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1
Radiation

1.1
Introduction

For the study of solar energy conversion, one needs to know how the photon
flux of radiation is distributed over different photon energies E. The calcula-
tion of the spectral distribution n(E) is supported by two distinct pillars:

• h(E)dE, i.e., the number of photon modes with energy in the range
(E, E + dE), and

• f (E), i.e., the occupation probability of a mode with energy E.

Although we could postulate the functions h(E) and f (E), we will derive
them from first principles. This is covered in Sections 1.2 and 1.3. Then, in
Section 1.4, we will use these results to derive the radiation spectrum n(E).
Finally, in Section 1.5, we will see how n(E) yields the total photon flux

N =
∫ ∞

0
n(E) dE

as well as the associated energy flux

Q =
∫ ∞

0
n(E)E dE

Any reader who wishes to skip the calculations of h(E) and f (E) can proceed
immediately to Section 1.4.

1.2
Photon Modes ♥

We consider three-dimensional position space (x1, x2, x3) and the corres-
ponding three-dimensional momentum space (p1, p2, p3). Together they form
the six-dimensional hyperspace (x1, x2, x3, p1, p2, p3), called the phase space.
The three position coordinates xi of a photon can have any value, ranging
from −∞ to +∞, as can the three momentum coordinates pi.
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Because a photon is a spin 1 particle, it has an additional coordinate, called
the spin s. In contrast with the other six coordinates, the spin coordinate can
have only two discrete values: −1 and +1. Therefore, the complete phase
space of the photon consists of two six-dimensional hyperspaces, one with
s = −1 (spin down) and one with s = 1 (spin up) (see Fig. 1.1).

Fig. 1.1 Photon phase space.

Let dg be the number of modes with first position coordinate in the range
(x1, x1 + dx1), with second position coordinate in the range (x2, x2 + dx2), . . . ,
and third momentum coordinate in the range (p3, p3 + dp3). These modes
occupy one of the two elemental hypervolumes

dx1 · dx2 · dx3 · dp1 · dp2 · dp3 (1.1)

After the Heisenberg principle of quantum mechanics one particle mode oc-
cupies a volume h3. Here h is a fundamental constant of nature, i.e., Planck’s
constant 6.63 × 10−34 J s. Therefore dg equals the number of times h3 fits into
the two volumes (1.1):

dg =
2 dx1 · dx2 · dx3 · dp1 · dp2 · dp3

h3 (1.2)

Let g be the number of modes with momentum
√

p2
1 + p2

2 + p2
3

smaller than or equal to p. By simply integrating Eq. (1.2) with respect to
the three space coordinates over the volume V and with respect to the three
momentum coordinates over a sphere with radius p, we get

g =
2V 4

3 πp3

h3 (1.3)
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Here π is the mathematical constant, simply called pi, with the well-known
numerical value 3.14159. . . .

Because photons are particles with zero rest mass, they always travel at the
same speed c, called the speed of light, i.e., 300 Mm/s, a second fundamental
constant of nature. As a consequence, the energy E and the momentum p of
the photon are related by the simple relativistic equation

E = cp

The number of photons with energy equal to or smaller than E is thus

g =
8
3 πVE3

c3h3 (1.4)

By differentiating with respect to E, we find the number of modes per unit of
energy

dg
dE

=
8πVE2

c3h3 (1.5)

Having obtained the number of modes in the volume V, we now need the
number of modes leaving this volume through a surface area S (see Fig. 1.2).
Since radiation in a cavity is isotropic, i.e., uniformly distributed over all di-
rections, a fraction dω/4π has a propagation direction in the elemental solid
angle dω. The photons with such a direction, hitting the surface area S in a
time interval dt, occupy a cylindrical volume V = Sc cos ϑ dt, where ϑ is the

Fig. 1.2 Photon flux through a surface area S.
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angle between the pencil dω and the normal on S. Thus Eq. (1.5) becomes

dg
dE

=
8π(Sc cos ϑ dt)(dω/4π)E2

c3h3

=
2E2

c2h3 S dt cos ϑ dω (1.6)

Photons hit S from a hemisphere, i.e., from a solid angle 2π. Integration of
Eq. (1.6) over this hemisphere yields

dg
dE

=
2πE2

c2h3 S dt

because of Lambert’s geometrical law
∫∫

2π

cos ϑ dω = π (1.7)

If we call h(E) the number of photons hitting the boundary surface of the
volume V per unit energy interval, per unit time, and per unit surface area,
we eventually have

h(E) =
2π

c2h3 E2 (1.8)

The number of photons leaving the volume V along the other side of the sur-
face is then given by

ε(E)h(E) = ε(E)
2π

c2h3 E2

where ε is called the emissivity of the surface. The fraction [1 − ε(E)] h(E) of
the incident flux h(E) is reflected by the surface S and thus sent back to the
inside of the cavity volume V.

