
3

1
Fundamental Concepts

1.1
Wiener Process, Adapted Processes and Quadratic Variation

Stochastic processes represent a fundamental concept used to model the de-
velopment of a physical or nonphysical system in time. It has turned out that
the apparatus of stochastic processes is powerful enough to be applied to many
other fields, such as economy, finance, engineering, transportation, biology and
medicine.

To start with, we recall that a random variable X is a mapping X : � → R that
assigns a real value to each elementary event ω ∈ �. The concrete value X (ω) is
called a realization. It is the value we observe after the experiment has been done.
To create a mathematical machine we suppose that a probability space (�, F,P) is
given. � is the set of all elementary events and F is the family of events we are
interested in. It contains the set of all elementary events � and is assumed to be
closed with respect to forming the complement and countable intersections and
unions of events from this collection of events. Such families of sets or events
are called σ-algebras. The character σ indicates that even the union or intersection
of countably many sets belongs to F as well. For mathematical reasons we have
to assume that ‘events generated by X ’, i.e. sets of the type {ω : X (ω) ∈ I}, where
I is an open or closed or semi-open interval, are really events; i.e. such sets are
assumed also to belong to F. Unfortunately the collection of all intervals of the real
line is not closed with respect to the operation of union. The smallest collection
of subsets of the real line that is a σ-algebra and contains all intervals is called the
σ-algebra of Borel sets and will be denoted by B. It turns out that we have not only
{ω : X (ω) ∈ I} ∈ F for any interval but even {ω : X (ω) ∈ B} ∈ F for every Borel set
B. This fact is referred to as the F-measurability of X .

It turns out that for any random variable X and any continuous or monotone
function g the function Y(ω) = g(X (ω)) is again a random variable. This statement
remains true even if we replace g by a function from a larger class of functions,
called the family of all measurable functions, to which not only the continuous
functions but also the pointwise limit of continuous functions belong. This class
of functions is closed with respect to ‘almost all’ standard manipulations with
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4 1 Fundamental Concepts

functions, such as linear combinations and products and finally forming new
functions by plugging one function into another function.

The probability measure P is defined on F and it assigns to each event A ∈ F

a number P(A) called the probability of A. The mappings A �→ P(A) satisfy the
axioms of probability theory, i.e. P is a non-negative σ-additive set function on F

with P(�) = 1.
We assume that the reader is familiar with probability theory at an introductory

course level and in the following we use basic concepts and results without giving
additional motivation or explanation.

Random variables or random vectors are useful concepts to model the random
outcome of an experiment. But we have to include the additional variable ‘time’
when we are going to study random effects which change over time.

Definition 1.1 By stochastic process we mean a family of random variables (Xt)t≥0

which are defined on the probability space (�, F,P).

By definition Xt is in fact a function of two variables Xt(ω). For fixed t this
function of ω is a random variable. Otherwise, if we fix ω then we call the function
of t defined by t �→ Xt(ω) a realization or a path. This means that the realization
of a stochastic process is a function. Therefore stochastic processes are sometimes
referred to as random functions. We call a stochastic process continuous if all
realizations are continuous functions.

For the construction of a stochastic process, that is, of a suitable probability space,
one needs the so-called finite dimensional distributions which are the distributions
of random vectors (Xt1 , . . . , Xtn ), where t1 < t2 < · · · < tn is any fixed selection. For
details of the construction we refer to Øksendal [175].

A fundamental idea of modeling experiments with several random outcomes
in both probability theory and mathematical statistics is to start with independent
random variables and to create a model by choosing suitable functions of these
independent random variables. This fact explains why, in the area of stochastic
processes, the particular processes with independent increments play an excep-
tional role. This, in combination with the fundamental meaning of the normal
distribution in probability theory, makes clear the importance of the so-called
Wiener process, which will now be defined.

Definition 1.2 A stochastic process (Wt)t≥0 is called a standard Wiener process or
(briefly) Wiener process if:

1) W0 = 0,
2) (Wt)t≥0 has independent increments, i.e. Wtn − Wtn−1 , . . . , Wt2 − Wt1 , Wt1 are in-

dependent for t1 < t2 < · · · < tn,
3) For all 0 ≤ s < t, Wt − Ws has a normal distribution with expectation E(Wt −

Ws) = 0 and variance V(Wt − Ws) = t − s,
4) All paths of (Wt)t≥0 are continuous.

The Wiener process is also called Brownian motion. This process is named
after the biologist Robert Brown whose research dates back to the 1820s. The
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mathematical theory began with Louis Bachelier (Théorie de la Spéculation, 1900)
and later by Albert Einstein (Eine neue Bestimmung der Moleküldimensionen,
1905). Norbert Wiener (1923) was the first to create a firm mathematical basis for
Brownian motion.

To study properties of the paths of the Wiener process we use the quadratic
variation as a measure of the smoothness of a function.

Definition 1.3 Let f : [0, T ] → R be a real function and zn : a = t0,n < t1,n < · · · <

tn,n = b, a sequence of partitions with

δ(zn) := max
0≤i≤n−1

(ti+1,n − ti,n) → 0, as n → ∞.

If limn→∞
∑n−1

i=0 (f (ti+1,n) − f (ti,n))2 exists and is independent of the concrete sequence
of partitions then this limit is called the quadratic variation of f and will be denoted
by [f ]T .

We show that the quadratic variation of a continuously differentiable function
is zero.

Lemma 1.1 If f is differentiable in [0, T ] and the derivative f ′(t) is continuous then
[f ]T = 0.

Proof . Put C = sup0≤t≤T |f ′(t)|. Then |f (t) − f (s)| ≤ C|t − s| and

n−1∑
i=0

(f (ti+1,n) − f (ti,n))2 ≤ C2
n−1∑
i=0

(ti+1,n − ti,n)2

≤ C2δ(zn)T →n→∞ 0.

If (Xt)0≤t≤T is a stochastic process then the quadratic variation [X ]T is a random
variable such that for any sequence of partitions zn with δ(zn) → 0 it holds for
n → ∞

n−1∑
i=0

(Xti+1,n − Xti,n )2 →P [X ]T ,

where →P is the symbol for stochastic convergence. Whether the quadratic variation
of a stochastic process does or does not exist depends on the concrete structure
of this process and has to be checked in a concrete situation and it is often more
useful to deal with the convergence in mean square instead of the stochastic
convergence. The relation between the two concepts provides the well known
Chebyshev inequality which states that, for any random variables Zn, Z

P(|Zn − Z| > ε) ≤ 1

ε2
E(Zn − Z)2.



6 1 Fundamental Concepts

Hence the mean square convergence E(Zn − Z)2 → 0 of Zn to Z implies the
stochastic convergence P(|Zn − Z| > ε) → 0 of Zn to Z.

Now we are going to calculate the quadratic variation of a Wiener process. To
this end we need a well known fact. If V has a normal distribution with expectation
µ and variance σ2 then

EV = µ, V(V) = E(V − µ)2 = σ2

E(V − µ)3 = 0, E(V − µ)4 = 3σ4.

