijkθ
i
(
∂μAk

ν − ∂νA
k
μ

)
+ cijk

[(
∂μθj

)
Ak

ν − (
∂νθ

j
)
Ak

μ

]
(1.76)
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whereas the transformation property required is

δF i
μν = cijkθ

jF k
μν (1.77)

Thus F i
μν must contain an additional piece and the appropriate choice turns out to

be

F i
μν = ∂μAi

ν − ∂νA
i
μ + gcijkA

j
μAk

ν (1.78)

To confirm this choice, one needs to evaluate

gcijkδ
(
Aj

μAk
ν

) = −cijk

[(
∂μθj

)
Ak

ν − (
∂νθ

j
)
Ak

μ

]

+ g
(
cijkcjlmθ lAm

μAk
ν + cijkA

j
μcklmθ lAm

ν

)
(1.79)

The term in parentheses on the right-hand side may be simplified by noting that
an n × n matrix representation of the gauge algebra is provided, in terms of the
structure constants, by

(
λi

)
jk

= −icijk (1.80)

Using this, we may rewrite the last term as

gAm
μAn

νθ
j (cipncpjm + cimpcpjn) = gAm

μAn
νθ

j
[
λi, λj

]
mn

(1.81)

= igAm
μAn

νθ
j cijkλ

k
mn (1.82)

= gAm
μAn

νθ
j cijkckmn (1.83)

Collecting these results, we deduce that

δF i
μν = δ

(
∂μAi

ν − ∂νA
i
μ + gcijkA

j
μAk

ν

)
(1.84)

= cijkθ
j
(
∂μAk

ν − ∂νA
k
μ + gcklmAl

μAm
ν

)
(1.85)

= cijkθ
jF k

μν (1.86)

as required. From this it follows that

δ
(
F i

μνF
i
μν

) = 2cijkF
i
μνθ

jF k
μν (1.87)

= 0 (1.88)

so we may use − 1
4F i

μνF
i
μν as the kinetic term.
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To summarize these results for construction of a Yang–Mills Lagrangian: Start
with a globally gauge-invariant Lagrangian

L (φk, ∂μφk) (1.89)

then introduce Ai
μ (i = 1, . . . , n, where the gauge group has n generators). Define

Dμφk = (
∂μ − igAi

μλi
)
φk (1.90)

F i
μν = ∂μAi

ν − ∂νA
i
μ + gcijkA

j
μAk

ν (1.91)

The transformation properties are (Aμ = Ai
μλi)

φ′ = �φ (1.92)

A′
μ = �Aμ�−1 − i

g
(∂μ�)�−1 (1.93)

The required Lagrangian is

L (φk, Dμφk) − 1

4
F i

μνF
i
μν (1.94)

When the gauge group is a direct product of two or more subgroups, a different
coupling constant g may be associated with each subgroup. For example, in the
simplest renormalizable model for weak interactions, the Weinberg–Salam model,
the gauge group is SU(2)×U(1) and there are two independent coupling constants,
as discussed later.

Before proceeding further, we give a more systematic derivation of the locally
gauge invariant L , following the analysis of Utiyama [6] (see also Glashow and
Gell-Mann [7]). In what follows we shall, first, deduce the forms of Dμφk and F i

μν

(merely written down above), and second, establish a formalism that could be ex-
tended beyond quantum electrodynamics and Yang–Mills theory to general relativ-
ity.

The questions to consider are, given a Lagrangian

L (φk, ∂μφk) (1.95)

invariant globally under a group G with n independent constant parameters θi ,
then, to extend the invariance to a group G′ dependent on local parameters θi(x):

1. What new (gauge) fields Ap(x) must be introduced?
2. How does Ap(x) transform under G′?
3. What is the form of the interaction?
4. What is the new Lagrangian?
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We are given the global invariance under

δφk = −iT i
klθ

iφl (1.96)

with i = 1, 2, . . . , n and T i satisfying

[
T i, T j

] = icijkT
k (1.97)

where

cijk = −cjik (1.98)

and

cij lclkm + cjklclim + ckilcljm = 0 (1.99)

Using Noether’s theorem, one finds the n conserved currents

J i
μ = ∂L

∂φk

T i
kl∂μφl (1.100)

∂μJ i
μ = 0 (1.101)

These conservation laws provide a necessary and sufficient condition for the invari-
ance of L .