1.3
Photon Statistics ♥

As photons do not interact with each other, their statistical properties are en-
tirely governed by their interaction with matter. Therefore, we necessarily
need to know something more about the statistics of matter. Because we can-
not reinvent all laws of physics from scratch, we will postulate some funda-
mental statistical laws of the solid state, without any proof.

The probability of a particular energy level with energy E to be occupied by
an electron is

f (E) =
1

exp
(

E−EF
kT

)
+ 1

(1.9)
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where EF is the Fermi energy and T the temperature associated with the mat-
ter reservoir, whereas k is a fundamental constant, i.e., the Boltzmann constant
or 1.38 × 10−23 J/K. Up to now, we have introduced three fundamental con-
stants of nature: h, c, and k. Figure 1.3 shows the function f (E). We see that
f ≈ 1 for E � EF, that f = 1/2 for E = EF, and that f ≈ 0 for E � EF.

Fig. 1.3 The Fermi function.

Let us consider two states of matter, labeled 1 and 2, respectively. Let state 2
be the one with the higher energy

E2 > E1

We consider photons with energy E equal to the energy difference

E2 − E1

See Fig. 1.4. According to the Einstein model, these photons can interact with
the matter in three different ways:

Stimulated absorption. An existing photon is absorbed by an electron at
level 1, causing the electron to jump to level 2. The probability of the
event is proportional to:

• f , i.e., the probability that there is a photon,

• f1, i.e., the probability that level 1 is occupied, and

• (1 − f2), i.e., the probability that level 2 is not occupied.

Spontaneous emission. An electron falls spontaneously from level 2 to
level 1 by emitting a photon. The probability of the event is propor-
tional to

• f2, i.e., the probability that level 2 is occupied, and

• (1 − f1), i.e., the probability that level 1 is not occupied.
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Stimulated emission. Under influence of an already existing photon, an elec-
tron falls from level 2 to level 1 with emission of a second photon. The
probability of the event is proportional to

• f , i.e., the probability that there already is a photon,

• f2, i.e., the probability that level 2 is occupied, and

• (1 − f1), i.e., the probability that level 1 is not occupied.

This interaction model leads to the following kinetic equation:

d f
dt

= a[ − f f1(1 − f2) + f2(1 − f1) + f f2(1 − f1) ]

In steady-state conditions d f /dt = 0, so that

− f f1(1 − f2) + f2(1 − f1) + f f2(1 − f1) = 0 (1.10)

or

f =
1

f1(1− f2)
(1− f1) f2

− 1
(1.11)

After Eq. (1.9), we assume that

f1 =
1

exp
(

E1−EF1
kT

)
+ 1

(1.12)

f2 =
1

exp
(

E2−EF2
kT

)
+ 1

(1.13)

where we deliberately assumed that the two energy levels are at the same
temperature T, but do not necessarily have the same Fermi energy EF. By
substitution of Eqs. (1.12) and (1.13) into Eq. (1.11), we immediately find

f =
1

exp
(

E2−E1−EF2+EF1
kT

)
− 1

(1.14)

or

f (E) =
1

exp
(

E−μ
kT

)
− 1

(1.15)

where

μ = EF2 − EF1
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Fig. 1.4 Interaction of photons with two energy states of matter:
(a) stimulated absorption, (b) spontaneous emission, (c) stimulated
emission.

Fig. 1.5 The Bose function.

will be called the chemical potential of the photons. Equation (1.15) is called
the Bose statistics of photons. Figure 1.5 shows the Bose function f (E). We
see that f → +∞ for E → μ and f → 0 for E → +∞. For E < μ, Eq. (1.15)
gives negative values, but makes no physical sense: for E < μ, we actually
have f = 0.

1.4
Planck’s Law

The number of photons n in an energy range (E, E + dE) is given by the prod-
uct of the number of photon modes in the range and the occupation probabil-
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ity of these modes:

n(E) = ε(E)h(E) f (E)

With the expression for h(E) found in Section 1.2 and the expression for f (E)
found in Section 1.3, we get

n(E) = ε(E)
2π

c2h3
E2

exp
(

E−μ
kT

)
− 1

This important law is called Planck’s law. Because a distribution over energies
is often called a spectrum, we will call it Planck’s spectrum.