If µ = 0 then

E(V2 − σ2)2 = E(V4 − 2σ2V2 + σ4)

= 3σ4 − σ4 = 2σ4. (1.1)

Theorem 1.1 If (Wt)0≤t≤T is a Wiener process then the quadratic variation

[W]T = T.

Proof . Let zn be a sequence of partitions of [0, T ] with δ(zn) → 0 and put

Zn =
n−1∑
i=0

(Wti+1,n − Wti,n )2.

From the definition of the Wiener process we get that E(Wti+1,n − Wti,n )2 = ti+1,n −
ti,n. As the variance of a sum of independent random variables is just the sum of
the variances we get from the independent increments

E(Zn − t)2 = E
(

n−1∑
i=0

(Wti+1,n − Wti,n )2 − (ti+1,n − ti,n)

)2

= V(Zn) =
n−1∑
i=0

V((Wti+1,n − Wti,n )2)

=
n−1∑
i=0

E((Wti+1,n − Wti,n )2 − (ti+1,n − ti,n))2

= 2
n−1∑
i=0

(ti+1,n − ti,n)2 ≤ 2δ(zn)T → 0,

where for the last equality we have used (1.1).

The statement [W]T = T is remarkable from different points of view. The
exceptional fact is that the quadratic variation of this special stochastic process
(Wt)0≤t≤T is a degenerate random variable, it is the deterministic value T . This
value is non-zero. Therefore we may conclude from Lemma 1.1 that the paths of
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Figure 1.1 Collection of realizations Xt of the special
stochastic process (Wt)0≤t≤T named after Norbert Wiener.

a Wiener process cannot be continuously differentiable as otherwise the quadratic
variation must be zero. The fact that the quadratic variation is non-zero implies
that the absolute value of an increment Wt − Ws cannot be proportional to t − s.
From here we may conclude that the paths of a Wiener process are continuous but
not differentiable and therefore strongly fluctuating. The illustrative picture (see
Figure 1.1) of simulated realizations of a Wiener process underlines this statement.

One of the main problems in the theory of stochastic processes is to find
mathematical models that describe the evolution of a system in time and can
especially be used to predict, of course not without error, the values in the future
with the help of information about the process collected from the past. Here and in
the sequel by ‘the collected information’ we mean the family of all events observable
up to time t. This collection of events will be denoted by Ft, where we suppose
that Ft is a σ-algebra. It is clear that Fs ⊆ Ft ⊆ F. Such families of σ-algebras are
referred to as a filtration and will be denoted by (Ft)≥0. Each stochastic process
(Xt)t≥0 generates a filtration by the requirement that Ft is the smallest σ-algebra
that contains all events {Xs ∈ I} where I is any interval and 0 ≤ s ≤ t. This filtration
will be denoted σ((Xs)0≤s≤t). We call any stochastic process (Yt)t≥0 adapted to the
filtration (Ft)≥0 (short Ft-adapted) if all events that may be constructed by the
process up to time t belong to the class of observable events, i.e. already belong
to Ft. The formal mathematical condition is σ((Ys)0≤s≤t) ⊆ Ft for every t ≥ 0. If
for any fixed t and any random variable Z all events {Z ∈ I}, I ⊆ R, belong to Ft

and it holds that EZ2 < ∞ then there are Xt1,n, . . . , Xtmn ,n, ti,j ≤ t and (measurable)
functions fn(Xt1,n, . . . , Xtmn ,n) such that

E(Z − fn(Xt1,n, . . . , Xtmn ,n))2 → 0.

We omit the proof which would require additional results from measure theory. We
denote by Pt(X ) the class of all such random variables. Pt(X ) may be considered
as the past of the process (Xt)t≥0.
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Example 1.1 Let (Wt)t≥0 be a Wiener process and Ft = σ((Ys)0≤s≤t).
The following processes are Ft-adapted Xt = W2

t , Xt = W2
0,5·t + W4

t , Xt = (W4
t /

1 + W2
0,1·t). The process Wt+1 is not Ft-adapted.

We fix the interval [0, T ], set Ft = σ((Ws)0≤s≤t) and denote by Et(W) ⊆ Pt(W) the
collection of all elementary Ft-adapted processes, that is of all processes that may
be written as

Yt =
n−1∑
i=0

Xti I[ti,ti+1)(t), Xti ∈ Pti (W), (1.2)

where 0 = t0 < t1 < · · · < tn and

I[a,b)(t) =
{

1 if a ≤ t < b,
0 if else.

The Ft-adeptness of the process Yt follows from the fact that exclusively random
variables Xti with ti ≤ t appear in the sum. The process Yt is piecewise constant, it
has the value Xti in [ti, ti+1) and jumps at ti with a height

∆Yti = Xti − Xti−1 .

1.2
The Space of Square Integrable Random Variables

By H2 we denote the space of all random variables X with EX2 < ∞. Here and in
the sequel we identify random variables X and Y that take on different values only
with probability zero, i.e. P(X 	= Y) = 0. Set

〈X , Y〉 := E(XY).

It is not hard to see that 〈X , Y〉 satisfies all conditions that are imposed on a scalar
product, i.e. 〈X , Y〉 is symmetric in X and Y , it is linear in both X and Y , and it
holds that

〈X , X〉 ≥ 0,

where the equality is satisfied if and only if X = 0.

The norm of a random variable X is given by

‖X‖ =
√
EX2,

and the distance of X and Y is the norm of X − Y . Recall that a sequence of random
variables Xn is said to be convergent in mean square to X if E(Xn − X )2 = 0.
Hence this type of convergence is nothing other than the norm convergence
limn→∞ ‖Xn − X‖ = 0. A sequence of random variables {Xn} is said to be a Cauchy
sequence if
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lim
n,m→∞ ‖Xn − Xm‖ = 0.

For a proof of the following theorem we refer to Øksendal [175].

Theorem 1.2 To each Cauchy sequence Xn ∈ H2 there is some X ∈ Z2 with

lim
n→∞ ‖Xn − X‖ = 0,

i.e. the space is complete.

It is clear that H2 is a linear space. As we have already equipped H2 with a
scalar product we get, together with the completeness, that H2 is a Hilbert space.
This fact allows us to apply methods from the Hilbert space theory to problems of
probability theory.

A subset T ⊆ H2 is called closed, if every limit X of a sequence Xn ∈ T belongs
to T again. If L ⊆ H2 is a closed linear subspace of H2 then there is some element
in L that best approximates X .

Theorem 1.3 If L ⊆ H2 is a closed linear subspace of H2, then to each X ∈ H2 there is
a random variable in L, denoted by �LX ∈ L and called the projection of X on L, such
that

inf
Y∈L

‖X − Y‖ = ‖X − �LX‖ .

Proof . Let Yn ∈ L be a minimum sequence, i.e.

lim
n→∞ ‖X − Yn‖ = inf

Y∈L
‖X − Y‖ .

Then Ymn is a minimum sequence again. Because∥∥∥∥X − 1

2
(Yn + Ymn )

∥∥∥∥ ≤ 1

2
‖X − Yn‖ + 1

2

∥∥X − Ymn

∥∥
1
2 (Yn + Ymn ) is also a minimum sequence. Then

lim
n→∞

[
1

2
‖X − Yn‖2 + 1

2

∥∥X − Ymn

∥∥2 −
∥∥∥∥X − 1

2
(Yn + Ymn )

∥∥∥∥
2
]

= 0.