Now consider

δφk = −iT i
klθ

i(x)φl(x) (1.102)

This local transformation does not leave < J invariant:

δL = −i
∂L

∂(∂μφk)
T i

klφl∂μ∂i (1.103)

�= 0 (1.104)

Hence it is necessary to add new fields A′p (p = 1, . . . ,M) in the Lagrangian,
which we write as

L (φk, ∂μφk) → L ′(φk, ∂μφk, A
′p)

(1.105)

Let the transformation of A′p be

δA′p = Ui
pqθiA′q + 1

g
Cjp

μ ∂μφj (1.106)

Then the requirement is
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δL =
[
−i

∂L ′

∂φk

T
j
klφl − i

∂L

∂(∂μφk)
T

j
kl∂μφl + ∂L ′

∂A′p U
j
pqA′p

]
θj

+
[
−i

∂L ′

∂(∂μφk)
T

j
klφl + 1

g

∂L ′

∂A′p Cpj
μ

]
∂μθj (1.107)

= 0 (1.108)

Since θj and ∂μθj are independent, the coefficients must vanish separately. For the
coefficient of ∂μθi , this gives 4n equations involving A′p and hence to determine
the A′ dependence uniquely, one needs 4n components. Further, the matrix C

pj
μ

must be nonsingular and possess an inverse

Cjp
μ C−1jq

μ = δpq (1.109)

Cjp
μ C−1j ′p

μ = gμνδjj ′ (1.110)

Now we define

Aj
μ = −gC−1jp

μ A′p (1.111)

Then

i
∂L ′

∂(∂μφk)
T i

klφl + ∂L ′

∂Ai
μ

= 0 (1.112)

so only the combination

Dμφk = ∂μφk − iT i
klφlA

i
μ (1.113)

occurs in the Lagrangian

L ′(φk, ∂μφk, A
′p) = L ′′(φk,Dμφk) (1.114)

It follows from this equality of L ′ and L ′′ that

∂L ′′

∂φk

∣∣∣∣
Dμφ

− i
∂L ′′

∂(Dμφl)

∣∣∣∣
φ

T i
klA

i
μ = ∂L ′

∂φk

(1.115)

∂L ′′

∂(Dμφk)

∣∣∣∣
φ

= ∂L ′

∂(Dμφk)
(1.116)

ig
∂L ′′

∂(Dμφk)

∣∣∣∣
φ

T a
klφlC

−1ap
μ = ∂L ′

∂A′ p (1.117)

These relations may be substituted into the vanishing coefficient of θj occurring
in δL ′ (above). The result is
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0 = −i

[
∂L ′′

∂φk

∣∣∣∣
Dμφ

T i
klφl + ∂L ′′

∂(Dμφk)

∣∣∣∣
φ

T i
klDμφl

]

+ i
∂L ′′

∂φk

∣∣∣∣
φ

(
φlA

a
ν

{
i
[
T a, T i

]
kl

λμν + Sba,j
μν

}) = 0 (1.118)

where

Sba,j
μν = C−1ap

μ U
j
pqCbq

ν (1.119)

is defined such that

δAa
μ = gδ

(−C−1ap
μ A′p)

(1.120)

= Sba,j
μν Ab

νθ
j − 1

g
∂μθa (1.121)

Now the term in the first set of brackets in Eq. (1.118) vanishes if we make the
identification

L ′′(φk, Dμφk) = L (φk, Dμφk) (1.122)

The vanishing of the final term in parentheses in Eq. (1.118) then enables us to
identify

Sba,j
μν = −cajbgμν (1.123)

It follows that

δAa
μ = cabcθ

bAc
μ − 1

g
∂μθa (1.124)

From the transformations δAA
μ and δφk , one can show that

δ(Dμφk) = δ
(
∂μφk − iT a

klA
a
μφl

)
(1.125)

= −iT i
klθ

i(Dμφl) (1.126)

This shows that Dμφk transforms covariantly.
Let the Lagrangian density for the free Aa

μ field be

L0
(
Aa

μ, ∂νA
a
μ

)
(1.127)

Using

δAa
μ = cabcθ

bAc
μ − 1

g
∂μθa (1.128)
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one finds (from δL = 0)

∂L0

∂Aa
μ

cabcA
c
μ + ∂L0

∂(∂νAa
μ)

cabc∂νA
c
μ = 0 (1.129)

−∂L0

∂Aa
μ

+ ∂L0

∂(∂μAb
ν)

cabcA
c
ν = 0 (1.130)

∂L0

∂(∂νAa
μ)

+ ∂L0

∂(∂μAa
μ)

+ ∂L0

∂(∂μAa
ν)

= 0 (1.131)

From the last of these three it follows that ∂μAa
μ occurs only in the antisymmetric

combination

Aa
μν = ∂μAa

ν − ∂νA
a
μ (1.132)

Using the preceding equation then gives

∂L0

∂Aa
μ

= ∂L0

∂Ab
μν

cabcA
c
ν (1.133)

so the only combination occurring is

Fa
μν = ∂μAa

ν − ∂νA
a
μ + gcabcA

b
μAc

ν (1.134)