The most well-known case is the radiation spectrum of a reservoir which
has an emissivity ε independent of energy and which has a zero chemical
potential μ :

ε(E) = ε

μ = 0

It is called the grey-body spectrum:

n(E) = ε
2π

c2h3
E2

exp
(

E
kT

)
− 1

(1.16)

Fig. 1.6 The Planck spectrum with linear scales: E in units kT ; n in
units k2T2/c2h3.
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The special case where ε equals unity is called the black-body spectrum. Fig-
ure 1.6 shows the black-body function n(E). For small E, i.e., for E � kT, we
have exp(E/kT) ≈ 1 + (E/kT), so that n(E) is proportional to E. For large E,
i.e., for E � kT, n(E) goes to zero like E2 exp(−E/kT). For some intermediate
value, called Wien’s energy, the curve displays a maximum. Calculation of
Wien’s energy involves the numerical solution of a transcendental equation,
yielding E = 1.59362 kT. Thus the abscissa value of the maximum changes
proportionally with temperature. This fact is called Wien’s displacement law.
The ordinate value of the maximum changes even more dramatically with
temperature T. As a consequence we have to use logarithmic scales, if we
want to plot different spectra for different temperatures on a single figure. An
example is shown in Fig. 1.7. The three values chosen for T, i.e., 2.7, 288, and
5762 K, seem somewhat arbitrary. The reason for this choice will, however,
become apparent in Chapter 2.

Fig. 1.7 The Planck spectrum with logarithmic scales (m.w., micro
waves; i.r., infrared radiation; vis., visible light; u.v., ultraviolet radia-
tion).



10 1 Radiation

As we can see from Fig. 1.7, all three temperature examples give rise to
spectra concentrated around energies, which are very small when expressed
in the SI unit of energy, i.e., the joule. It is therefore advantageous to introduce
a technical energy unit, i.e., the electronvolt. One electronvolt is defined as the
energy of the elementary charge q at a voltage of 1 V. We have

1 eV = 1.60 × 10−19 J

as q equals 1.60 × 10−19 C. Note that q is the fourth (and last) fundamental
constant of nature that we introduce in the present book. The three other
constants were: h, c, and k. See also Appendix A.

1.5
The Stefan–Boltzmann Law

By integrating the grey-body spectrum over all energies E, we obtain the total
flux of photons (per unit time and per unit surface area):

N =
∫ ∞

0
n(E) dE

= ε
2π

c2h3 (kT)3
∫ ∞

0

x2dx
exp(x)− 1

(1.17)

The definite integral at the end of this expression is written as 2 ζ(3) by math-
ematicians. Indeed, they define the Riemann zeta function ζ(n) by

(n − 1)! ζ(n) =
∫ +∞

0

xn−1dx
exp(x)− 1

The value of ζ(n) is tabulated and in the table we can find that ζ(3) equals
about 1.20206. See Appendix A. Thus we finally find the number of photons
emitted by a grey body:

N = 1.20206 ε
4πk3

c2h3 T3

We can also calculate the energy emitted by the body. For that purpose we
have to calculate the integral

Q =
∫ ∞

0
E n(E) dE

= ε
2π

c2h3 (kT)4
∫ ∞

0

x3dx
exp(x) − 1

= ε
2π

c2h3 (kT)4 6 ζ(4) (1.18)
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In contrast to ζ(3), the value of ζ(4) is not only to be found in the tables, it can
also be reduced to a “simpler” mathematical number, i.e., π :

ζ(4) =
π4

90
= 1.08232

Therefore

Q = ε
2π5k4

15c2h3 T4

This expression is so important that it has a name of its own: the Stefan–
Boltzmann equation. The coefficient of T4 has also a name: the Stefan–
Boltzmann constant, with notation σ. The latter is not a fundamental constant
of nature, as it can be expressed in terms of the three fundamental numbers h,
c, and k :

σ =
2π5k4

15c2h3

Its value can thus be calculated and amounts to 5.67 × 10−8 W m−2 K−4.
Thus we can write

Q = ε σT4

Analogously, we can write

N = ε σ′T3

where σ′ can also be expressed in terms of h, c, and k :

σ′ =
4πζ(3)k3

c2h3

and has a value of 1.51 × 1015 s−1 m−2 K−3. Oddly enough, σ′ did not receive
any name.

We end this section by noting that the average photon energy of grey (and
of black) body radiation equals

Q
N

=
σ

σ′ T =
π4

30ζ(3)
kT = 2.70117 kT

This number is somewhat larger than Wien’s energy, 1.59362 kT. In the lan-
guage of statistics we would say that the Planck distribution has a mean value
larger than the mode.

1.6
Kirchhoff’s Law

Until now, we have been concerned with the light emitted by a body. We also
need to know something about the light absorbed by it. A black body absorbs
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all light incident on it. A nonblack body absorbs a fraction α(E) of the light
incident on it, where α is called the absorptivity of the body. We now give,
without proof, an important law of radiation physics, Kirchhoff’s law, which
states that the absorptivity exactly equals the emissivity:

α(E) = ε(E)

In particular, a grey body with emissivity ε will absorb exactly the fraction ε

of all light incident on it.