For any random variables U, V it holds that

1
2

‖U‖2 + 1
2

‖V‖2 −
∥∥∥∥1

2
(U + V)

∥∥∥∥
2

= E
(

1
2

U2 + 1
2

V2 −
(

1
2

(U + V)
)2

)

= 1

4
E (U − V)2 = 1

4
‖U − V‖2 .

Putting U = X − Yn, V = X − Ymn we arrive at

1
2

‖X − Yn‖2 + 1
2

∥∥X − Ymn

∥∥2 −
∥∥∥∥X − 1

2
(Yn + Ymn )

∥∥∥∥
2

= 1

4

∥∥Yn − Ymn

∥∥2 → 0.
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As mn was an arbitrary sequence we see that Yn is a Cauchy sequence and converges,
by the completeness of H2, to some random variable �LX that belongs to L since
L is closed by assumption.

Without going into detail we note that the projection �LX is uniquely determined
in the sense that, for every Z ∈ L which also provides a best approximation, it holds
that

P(�LX 	= Z) = 0. (1.3)

The projection �LX can be also characterized with the help of conditions imposed
on the error X − �LX .

Corollary 1.1 It holds that Y = �LX if and only if Y ∈ L and Y − X ⊥ L, i.e.

〈Y − X , Z〉 = 0 for every Z ∈ L. (1.4)

Proof . 1. Assume Y = �LX . Then Y ∈ L by the definition of the projection.

We consider

g(t) = ∥∥(X − Y) − tZ
∥∥2 = ‖X − Y‖2 + t2 ‖Z‖2 − 2t 〈Y − X , Z〉 .

By the definition of �LX the function g(t) attains its minimum at t = 0. Hence

g′(0) = −2 〈Y − X , Z〉 = 0

which implies 〈Y − X , Z〉 = 0.
2. If Y ∈ L satisfies (1.4) then for every U ∈ L

‖X − U‖2 = ‖X − Y‖2 + 2 〈X − Y , Y − U〉 + ‖Y − U‖2 .

As Z = Y − U ∈ L we see that the middle term vanishes. Hence the right-hand
term is minimal if and only if U = Y .

The simplest prediction of a random variable X is a constant value. Which value
a is the best one ? It is easy to see that the function

ϕ(a) = E(X − a)2

attains the minimum at a0 = EX . Consequently, if L consists of constant random
variables only, then �LX = EX . This is the reason why, for any closed linear
subspace, we call the projection �LX the conditional expectation given L. In this
case we tacitly assume that all constant random variables are contained in L. As L
is a linear space this is equivalent to the fact that Z0 ≡ 1 ∈ L. If this condition is
satisfied then we write

E(X |L) := �LX .

Choosing Z = 1 in (1.4) we get the following.
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Conclusion 1.1 (Iterated expectation) It holds that

E(E(X |L)) = EX. (1.5)

The relation (1.4) provides the orthogonal decomposition

X = �LX + (X − �LX ). (1.6)

Here �LX belongs to the subspace L whereas the error X − �LX is perpendicular
on L.

The Corollary 1.1 implies that the projection operator �L is linear, i.e.

�L(a1X1 + a2X2) = a1�L(X1) + a2�L(X2).

The relation (1.6) implies

‖�LX‖ ≤ ‖X‖ .

This inequality yields, in conjunction with the linearity, that �LX depends contin-
uously on X . Indeed, Xn → X implies

‖�LXn − �LX‖ = ∥∥�L(Xn − X )
∥∥ ≤ ‖Xn − X‖ → 0. (1.7)

Now we collect other properties of the conditional expectation that will be used in
the sequel.

Lemma 1.2 If L is a closed linear subspace of H2 that contains the constant variables
and V is a random variable such that UV ∈ L for every U ∈ L then

E(VX |L) = VE(X |L).

Proof . The assumption VU ∈ L and (1.4) imply

0 = 〈
X − E(X |L), VU

〉
= E(XV − VE(X |L))U = 〈

XV − VE(X |L), U
〉
.

The application of Corollary 1.1 completes the proof.

The multiple application of the conditional expectation corresponds to the iterated
application of projections.

Lemma 1.3 If Li is a closed linear subspace of H2 that contains the constant variables
and L1 ⊆ L2 then

E((E(X |L2))|L1) = E(X |L1).

Proof . Set R = E(X |L1) and S = E(X |L2). Then by Corollary 1.1

〈X − R, U〉 = 0 for every U ∈ L1,

〈X − S, U〉 = 0 for every U ∈ L2.
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The assumption L1 ⊆ L2 gives

〈S − R, U〉 = 0 for every U ∈ L1.

Corollary 1.1 completes the proof.

Next we study the relation between the independence of random variables and
the conditional expectation.

Lemma 1.4 If X is independent of every Z ∈ L then

E(X |L) = EX .

Proof . The required independence implies

E(XZ) = (EX )(EZ)
E(X − EX )Z = 0.

The statement follows from Corollary 1.4 and the fact that the constant random
variable EX belongs to L.

We say that L is generated by the random variables X1, . . . , Xn if L consists of all
possible functions (not necessarily linear) h(X1, . . . , Xn) such thatEh2(X1, . . . , Xn) <

∞. Then we write

L = G(X1, . . . , Xn).

Suppose the vector (Y , X1, . . . , Xn) has the joint density f (y, x1, . . . , xn). Then

g(x1, . . . , xn) =
∫

f (y, x1, . . . , xn) dy (1.8)

is the marginal density of (X1, . . . , Xn) and

f (y|x1, . . . , xn) = f (y, x1, . . . , xn)
g(x1, . . . , xn)

(1.9)

is called the conditional density of of Y given X1 = x1, . . . , Xn = xn.

Theorem 1.4 Let γ be any function with Eγ2(Y) < ∞ and f (y|x1, . . . , xn) be the
conditional density of Y given X1 = x1, . . . , Xn = xn. Then

E(γ(Y)|G(X1, . . . , Xn)) = ψ(X1, . . . , Xn),

where ψ is the so-called regression function that is given by

ψ(x1, . . . , xn) =
∫ +∞

−∞
γ(t)f (t|x1, . . . , xn) dt. (1.10)

Proof . As G(X1, . . . , Xn) consists of all functions ϕ(X1, . . . , Xn) it suffices to show
that

E(Y − ψ(X1, . . . , Xn))2 ≤ E(Y − ϕ(X1, . . . , Xn))2.
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It holds that

E(γ(Y) − ϕ(X1, . . . , Xn))2

=
∫

· · ·
∫

(γ(y) − ϕ(x1, . . . , xn))2f (y, x1, . . . , xn) dy dx1 · · · dxn

=
∫

· · ·
∫

(γ(y) − ψ)2f (y, x1, . . . , xn) dy dx1 · · · dxn

+ 2
∫

· · ·
∫

(γ(y) − ψ)(ψ − ϕ)f (y, x1, . . . , xn) dx dy1 · · · dxn

+
∫

· · ·
∫

(ϕ − ψ)2f (y, x1, . . . , xn) dx dx1 · · · dxn.

