Contents

Preface XI

1 Introduction 1
 1.1 Brief Survey of Atmospheric Radiation 1
 1.2 A Broadbrush Picture of the Atmospheric Radiation Budget 3
 1.3 Solar and Terrestrial Thermal Infrared Spectra in a Cloudless Atmosphere 6
 1.4 The Greenhouse Effect 7
 1.5 Relevance to the Interpretation of Spaceborne Observations 9

2 Notation and Math Refresher 11
 2.1 Physical Dimensions and Prefixes 11
 2.2 Some Rules and Conventions 13
 2.3 Vector Algebra Brief 13
 2.3.1 Major Vector Operations 13
 2.3.2 Use of Index Notation 15
 2.4 Dirac δ-Function 18
 2.5 Geometry 20
 2.5.1 Directions 20
 2.5.2 Solid Angle 20
 2.5.3 Angle between Two Directions 22
 2.6 Orthogonal Functions 22
 2.6.1 Legendre Polynomials 23
 2.6.2 Legendre Functions 24
 2.7 Quadrature Formula 26
 Problems 27

3 Fundamentals 29
 3.1 Electromagnetic (EM) Radiation 29
 3.1.1 Maxwell’s Equations and Plane-Wave Solutions 29
 3.1.2 Wavelength, Frequency, Wavenumber, Dispersion Relation, and Phase Speed 31
 3.1.3 Coherence, Incoherence, and Polarization 32
 3.1.4 Wave–Particle Duality 33
Contents

3. Atmospheric EM Radiation Spectrum
- 3.1.5 Atmospheric EM Radiation Spectrum 34
- 3.2 Basic Radiometric Quantities 36
 - 3.2.1 Radiant Energy Flux, Flux Density, and Radiance 36
 - 3.2.2 Radiant Energy Density and Radiance 38
 - 3.2.3 Irradiance, Emittance, Exitance, and Actinic Radiation 40
 - 3.2.4 Relation between Upward, Downward, and Net Actinic Flux Densities and Radiance 41
 - 3.2.5 Isotropic Radiation Field 43
 - 3.2.6 Reflectivity, Absorptivity, and Transmissivity 43
- 3.3 Blackbody and Graybody Radiation: Basic Laws 43
 - 3.3.1 Planck’s Law 43
 - 3.3.2 Wien’s Displacement Law 45
 - 3.3.3 Stefan–Boltzmann Law 47
 - 3.3.4 Rayleigh–Jeans and Wien’s Approximations 48
 - 3.3.5 Emissivity and Kirchhoff’s Law 48

4 Interactions of EM Radiation and Individual Particles
- 4.1 Overview 59
- 4.2 Complex Index of Refraction 60
- 4.3 Decomposition of Electric Field Vector 62
- 4.4 Complex Amplitude Scattering Matrix 63
- 4.5 Stokes Vector 64
- 4.6 Degree of Polarization 66
- 4.7 Mueller Matrix 67
- 4.8 Optical Properties of Individual Particles 70
 - 4.8.1 Optical Parameters 70
 - 4.8.2 Optical Theorem 73
- 4.9 Spherical Particles (Lorenz–Mie Theory) 75
 - 4.9.1 Assumptions and Goals 75
 - 4.9.2 Efficiency Factors: \(Q_{\text{ext},\text{Mie}}, Q_{\text{sca},\text{Mie}}, Q_{\text{abs},\text{Mie}}\) 76
 - 4.9.3 Single-Scattering Albedo: \(\omega_{\text{Mie}}\) 78
 - 4.9.4 Elements of the Complex Amplitude Scattering Matrix 78
 - 4.9.5 Elements of the Mueller Matrix 79
 - 4.9.6 Polarization 80
 - 4.9.7 Phase Function for Unpolarized Incident Radiation: \(P_{\text{unp},\text{Mie}}\) 82
 - 4.9.8 Asymmetry Factor: \(g_{\text{unp},\text{Mie}}\) 83
- 4.10 Rayleigh Scattering and Oscillating Electric Dipole 84
 - 4.10.1 Amplitudes Scattering Matrix and Mueller Matrix 84
 - 4.10.2 Degree of Polarization 86
 - 4.10.3 Rayleigh Phase Function for Unpolarized Incident Radiation: \(P_{\text{unp},\text{Rayl}}\) 86
 - 4.10.4 Scattering Cross Section and Efficiency Factor 88
 - 4.10.5 Extinction and Absorption Cross Sections and Efficiency Factors 88
 - 4.10.6 Rayleigh Scattering as an Approximation of Lorenz–Mie Theory 89
Contents