1.7
Why T4? ♥

As a result of the Stefan–Boltzmann law and the Kirchhoff law, two black sur-
faces facing each other exchange a net heat flux:

Q = σS(T4
1 − T4

2 )

where S is the surface area (assumed equal for the two surfaces) and where T1
and T2 are the temperatures of the bodies.

Why is radiation exchange governed by a fourth-power law? After all, heat
conduction is satisfying a simpler equation:

Q =
λS
d

(T1 − T2)

where λ is the heat conductivity of the medium between the two reservoirs
and where d is the distance between the two surfaces (see Fig. 1.8). This law,
sometimes called Fourier’s law and sometimes called Newton’s law, is linear
like many so-called phenomenological or constitutive laws in physics. Ohm’s
law of electricity analogously states that the electrical current is proportional
to the voltage difference V1 − V2. Fick’s law of particle diffusion analogously
states that the particle current is proportional to the concentration difference
n1 − n2. Poiseuille’s law says that the volume rate of a laminar fluid flow is
proportional to the pressure difference p1 − p2.

So, why is the transport law of Stefan–Boltzmann not of this general type?
Let us retrace the calculations of Sections 1.2–1.4 to find the answer. The T4

proportionality appears in Eq. (1.18), where it is introduced by replacing E3dE
by (kT)4x3dx. Thus the T4 is a consequence of the factor E3 under the integral.
This E3 factor comes from E n(E). Thus the T4 is a consequence of n(E) con-
taining a factor E2 in Eq. (1.16). This fact, in turn, is a consequence of h(E)
being proportional to E2 in Eq. (1.8) and thus of g being proportional to E3 in
Eq. (1.4) or to p3 in Eq. (1.3). So, we eventually retrieved the origin of the T4

behavior of the Stefan–Boltzmann law: the volume of a sphere with radius p
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Fig. 1.8 Heat exchange by two surfaces: (a) by conduction, (b) by
radiation.

equals 4
3 πp3. The volume of a sphere being proportional to the third power

of the radius is a consequence of space being three dimensional. Indeed, the
volume of an n-dimensional hypersphere of radius p is proportional to pn ; it
equals

Vn pn

where Vn denotes a constant, independent of p. In fact Vn is the volume of the
n-dimensional hypersphere with radius 1. Its value is dependent only on n.
For n = 3, we have V3 = 4

3 π. For other n, the value of Vn is tabulated in
Appendix B.

If the universe were of n, rather than three dimensions, g would be propor-
tional to En and h(E) to En−1, and so n(E) would contain a factor En−1. This
would finally lead to a photon flux N proportional to Tn and a heat flux Q
proportional to Tn+1. In other words, the power of T in the Stefan–Boltzmann
law equals the number of space dimensions plus one. Explicit calculations [4]
lead to the n-dimensional Stefan–Boltzmann law:

Q = σnTn+1
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where σn, i.e., the n-dimensional Stefan–Boltzmann constant, is given by

σn = rn π(n−1)/2 Γ(n + 1)ζ(n + 1)

Γ
(

n+1
2

) kn+1

hncn−1

where Γ(x) denotes the mathematical function called the gamma function and
where rn equals n − 1, except for n = 1 as r1 = 1.

One can go one step further: why has our universe three spatial dimen-
sions? The fact is: nobody in the world really knows. It is (still . . . ) one of the
great mysteries of nature. Did space always have three dimensions? Super-
string theories suggest it did not. Shortly after its Big Bang birth, the universe
could have had nine or even 25 spatial dimensions. In those early times, radi-
ation was thus proportional to T10 or even T26. . .

Analogous results can be formulated for the particle flux N. We have in n
dimensions

N = σ′
nTn

with

σ′
n =

ζ(n)
nζ(n + 1)

σn

k

We can only guess what the consequences of these facts would have been.
Wisely, the remainder of this book will consider mostly three-dimensional
space. We will make only about three excursions into hyperspace, just for
fun.

1.8
Exercises

1.1 Check result (1.7):

∫ 2π

ϕ=0

∫ π/2

ϑ=0
cos ϑ (sin ϑ dϑ dϕ) = π

1.2 Under which condition does stimulated emission exceed stimulated ab-
sorption?

1.3 Einstein’s derivation of Eq. (1.14) was semiclassical and therefore not
identical to the one presented above in Section 1.3. Einstein [1] started from
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Boltzmann statistics of electrons:

f1 =
1

exp
(

E1−EF1
kT

) (1.19)

f2 =
1

exp
(

E2−EF2
kT

) (1.20)

instead of Eqs. (1.12) and (1.13). He did not take into account any Pauli exclu-
sion principle and thus included neither a factor (1 − f2) into the absorption
probability nor a factor (1− f1) into the two emission probabilities, leading to
steady state

− f f1 + f2 + f f2 = 0

instead of (1.10). Demonstrate that this approach nevertheless gives rise to the
same result (1.14).
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