To calculate the middle term we note that ϕ − ψ does not depend on y. Hence

∫
· · ·

∫
(γ(x) − ψ)(ψ − ϕ)f (y, x1, . . . , xn) dx dy1 · · · dxn

=
∫

· · ·
∫ (

(ψ − ϕ)
∫

(γ(y) − ψ)f (y|x1, . . . , xn) dy

)
×g(x1, . . . , xn) dx1 · · · dxn

= 0

because of (1.10). Hence

E(γ(X ) − ϕ(X1, . . . , Xn))2

= E(γ(X ) − ψ(X1, . . . , Xn))2 + E(ϕ(X1, . . . , Xn) − ψ(X1, . . . , Xn))2.

The term on the right-hand side becomes minimal if and only if ϕ(X1, . . . , Xn) −
ψ(X1, . . . , Xn) = 0 which proves the statement.

Let (Xt)t≥0 be a stochastic process such that all finite dimensional distributions
of Xt1 , . . . , Xtn have a density that we will denote by ft1,...,tn (x1, . . . , xn), where
t1 < t2 < · · · < tn. By

ftn|t1,...,tn−1 (xn|x1, . . . , xn−1) = ft1,...,tn (x1, . . . , xn)
ft1,...,tn−1 (x1, . . . , xn−1)

(1.11)

we denote the conditional density of Xtn given Xt1 = x1, . . . , Xtn−1 = xn−1. We call
a stochastic process a Markov process if the conditional density depends only on the
values of the process at the last moment of the past, i.e.

ftn|t1,...,tn−1 (xn|x1, . . . , xn−1) = ftn|n−1 (xn|xn−1). (1.12)

If (Xt)t≥0 is a Markov process, then by Theorem 1.4, for every t1 < t2 < · · · < tn = t
and h > 0

E(γ(Xt+h)|G(Xt1 , . . . , Xtn )) = E(γ(Xt+h)|G(Xt)). (1.13)
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Conversely, if the last condition holds for every γ then∫
γ(xn)ftn|n−1 (xn|xn−1) dxn =

∫
γ(xn)ftn|t1,...,tn−1 (xn|x1, . . . , xn−1) dxn, (1.14)

As γ is arbitrary the relation (1.14) yields

ftn|n−1 (xn|xn−1) = ftn|t1,...,tn−1 (xn|x1, . . . , xn−1).

Recall that Pt(X ) is the smallest closed subspace of H2 that contains all subspaces
G(Xt1 , . . . , Xtm ), where t1 < t2 < · · · < tn. This means that Pt(X ) consists of all
random variables that are either functions of random variables from the past or a
limit of such random variables. Hence by the continuity of the scalar product

γ(Xt+h) − E(γ(Xt+h)|G(Xt)) ⊥ Z, Z ∈ Pt(X ),

if and only if

γ(Xt+h) − E(γ(Xt+h)|G(Xt)) ⊥ Z, Z ∈ G(Xt1 , . . . , Xtn )

for any t1 < t2 < · · · < tn ≤ t. As E(γ(Xt+h)|G(Xt)) ∈ Pt(X ) then from Corollary 1.1
we get the following theorem.

Theorem 1.5 A stochastic process (Xt)t≥0 is a Markov process if and only if

E(γ(Xt+h)|Pt(X )) = E(γ(Xt+h)|G(Xt))

for every function γ with Eγ2(Xt+h) < ∞. This condition is equivalent to (1.13) for any
t1 < t2 < · · · < tn = t.

Now we present a general construction scheme for Markov processes.

Theorem 1.6 Let (Xt)t≥0 be a stochastic process and V(x, t, h) for t, h > 0, x ∈ R a
family of random variables such that:

1) V(x, t, h) is independent of every Z ∈ Pt(X ) for every t, h > 0 , x ∈ R
2) Xt+h = V(Xt, t, h).

Then (Xt)t≥0 is a Markov process.

Proof . Assume Eγ2(Xt+h) < ∞ and fix t1 < · · · < tn = t. Let (�, F,P) be the basic
probability space. For fixed t, h > 0 the random variable γ(V(x, t, h)) is a function of
x and ω, say �(x, ω). Without proof we use the fact that each such function can be
approximated by linear combinations of the products of functions v(x)V(ω) in the
sense that, for suitably chosen vi,n and Vi,n that are independent of every Z ∈ Pt(X )

E

(
n∑

i=1

vi,n(Xt)Vi,n − γ(V(Xt, t, h))

)2

→ 0.

In view of Theorem 1.5 and Corollary 1.1 we have to show that

E(γ(Xt+h) − E(γ(Xt+h)|L(Xt1 , . . . , Xtn )))Z = 0
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for every Z ∈ G(Xt1 , . . . , Xtn ). Due to the continuity of the projection, see (1.7), it
suffices to show that

E

(
n∑

i=1

vi,n(Xt)Vi,n − E
(

n∑
i=1

vi,n(Xt)Vi,n|G(Xt1 , . . . , Xtn )

))
Z = 0. (1.15)

To this end we note that vi,n(Xt) ∈ G(Xt1 , . . . , Xtn ). Hence by Lemma 1.2

E(vi,n(Xt)Vi,n|G(Xt1 , . . . , Xtn )) = vi,n(Xt)E(Vi,n|G(Xt1 , . . . , Xtn )).

Lemma 1.4 and the independence of Vi,n of all Xt1 , . . . , Xtn implies

E(Vi,n|G(Xt1 , . . . , Xtn )) = E(Vi,n).

This yields

E(Z(E(vi,n(Xt)Vi,n|L(Xt1 , . . . , Xtn )))) = [
E(Zvi,n(Xt))

] [
E(Vi,n)

]
. (1.16)

Otherwise Vi,n is independent of Xt1 , . . . , Xtn and therefore independent of Zvi,n(Xt).
This yields

E(Vi,nvi,n(Xt)Z) = [
E(Zvi,n(Xt)

] [
E(Vi,n)

]
. (1.17)

The relations (1.16) and (1.17) imply (1.15) and thus the statement.

1.3
The Ito Integral and the Ito Formula

The aim of this section is to introduce and study the concept of the Ito integral
which is an integral where, instead of the classical Riemann integral, the values
of the function to be integrated are not weighted according to the length of the
interval from the chosen partition. Instead we weight this values by increments of
a Wiener process. A first idea could be to set∫ b

a
Xs dWs :=

∫ b

a
XsW

′
s ds. (1.18)

But we know from the discussion after Theorem 1.1 that the derivative W ′
s does not

exist. So this fact excludes this method. Ito succeeded in constructing an integral of
the above type by starting as a first step with elementary processes and in a second
step by extending the integral to a larger class of processes.

Recall that by (1.2) every elementary adapted process X ∈ E(W) can be written as

Yt =
n−1∑
i=0

Xti I[ti,ti+1)(t), Xti ∈ Pti (W).