4.10.7 Rayleigh Scattering in the Atmosphere 91
4.11 Scattering by Nonspherical Individual Particles 93
4.11.1 Analytical Approaches 93
4.11.2 Mueller Matrix 94
4.11.3 Phase Function 95
4.11.4 Integrated Optical Properties 97
4.12 Geometric-Optics Method for Light Scattering by Large Particles 99
4.12.1 Directional Changes Due to Reflection and Transmission (Refraction) at a Plane Interface: Snell’s Law 101
4.12.2 The \(n^2 \) Law 105
4.12.3 Fresnel Formulas for Reflection and Transmission 106
4.12.4 Radiant Energy Changes for Transmission (Plane Interface) 109
4.12.5 Radiant Energy Changes for Reflection (Plane Interface) 111
4.12.6 Ray-Tracing Technique 114
4.12.7 Diffraction 116
4.13 Rainbow and Halo 122
Problems 125

5 Volumetric (Bulk) Optical Properties 133
5.1 Particle Size Distribution 133
5.1.1 Analytical Descriptions 133
5.1.2 Integrated Microphysical Parameters 134
5.1.3 Parameterizations 135
5.2 Volumetric (Bulk) Scattering, Absorption, and Extinction 136
Problems 140

6 Radiative Transfer Equation 143
6.1 Optical Thickness 144
6.2 Lambert–Bouguer Law 144
6.2.1 Differential and Exponential Forms 144
6.2.2 Application to Direct Solar Irradiance \(S_{\text{dir}, \lambda} \) 146
6.3 General Formulation of the RTE 147
6.3.1 Spectral Photon Density Function 147
6.3.2 Radiative Transfer Equation in Scattering Media 149
6.3.3 Photon Budget Equation 153
6.3.4 3D Time-Dependent and Stationary RTE for Total Radiance 153
6.3.5 3D Stationary RTE for Diffuse Radiance 154
6.4 1D RTE for a Horizontally Homogeneous Atmosphere 156
6.4.1 Independent Variables 156
6.4.2 Standard Form of 1D RTE for Diffuse Radiance 157
6.4.3 Downward Diffuse Radiance 161
6.4.4 Upward Radiance 165
Problems 169

7 Numerical and Approximate Solution Techniques for the RTE 173
7.1 Legendre and Fourier Expansions 173
Contents

7.1.1 Expansion of Phase Function in Terms of Legendre Polynomials 173
7.1.2 Truncation of Phase Function and Similarity Principle 175
7.1.3 Atmospheric Angular Coordinates 178
7.1.4 The Delta-M Method (DMM) and Delta-Fit Methods (DFM) 181
7.1.5 Fourier Expansions of Diffuse Radiance and Irradiance 185
7.2 Equations for Fourier Modes of Diffuse Radiance 187
7.2.1 Net Radiative Flux Density in a Nonabsorbing Atmosphere 188
7.3 Method of Successive Order of Scattering (MSOS) 191
7.4 Adding-Doubling Method (A-DM) 193
7.4.1 Simplified Example 193
7.4.2 Generalization for Radiances 196
7.4.3 Application to Flux Densities 202
7.5 Discrete Ordinate Method (DOM) 205
7.6 Spherical Harmonics Method (SHM) 209
7.7 Monte Carlo Method (MCM) 212
7.7.1 Basic Principle 213
7.7.2 Backward (Inverse) Monte Carlo Method (BMCM) 216
7.8 Two-Stream Approximation (TSA) 222
7.8.1 Classical Approach 222
7.8.2 TSA Based on RTE 227
7.8.3 Problems 230