Thus, we may put

L0
(
Aa

μ, ∂νA
a
μ

) = L ′
0

(
Aa

μ, F a
μν

)
(1.135)

Then

∂L0

∂(∂νAa
μ)

∣∣∣∣
A

= ∂L ′
0

∂F a
μν

∣∣∣∣
A

(1.136)

∂L0

∂Aa
μ

∣∣∣∣
∂μA

= ∂L ′
0

∂Aa
μ

∣∣∣∣
F

+ ∂L ′
0

∂(∂F b
μν)

∣∣∣∣
A

cabcA
c
ν (1.137)

But one already knows that

∂L0

∂Aa
μ

∣∣∣∣
∂μA

= ∂L ′
0

∂F b
μν

cabcA
c
ν (1.138)

and it follows that L ′
0 does not depend explicitly on Aa

μ.

L0(Aμ, ∂νAμ) = L ′′
0

(
Fa

μν

)
(1.139)

Bearing in mind both the analogy with quantum electrodynamics and renormaliz-
ability we write
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L ′′
0

(
Fa

μν

) = −1

4
Fa

μνF
a
μν (1.140)

When all structure constants vanish, this then reduces to the usual Abelian case.
The final Lagrangian is therefore

L (φk,Dμφk) − 1

4
Fa

μνF
a
μν (1.141)

Defining matrices Mi in the adjoint representation by

Mi
ab = −iciab (1.142)

the transformation properties are

δφk = −iT i
klθ

iφl (1.143)

δAa
μ = −iMi

abθ
iAb

μ − 1

g
∂μθa (1.144)

δ(Dμφk) = −iTklθ
i(Dμφl) (1.145)

δF a
μν = −Mi

abθ
iF b

μν (1.146)

Clearly, the Yang–Mills theory is most elegant when the matter fields are in the
adjoint representation like the gauge fields because then the transformation prop-
erties of φk , Dμφk and Fa

μν all coincide. But in theories of physical interest for
strong and weak interactions, the matter fields will often, instead, be put into the
fundamental representation of the gauge group.

Let us give briefly three examples, the first Abelian and the next two non-Abelian.

Example 1 (Quantum Electrodynamics). For free fermions

L ψ̄(i/∂ − m)ψ (1.147)

the covariant derivative is

Dμψ = ∂μψ + ieAμψ (1.148)

This leads to

L (ψ, Dμψ) − 1

4
FμνFμν = ψ̄(i/∂ − e/A − m)ψ − 1

4
FμνFμν (1.149)

Example 2 (Scalar φ4 Theory with φa in Adjoint Representation). The globally in-
variant Lagrangian is

L = 1

2
∂μφa∂ − μφa − 1

2
μ2φaφa − 1

4
λ
(
φaφa

)2 (1.150)
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One introduces

Dμφa = ∂μφa − gcabcA
bμφc (1.151)

Fa
μν = ∂μAa

ν − ∂νA
a
μ + gcacA

b
μAc

ν (1.152)

and the appropriate Yang–Mills Lagrangian is then

L = 1

2

(
Dμφa

)(
Dμφa

) − 1

4
Fa

μνF
a
μν − 1

2
μaφaφa − 1

4

(
φaφa

)2 (1.153)

Example 3 (Quantum Chromodynamics). Here the quarks ψk are in the fun-
damental (three-dimensional) representation of SU(3). The Lagrangian for free
quarks is

L ψ̄k(i/∂ − m)ψk (1.154)

We now introduce

Dμψk = ∂μψk − 1

2
gλi

klA
i
μψl (1.155)

Fa
μν = ∂μAa

ν − ∂νA
a
μ + gfabcA

b
μAc

ν (1.156)

and the appropriate Yang–Mills Lagrangian is

L ψ̄(i/D − m)ψ − 1

4
Fa

μνF
aμν (1.157)

If a flavor group (which is not gauged) is introduced, the quarks carry an additional
label ψa

k , and the mass term becomes a diagonal matrix m → −Maδab.
The advantage of this Utiyama procedure is that it may be generalized to include

general relativity (see Utiyama [6], Kibble [8], and more recent works [9–12]).
Finally, note that any mass term of the form +m2

i A
i
μAi

μ will violate the local
gauge invariance of the Lagrangian density L . From what we have stated so far,
the theory must contain n massless vector particles, where n is the number of gen-
erators of the gauge group; at least, this is true as long as the local gauge symmetry
is unbroken.

1.4
Nambu–Goldstone Conjecture

We have seen that the imposition of a non-Abelian local gauge invariance appears
to require the existence of a number of massless gauge vector bosons equal to
the number of generators of the gauge group; this follows from the fact that a

mass term + 1
2

2
Ai

μAi
μ in L breaks the local invariance. Since in nature only one
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massless spin-1 particle—the photon—is known, it follows that if we are to exploit
a local gauge group less trivial than U(1), the symmetry must be broken.