We set∫ T

0
Xs dWs :=

n−1∑
i=0

Xti (Wti+1 − Wti ).
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A first immediate property of this integral concept is its linearity, i.e.∫ T

0
(c1X

(1)
s + c2X

(2)
s ) dWs = c1

∫ T

0
X

(1)
s dWs + c2

∫ T

0
X

(2)
s dWs.

Another property that makes Hilbert space arguments applicable is the so-called
isometry property.

Theorem 1.7 If X (1), X (2) ∈ E(W) then〈∫ T

0
X

(1)
s dWs,

∫ T

0
X

(2)
s dWs

〉
=

∫ T

0

〈
X

(1)
s , X

(2)
s

〉
ds. (1.19)

Proof . A possible change to a joint refinement shows that the two elementary
processes X

(1)
s and X

(2)
s can be represented about the same partition. Hence

Y
(j)
t =

∑n

i=0
X

(j)
ti I[ti,ti+1)(t),

with some X
(j)
ti ∈ Pti (W). Then

〈∫ T

0
X

(1)
s dWs,

∫ T

0
X

(2)
s dWs

〉

=
n−1∑
i,j=0

E(X (1)
ti X

(2)
tj (Wti+1 − Wti )(Wtj+1 − Wtj )).

Let i 	= j and for example ti > tj. The independence of the increments implies that

Wti+1 − Wti and X
(1)
ti X

(2)
tj (Wtj+1 − Wtj ) are independent. Consequently E(Wti+1 −

Wti ) = 0 implies that the mixed terms vanish. This yields〈∫ T

0
X

(1)
s dWs,

∫ T

0
X

(2)
s dWs

〉
=

n−1∑
i=0

E(X (1)
ti X

(2)
ti (Wti+1 − Wti )

2).

Because of X
(1)
ti X

(2)
ti ∈ Pti (W) this random variable from the past is independent of

(Wti+1 − Wti )
2 which implies

E[(Wti+1 − Wti )
2X

(1)
ti X

(2)
ti ] = E[(Wti+1 − Wti )

2]E[X (1)
ti X

(2)
ti ]

= (ti+1 − ti)[E(X (1)
ti X

(2)
ti )].

Hence

〈∫ T

0
X

(1)
s dWs,

∫ T

0
X

(2)
s dWs

〉
=

n−1∑
i=0

[E(X (1)
ti X

(2)
ti )](ti+1 − ti)

=
∫ T

0

〈
X

(1)
s , X

(2)
s

〉
ds.



1.3 The Ito Integral and the Ito Formula 17

We denote by L2(W) the set of all Pt(W)-adapted processes X with∫ T

0
EX2

t dt < ∞.

In the sequel we use the fact that every X ∈ L2(W) can be approximated by
elementary processes X (n) ∈ E(W) in the sense that

lim
n→∞

∫ T

0
E(X (n)

t − Xt)2 dt = 0. (1.20)

We refer to Øksendal [175] for a proof.
The relation (1.20) provides

lim
n,m→∞

∫ T

0
E(X (n)

t − X
(m)
t )2 dt = 0,

which, together with the isometry property (1.19), leads to

lim
n,m→∞E

(∫ T

0
X

(n)
t dWt −

∫ T

0
X

(m)
t dWt

)2

= lim
n,m→∞

∫ T

0
E(X (n)

t − X
(m)
t )2 dt = 0.

This means that the sequence of random variables
∫ T

0 X
(n)
t dWt is a Cauchy sequence

and converges therefore to a random variable that will be denoted by∫ T

0
Xt dWt.

This random variable is independent of the choice of the approximating sequence
X

(n)
t and is called the Ito integral. The continuity of the scalar product shows that the

above isometry property is still valid for the larger class of processes X ∈ L2(W).

Theorem 1.8 If X , Y ∈ L2(W) then

∫ T

0
(aXt + bYt) dWt = a

∫ T

0
Xt dWt + b

∫ T

0
Yt dWt

〈∫ T

0
Xt dWt,

∫ T

0
Yt dWt

〉
=

∫ T

0
〈Xt, Yt〉 dt.

Letting the upper bound in the integral be variable we may introduce the new
stochastic process

∫ t
0 Xs dWs which has been constructed exclusively with the help

of random variables from Pt(W). Thus we see that the new process

Yt =
∫ t

0
Xs dWs (1.21)

again belongs to L2(W). This process has an important projection property.
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Theorem 1.9 If t1 < t2 then Yt in (1.21) satisfies

E(Yt2 |Pt1 (W)) = Yt1 (1.22)

EYt1 = EYt2 = 0. (1.23)

Proof . By the linearity of the Ito integral and the continuity of the projection we
have to prove the statement only for elementary processes of the type Xt = ZI[a,b)(t)
where Z ∈ Pa(W). Then

Yt =
∫ t

0
Xs dWs = Z(Wb∧t − Wa),

where b ∧ t = min(b, t). This shows that Yt does not depend on t for t < a and
t > b. Hence we have only to consider the case a ≤ t1 < t2 ≤ b. Then Yt2 − Yt1 =
Z(Wt2 − Wt1 ) and

E(Yt2 − Yt1 |Pt1 (W)) = E(Z(Wt2 − Wt1 )|Pt1 (W)).

As Z ∈ Pa(W) ⊆ Pt1 (W) we may apply Lemma 1.2 and can take Z out of the
conditional expectation

E(Z(Wt2 − Wt1 )|Pt1 (W)) = ZE((Wt2 − Wt1 )|Pt1 (W)).

The independence of Wt2 − Wt1 and the random variables from Pt1 (W) together
with Lemma 1.4 yield

E((Wt2 − Wt1 )|Pt1 (W)) = 0

and therefore

E(Yt2 − Yt1 |Pt1 (W)) = 0.

Because of Yt1 ∈ Pt1 (W) we obtainE(Yt2 |Vt1 (W)) = Yt1 which is the first statement.
The relation (1.5) impliesEYt2 = EYt1 for every 0 ≤ t1 ≤ t2. As Y0 = 0 we get (1.23).

Stochastic processes that satisfy (1.22) are called martingales in probability
theory.

Now we introduce a class of processes that turns out to be useful in order to
model the evolution of a time-dependent phenomenon. A stochastic process X is
called an Ito process, if

Xt = X0 +
∫ t

0
As ds +

∫ t

0
Bs dWs, (1.24)

where A, B ∈ L2(W). It is not hard to show that the quadratic variation of
∫ t

0 As ds is
zero, so that

∫ t
0 As ds is a smooth part of Xt that plays the role of a drift. The second

component
∫ t

0 Bs dWs is irregular as the quadratic variation is

[X ]t =
∫ t

0
B2

s ds (1.25)
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which can be easily shown and does not vanish. We also write

dXs = As ds + Bs dWs. (1.26)

instead of (1.24). Ito processes admit the following interpretation. For fixed h > 0
the increment Xt+h − Xt is approximately given by

Xt+h − Xt ≈ Ath + Bt(Wt+h − Wt). (1.27)

The first term Ath is a drift with a slope which is governed by values from the
past. The factors in the product Bt(Wt+h − Wt) are independent where Wt+h − Wt

is normally distributed with expectation zero and variance h. If the values in the
past are fixed then Bt(Wt+h − Wt) has the variance B2

t h. This mean that Bs dWs is a
diffusion term.