8 Absorption and Emission by Atmospheric Gases 233
8.1 Interactions of Photons and Gas Molecules 233
8.1.1 Types of Molecular Energy \(E_{\text{mol}} \) 233
8.1.2 Photon Absorption and Emission 234
8.1.3 Allowed Quantized Energies and Frequencies (Wavelengths) 235
8.1.4 Energy Level Probability in Thermal Equilibrium 235
8.2 Examples of Energy Transitions 237
8.2.1 Structure of Gas Molecules 237
8.2.2 Molecular Rotational Energy \(E_{\text{rot}} \) 238
8.2.3 Molecular Vibrational Energy \(E_{\text{vib}} \) 238
8.3 Line Spectra for Single-Atomic Gases 239
8.3.1 Molecular Electron Orbital Energy \(E_{\text{orb}} \) 239
8.3.2 Line Spectrum of the Hydrogen Atom 240
8.4 Molecular Absorption/Emission Line Spectra 244
8.4.1 Molecular Rotational Spectra 244
8.4.2 Ratio of Molecular Electron Orbital and Rotational Energies 246
8.4.3 Vibrational Spectra of Diatomic Molecules 247
8.4.4 Combined Molecular Vibration-Rotation Spectra 248
8.5 Examples of Atmospheric Gas Spectra 252
8.5.1 Three General Types of Spectra 252
8.5.2 Infrared (IR) – Combined Vibrational and Rotational Transitions 252
8.5.3 Near Infrared (NIR) to Visible (VIS) 253
8.5.4 Visible (VIS) to Ultraviolet (UV) – Electron Orbital Transitions 254
8.6 Approximations of Absorption/Emission Line Shapes 256
8.6.1 Lorentz Line Shape of the Absorption Coefficient –
Collision Broadening 257
8.6.2 Thermal Doppler Line Shape 258
8.6.3 Voigt Line Shape – Combined Collision and Doppler Broadening 259
8.7 Spectral Transmissivity and Absorptivity 260
8.7.1 Weak-Line and Strong-Line Approximations 261
8.7.2 Line-By-Line Method (LBLM) 264
8.7.3 Band Models 264
8.7.4 Scaling Techniques for Inhomogeneous Path 266
8.7.5 The k-Distribution Method 267
8.7.6 The Correlated k-Distribution Method (CKDM) 270
8.7.7 Application of the CKDM to Satellite Remote Sensing 271

Problems 272

9 Terrestrial Radiative Transfer 275
9.1 Downward Spectral Radiation 276
9.1.1 Diffuse Downward Radiance $I_{\text{diff},\lambda}^{\downarrow}$ 276
9.1.2 Diffuse Downward Irradiance $F_{\text{diff},\lambda}^{\downarrow}$ 282
9.2 Upward Terrestrial Spectral Radiation 287
9.2.1 Diffuse Upward Radiance $I_{\text{diff},\lambda}^{\uparrow}$ 287
9.2.2 Diffuse Upward Irradiance $F_{\text{diff},\lambda}^{\uparrow}$ 288
9.3 Example of Simulated Spectra 288
9.3.1 Downward and Upward Radiances 288
9.3.2 Influence of Cirrus on Terrestrial Spectral Irradiance 289
9.4 Broadband Terrestrial Radiative Transfer 291
9.4.1 Impact of Cirrus on Irradiance 291
9.4.2 Radiative Cooling and Heating 293

Problems 298

Appendix A Abbreviations, Symbols, and Constants 301
A.1 Acronyms 301
A.2 Subscripts and Superscripts 302
A.3 Greek Symbols 305
A.4 Latin Symbols 306
A.5 Physical Constants 309
A.6 Mathematical Constants 309

References 311

Index 319