Let us therefore recall two distinct ways in which a symmetry may be broken. If
there is exact symmetry, this means that under the transformations of the group
the Lagrangian is invariant:

δL = 0 (1.158)

Further, the vacuum is left invariant under the action of the group generators
(charges) Qi :

Qi |0〉 = 0 (1.159)

From this, it follows that all the Qi commute with the Hamiltonian

[
Qi, H

] = 0 (1.160)

and that the particle multiplets must be mass degenerate.
The first mechanism to be considered is explicit symmetry breaking, where one

adds to the symmetric Lagrangian (L0) a piece (L1) that is noninvariant under
the full symmetry group G, although L1 may be invariant under some subgroup
G′ of G. Then

L = L0 = cL1 (1.161)

and under the group transformation,

δL0 = 0 (1.162)

δL1 �= 0 (1.163)

while

Qi |0〉 → 0 as c → 0 (1.164)

The explicit breaking is used traditionally for the breaking of flavor groups SU(3)

and SU(4) in hadron physics.
The second mechanism is spontaneous symmetry breaking (perhaps more ap-

propriately called hidden symmetry). In this case the Lagrangian is symmetric,

δL = 0 (1.165)

but the vacuum is not:

Qi |0〉 �= 0 (1.166)

This is because as a consequence of the dynamics the vacuum state is degenerate,
and the choice of one as the physical vacuum breaks the symmetry. This leads to
nondegenerate particle multiplets.



1.4 Nambu–Goldstone Conjecture 19

It is possible that both explicit and spontaneous symmetry breaking be present.
One then has

L = L0 + cL1 (1.167)

δL = 0 (1.168)

δL1 �= 0 (1.169)

but

Qi |0〉 �= 0 as c → 0 (1.170)

An example that illustrates all of these possibilities is the infinite ferromag-
net, where the symmetry in question is rotational invariance. In the paramagnetic
phase at temperature T > Tc there is exact symmetry; in the ferromagnetic phase,
T < Tc, there is spontaneous symmetry breaking. When an external magnetic field
is applied, this gives explicit symmetry breaking for both T > Tc and T < Tc.

Here we are concerned with Nambu and Goldstone’s well-known conjecture [13–
15] that when there is spontaneous breaking of a continuous symmetry in a quan-
tum field theory, there must exist massless spin-0 particles. If this conjecture were
always correct, the situation would be hopeless. Fortunately, although the Nambu–
Goldstone conjecture applies to global symmetries as considered here, the conjec-
ture fails for local gauge theories because of the Higgs mechanism described in
Section 1.5.

It is worth remarking that in the presence of spontaneous breakdown of sym-
metry the usual argument of Noether’s theorem that leads to a conserved charge
breaks down. Suppose that the global symmetry is

φk → φk − iT i
klφlθ

i (1.171)

Then

∂μj i
μ = 0 (1.172)

J i
μ = −i

[
∂L

∂(∂μφk)
T i

klφl

]
(1.173)

but the corresponding charge,

Qi =
∫

d3xj i
0 (1.174)

will not exist because the current does not fall off sufficiently fast with distance to
make the integral convergent.
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Figure 1.1 Potential function V (φ).

The simplest model field theory [14] to exhibit spontaneous symmetry breaking
is the one with Lagrangian

L = 1

2

(
∂μφ∂μφ − m2

0φ
2) − λ0

24
φ4 (1.175)

For m2
0 > 0, one can apply the usual quantization procedures, but for m2

0 < 0, the
potential function

V (φ) = 1

2
m2

0φ
2 + λ0

24
φ4 (1.176)

has the shape depicted in Fig. 1.1. The ground state occurs where V ′(φa) = 0,
corresponding to

φ0 = ±χ = ±
√

−6m2
0

λ0
(1.177)

Taking the positive root, it is necessary to define a shifted field φ′ by

φ = φ′ + χ (1.178)

Inserting this into the Lagrangian L leads to

L = 1

2

(
∂μφ′∂μφ′ + 2m2

0φ
′ 2) − 1

6
λ0χφ′ 3 − λ0

24
φ′ 4 + 3m4

0

λ0
(1.179)

The (mass)2 of the φ′ field is seen to be −2m2
0 < 0, and this Lagrangian may now be

treated by canonical methods. The symmetry φ → −φ of the original Lagrangian
has disappeared. We may choose either of the vacuum states φ = ±χ as the phys-
ical vacuum without affecting the theory, but once a choice of vacuum is made,
the reflection symmetry is lost. Note that the Fock spaces built on the two possi-