Diffusion processes are special Ito processes. They are characterized by the fact
that the drift coefficient At as well as the diffusion coefficient Bt only depend on
the last state of the process. This means that

At = a(t, Xt), and Bt = b(t, Xt),

with some a(t, x) and b(t, x). Hence

Xt = X0 +
∫ t

0
a(s, Xs) ds +

∫ t

0
b(s, Xs) dWs. (1.28)

This is an integral equation for Xt, which can formally be written as a differential
equation, often used as a basic equation of motion in physics and named after
Langevin

Ẋt = a(t, Xt) + b(t, Xt) Ẇt. (1.29)

The problem is that Ẇt ≡ dWt/dt does not exist as we have already pointed out by
showing that the paths of Wt are not differentiable.

The representation (1.28) raises the question of for which a, b the integral
equation has a solution and under which conditions this solution is unique. In
the sense of an initial value problem the value X0 has to be fixed. Necessary and
sufficient conditions that guarantee the existence and uniqueness of a solution of
this initial value problem can be found in many books, e.g. [30, 57, 91, 104, 175].

Often the starting point X0 is a deterministic value, say x0. To indicate the
dependence on x0 we denote the corresponding process by Xt,x0 . Hence

Xt,x0 = x0 +
∫ t

0
a(s, Xs,x) ds +

∫ t

0
b(s, Xs,x) dWs, (1.30)

and

Xt+h,x − Xt,x =
∫ t+h

t
a(s, Xs,x) ds +

∫ t+h

t
b(s, Xs,x) dWs.
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For every fixed x the random variable

V(x, t, h) = x +
∫ t+h

t
a(s, Xs,x) ds +

∫ t+h

t
b(s, Xs,x) dWs

is independent of of the random variables from Pt(W). If (1.30) has a unique
solution then

Xt+h,x0 = V(Xt,x0 , t, h).

From Theorem 1.6 we get the Markov property.

Theorem 1.10 If the equation

Xt,x = x +
∫ t

s
a(τ, Xτ,x) dτ +

∫ t

s
b(τ, Xτ,x) dWτ

has a unique solution for every x and s then the process starting at x0 being defined as the
solution of

Xt,x0 = x0 +
∫ t

0
a(s, Xs,x0 ) ds +

∫ t

0
b(s, Xs,x0 ) dWs

is a Markov process. It is called homogeneous, if a and b are independent of s, hence

Xt,x0 = x0 +
∫ t

0
a(Xs,x0 ) ds +

∫ t

0
b(Xs,x0 ) dWs.

The class of Ito processes is closed with respect to the application of smooth
functions, i.e. u(t, Xt) is again a Ito process whose drift and diffusion coefficient
can be given explicitly.

Theorem 1.11 (Ito formula) Suppose A, B ∈ L2(W) and assume

dXs = As ds + Bs dWs.

If u : [0, ∞) × R→ R is twice continuously differentiable then

du(t, Xt) = ∂u

∂t
(t, Xt) dt + ∂u

∂x
(t, Xt) dXt + 1

2

∂2u

∂x2
(t, Xt) · (dXt)2, (1.31)

where (dXt)2 = dXt · dXt is to be calculated according to the following rules

dt · dt = dt · dWt = dWt · dt = 0, (1.32)

dWt · dWt = dt. (1.33)

Proof . We give only a sketch of the proof. Further details can be found in
Øksendal [175] or many other textbooks on stochastic differential equations such
as Chorin and Held [30] and Karatzas and Shreve [91].
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Suppose zn = {t0,n, . . . , tn.n}, t0,n = 0, tn.n = t is a sequence of partitions of [0, t] with
δ(zn) → 0. Then

u(t, Xt) − u(t, X0) =
n∑

l=1

[u(ttl,n , Xtl,n ) − u(ttl−1,n , Xtl−1,n )].

and by the Taylor expansion

u(t, Xtl,n ) − u(t, Xtl−1,n ) = ∂u

∂t
(tl,n, Xtl,n )(tl,n − tl−1,n)

+ ∂u

∂x
(tl,n, Xtl,n )(Xtl,n − Xtl−1,n )

+ 1
2

∂2u

∂x2
(tl,n, Xtl,n )(Xtl,n − Xtl−1,n )2 + Rl,n,

where
n∑

l=1

Rl,n −→P 0

can be shown. The sum of the first terms of the above decomposition can be shown
to tend to∫ t

0

∂u

∂t
(s, Xs) ds,

as n → ∞. Similarly, by dXs = As ds + Bs dWs the sum of the second terms tends to∫ t

0

∂u

∂x
(s, Xs)As ds +

∫ t

0

∂u

∂x
(s, Xs)Bs dWs.

Using dXs = As ds + Bs dWs again we see that the sum of the third terms consists
of three parts. The first one is

n∑
l=1

1
2

∂2u

∂x2
(tl,n, Xtl,n )A2

tl−1,n
(tl,n − tl−1,n)2. (1.34)

Assuming, for simplicity, a boundedness of ∂2u(t,x)
∂x2 A2

t , this sum does not exceed

c
n∑

l=1

(tl,n − tl−1,n)2 ≤ cδ(zn) · t → 0

as δ(zn) = max1≤l≤n |tl,n − tl−1,n| → 0. Hence (1.34) tends stochastically to zero. The
second part is the mixed term

n∑
l=1

∂2u

∂x2
(tl,n, Xtl,n )Atl−1,n Btl−1,n (tl,n − tl−1,n)(Wtl,n − Wtl,n ).

If ∂2u
∂x2 (tl,n, Xtl,n )Atl−1,n Btl−1,n is bounded then the expectation of the absolute value

can be estimated by
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c
n∑

l=1

(tl,n − tl−1,n)E|Wtl,n − Wtl,n |.

Using the inequality E|Z| ≤ (EZ2)1/2 valid for any random variable Z we get the
bound

c
n∑

l=1

(tl,n − tl−1,n)(tl,n − tl−1,n)1/2 → 0

where we used max1≤l≤n |tl,n − tl−1,n| → 0 again. The sum over the third parts

1
2

n∑
l=1

∂2u

∂x2
(tl,n, Xtl,n )B2

tl−1,n
(Wtl,n − Wtl,n )2

does not disappear. By similar arguments that have been used while studying the
quadratic variation of the Wiener process one can show that the last sum tends to

1

2

∫ t

0

∂2u

∂x2
(s, Xs)B

2
s ds,

which completes the sketch of the proof.

We now consider special cases. Suppose Xt is a diffusion process already defined
by (1.28)

Xt = X0 +
∫ t

0
a(s, Xs) ds +

∫ t

0
b(s, Xs) dWs (1.35)

The transformation rules (1.32) and (1.33) give

u(t, Xt) = u(0, X0)

+
∫ t

0

[
∂u(s, Xs)

∂s
ds + ∂u(s, Xs)

∂x
a(s, Xs) + 1

2

∂2u(s, Xs)

∂x2
b2(s, Xs)

]
ds

+
∫ t

0

∂u(s, Xs)

∂x
b(s, Xs) dWs. (1.36)

If u depends only on x then

u(Xt) = u(X0)

+
∫ t

0

[
u′(Xs)a(s, Xs) + 1

2
u′′(Xs)b2(s, Xs)

]
ds

+
∫ t

0
u′(Xs)b(s, Xs) dWs. (1.37)

Corollary 1.2 If Xt is a solution of dXt = a(t, Xt) dt + b(t, Xt) dWt then

E(u(Xt) − u(X0)) = E
∫ t

0

[
u′(Xs)a(s, Xs) + 1

2
u′′(Xs)b

2(s, Xs)
]

ds.
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Proof . Theorem 1.9 shows that

E

∫ t

0

∂u(Xs)

∂x
b(s, Xs) dWs

is independent of t and is therefore zero as the expression vanishes for t = 0.

To conclude this section we note that the diffusion process Xt in (1.28) reduces
to the Wiener process in the special case a = 0, b = 1. But in the general case
one may replace the probability measure P by another distribution Q (Girsanov
transformation) such that the process Xt becomes a Wiener process with respect
to Q .

1.4
The Kolmogorov Differential Equation and the Fokker–Planck Equation

We consider the diffusion process defined by the stochastic differential equation

dXt = a(Xt) dt + b(Xt) dWt. (1.38)

We know from Theorem 1.10 that this process is a Markov process. As both a and
b do not depend on t the process is homogeneous. Let f (t, x, y) be the family of
transition densities, i.e. f (t, x, ·) is the conditional density of Xt given X0 = x. If the
process Xt,x starts in t = 0 at x then f (t, x, ·) is the probability density of Xt,x. This
family of densities satisfies the Chapman–Kolmogorov equation

f (s + t, x, y) =
∫

f (s, x, z)f (t, z, y) dz, 0 ≤ s, t. (1.39)

Let Cb be the space of all bounded and measurable functions R and denote by C2
0

the space of all twice continuously differentiable functions that vanish outside of
some finite interval that may depend on the concrete function under consideration.
For u ∈ Cb we set

(Ttu)(x) =
∫

u(y)f (t, x, y) dy

= Eu(Xt,x).

It is easy to see that Ttu ∈ Cb. The Chapman–Kolmogorov equation implies the
semigroup property, that is,

TtTs = Ts+t. (1.40)

Putting X0 = x in Corollary 1.2 we get, for any u ∈ C2
0,

(Ttu)(x) = u(x) + E
∫ t

0

[
u′(Xs,x)a(Xs,x) + 1

2
u′′(Xs,x)b2(Xs,x)

]
ds
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and therefore

(Thu)(x) − u(x)

h
= E1

h

∫ h

0

[
u′(Xs,x)a(Xs,x) + 1

2
u′′(Xs,x)b2(Xs,x)

]
ds.

Each diffusion process can be shown to be continuous. Hence lims↓0 Xs,x = x and

lim
h↓0

1

h

∫ h

0

[
u′(Xs,x)a(Xs,x) + 1

2
u′′(Xs,x)b2(Xs,x)

]

= a(x)
∂u(x)

∂x
+ 1

2
b2(x)

∂2u(x)

∂x2
= (Au)(x),

where A is the differential operator

A = a(x)
∂

∂x
+ 1

2
b2(x)

∂2

∂x2
. (1.41)

This differential operator is the infinitesimal operator of the semigroup in the
sense that

(Au)(x) = lim
h↓0

(Thu)(x) − u(x)

h
.

Let I be the identical operator. Then we obtain from the semigroup property (1.40)
that

lim
h↓0

Tt+hu − Ttu

h
= lim

h↓0
Tt

(
(Th − I)u

h

)

= TtAu. (1.42)

Similarly,

lim
h↓0

Tt+hu − Ttu

h
= lim

h↓0

(
(Th − I)

h

)
Ttu

= ATtu. (1.43)

Thus we have obtained the following result.

Theorem 1.12 If Xt,x is the solution of

dXt,x = a(Xt,x) dt + b(Xt,x) dWt,

X0,x = x

and u ∈ C2
0, then

u(t, x) = (Ttu)(x)

= Eu(Xt,x) =
∫

u(y)f (t, x, y) dy
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satisfies the Kolmogorov forward equation

∂u(t, x)

∂t
= (TtAu)(x)

=
∫ [

a(y)
∂u(y)

∂y
+ 1

2
b2(y)

∂2u(y)

∂y2

]
f (t, x, y) dy (1.44)

and the Kolmogorov backward equation

∂u(t, x)
∂t

= A(Ttu)(x) (1.45)

= a(x)
∂u(t, x)

∂x
+ 1

2
b2(x)

∂2u(t, x)

∂x2
.

Proof . The statement (1.44) follows from (1.42). Similarly, (1.45) follows from
(1.43).

Now we establish differential equations for the transition densities. To this end
we apply integration by parts. If u, v ∈ C2

0, and both a and b are twice continuously
differentiable then

∫ [
a(x)

du(x)

dx

] [
v(x)

]
dx = −

∫ [
d(a(x)v(x))

dx

] [
u(x)

]
dx,

∫ [
b2(x)

d2u(x)

dx2

] [
v(x)

]
dx =

∫ [
d2(b2(x)v(x))

dx2

] [
u(x)

]
dx.

The application to (1.44) yields

∂u(t, x)

∂t
=

∫ [
a(y)

∂u(y)

∂y
+ 1

2
b2(y)

∂2u(y)

∂y2

]
f (t, x, y) dy

=
∫ [

−∂(a(y)f (t, x, y))

∂y
+ 1

2

∂2(b2(y)f (t, x, y))

∂y2

]
u(y) dy.

Otherwise

∂u(t, x)

∂t
= ∂

∂t

∫
u(y)f (t, x, y) dy

=
∫

u(y)
∂

∂t
f (t, x, y) dy. (1.46)

Hence for every u ∈ C2
0∫ [

∂

∂t
f (t, x, y) + ∂(a(y)f (t, x, y))

∂y
− 1

2

∂2(b2(y)f (t, x, y))

∂y2

]
u(y) dy = 0. (1.47)
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Let u ∈ C2
0 be any probability density with support, e.g.

u(t) = ct2(1 − t)2,

where c is determined by

∫ 1

0
u(t) dt = 1.

Put for every fixed z

un(t) = nu(n(t − z)). (1.48)

For large n the sequence un(t) is concentrated around z. When ψ is twice continu-
ously differentiable we get

∫
ψ(t)un(t) dt =

∫
ψ(t)nu(n(t − z)) dt

=
∫

ψ
(

z + s

n

)
u(s) ds →

∫
ψ(z)u(s) ds = ψ(z).

The application of this statement to (1.47) yields the so-called forward Fokker–Planck
equation

∂

∂t
f (t, x, z) = −∂(a(z)f (t, x, z))

∂z
+ 1

2

∂2(b2(z)f (t, x, z))

∂z2
. (1.49)

Similarly, the relation (1.45) yields

∂u(t, x)
∂t

= a(y)
∂u(t, x)

∂x
+ 1

2
b2(x)

∂2u(t, x)
∂x2

= a(y)
∂

∂x

∫
u(y)f (t, x, y) dy + 1

2
b2(x)

∂2

∂x2

∫
u(y)f (t, x, y) dy

=
∫

u(y)
[

a(y)
∂f (t, x, y)

∂x
+ 1

2
b2(x)

∂2f (t, x, y)

∂x2

]
dy.

Because of (1.46) we arrive at

∫
u(y)

[
∂

∂t
f (t, x, y) − a(y)

∂f (t, x, y)

∂x
− 1

2
b2(x)

∂2f (t, x, y)

∂x2

]
dy = 0.

Again by plugging in un from (1.48) and by letting n → ∞ we obtain

∂

∂t
f (t, x, y) = a(x)

∂f (t, x, y)

∂x
+ 1

2
b2(x)

∂2f (t, x, y)

∂x2
, (1.50)

which is called the backward Fokker–Planck equation.
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1.5
Special Diffusion Processes

This section is aimed at presenting special examples of diffusion processes and
studying the relation between them.

Example 1.2 If Xt = Wt is the Wiener process then a = 0 and b = 1 in the stochastic
differential equation (1.38). Since f (t, x, y) is the density of x + Wt the family of transition
densities is given by

f (t, x, y) = ϕ0,t(y − x)

where ϕµ,σ2 is the density of the normal distribution with parameters µ and σ2. We see
from (1.41) that the infinitesimal operator A is given by

A = 1

2

∂2

∂x2
.

Putting

u(t, x) =
∫

u(y)f (t, x, y) dy

the Kolmogorov backward equation (1.45) reads

∂u(t, x)

∂t
= 1

2

∂2u(t, x)

∂x2
.

This type of equation is called heat (or pure diffusion, which means without drift)
equation in physics. The Fokker–Planck equation has the same form

∂f (t, x, y)
∂t

= 1
2

∂2f (t, x, y)
∂y2

.

Of course, the above differential equation could also have been directly obtained using the
fact that the transition density is, in view of Xt,x = x + Wt, given by

f (t, x, y) = ϕ0,t(y − x) = 1√
2πt

exp
{
− (y − x)2

2t

}
.

Example 1.3 The Ornstein–Uhlenbeck process is defined to be a solution of the following
stochastic differential equation

dXt = µXt dt + σ dWt.

To solve this equation we apply the Ito formula to the process Xt exp{µt} where we choose
u(t, x) = x exp{−µt}. The formula for du(t, Xt) in Theorem 1.11 (Ito formula) gives

d(Xt exp{−µt}) = ∂u(t, Xt)

∂t
dt + ∂u(t, Xt)

∂x
dXt + 1

2

∂2u(t, Xt)

∂x2
(dXt)

2

= −µXt exp{−µt} dt + exp{−µt} dXt

= exp{−µt}σ dWt.
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Hence

exp{−µt}Xt − X0 = σ

∫ t

0
exp{−µs} dWs

Xt = X0 exp{µt} + σ

∫ t

0
exp{µ(t − s)} dWs.

The infinitesimal operator reads

A = µx
∂

∂x
+ 1

2
σ2 ∂2

∂x2
.

From the definition of the Ito integralone easily concludes that for any nonrandom
function h the random variable∫ t

0
h(s) dWs

has a normal distribution with expectation zero and variance
∫ t

0 h2(s) ds. This means
that the distribution of σ

∫ t
0 exp{µ(t − s)} dWs is a normal distribution with expectation

zero and a variance given by

σ2 exp{2µt}
∫ t

0
exp{−2µs} ds = − σ2

2µ
exp{2µt} [exp{−2µt} − 1]

= − σ2

2µ
[1 − exp{2µt}] −→ − σ2

2µ
for t → ∞

if µ < 0. In this case X0 exp{µt} tends to zero. Hence for µ < 0 the one-dimensional
marginal distribution of Xt tends to a normal distribution with expectation zero and
variance −(σ2/2µ). One can show that this distribution, when used as an initial
distribution of X0, turns the Ornstein–Uhlenbeck process into a stationary process.

Example 1.4 We consider the geometric Brownian motion that is defined by

Yt = exp{µt + σWt}.

Put Xt = µt + σWt. We use the Ito formula in Theorem 1.11 with u(x) = exp{x}.
Hence by (1.32) and (1.33)

dYt = ∂u(t, Xt)

∂t
dt + ∂u(t, Xt)

∂x
dXt + 1

2

∂2u(t, Xt)

∂x2
(dXt)2

= u(Xt) dXt + 1

2
u(Xt)(µ dt + σ dWt)2

= Yt dXt + σ2

2
Yt dt = Yt

(
µ + σ2

2

)
dt + σYt dWt.
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In particular, for µ = −σ2/2 we get

dYt = σYt dWt.

Hence we see from (1.23) that Yt has the constant expectation EY0 = 1.

These special cases of diffusion processes considered in the last three examples
will be discussed in more detail in Chapter 6 (Wiener process or Brownian motion
from Example 1.2), in Chapter 8 (Ornstein–Uhlenbeck process from Example 1.3)
and in Chapter 11 as well as in Section 5.9 (geometric Brownian motion from
Example 1.4).

1.6
Exercises

E 1.1 Ito diffusion
Write a computer program using the Euler discretization algorithm of the Ito stochastic
differential equation (1.38) to study special cases of Ito diffusion such as the Wiener
process, Brownian motion with constant drift, and especially geometric Brownian motion
(see Examples 1.2–1.4 in Section 1.5). Start with a simulation of the Wiener process
dXt = dWt using a discrete time interval ∆t and normally distributed random numbers
Z ∼ N(0, 1) generated by the Box–Muller and/or the polar method. Check the known
properties of the Wiener process by considering the Wiener difference ∆Wt = Wt+∆t − Wt

over time step ∆t = t + ∆t − t in the limit ∆t → 0.

E 1.2 Brownian paths in higher dimensions
Study Brownian paths (or Wiener trails) in higher dimensions Rn(n ≥ 2) and show that
the n-dimensional Brownian motion is isotropic by doing simulations of Brownian paths
in R2.

E 1.3 Hausdorff dimension
The Hausdorff dimension and the box-counting dimension of a Brownian trail in
R

n(n ≥ 2) is equal to 2. Try to find the Hausdorff and box dimension for a graph
(realization) of Brownian motion in R1 (one-dimensional case).

E 1.4 Stochastic process with constant drift and diffusion
Find the Fokker–Planck equation for the stochastic process that satisfies the stochastic
differential equation dXt = −a dt + b dWt, where a and b are constants and dWt =
Wt+dt − Wt is the increment of a Wiener process (also called white noise).

E 1.5 Stochastic Ornstein–Uhlenbeck process
Consider Example 1.3 in Section 1.5 (Ornstein–Uhlenbeck process) in more detail
and find the solution of the corresponding Fokker–Planck equation related to dut =
−µ ut dt + σ dWt with non-negative constants µ, σ and given the initial condition
ut=0 = u0. Show that the probability density p(u, t) becomes stationary and the so-called
fluctuation–dissipation relation holds.




