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Table A-1 Some useful improper integrals.

Fresnel integrals
Ð1

�1
sin x2ð Þdx ¼ ffiffiffi

p
2

p Ð1
�1

cos x2ð Þdx ¼ ffiffiffi
p
2

p

Sinc-function sinc x ¼ sin px
px

Ð1
�1

sinc x dx ¼ 1
Ð1

�1
sinc xj jdx ¼ 1

Ð1
�1

sinc2 x dx ¼ 1

Ð1
�1

sinc3 x dx ¼ 3
4

Ð1
�1

sinc4 x dx ¼ 2
3

Gauss function y ¼ e�px2
Ð1

�1
e�px2 dx ¼ 1

Ð1
�1

xne�px2 dx ¼
0 n odd

n� 1ð Þ!!
2pð Þn=2

n even

8><
>:

ð1

�1
xj jne�px2 dx ¼

n� 1ð Þ!!
p 2pð Þ n�1ð Þ=2 n odd

n� 1ð Þ!!
2pð Þn=2

n even

8>>>><
>>>>:

Cauchy-Lorentz distribution y ¼ 1
p

a
a2 þ x2

; a 2 R

ð1

�1

1
p

a
a2 þ x2

dx ¼ 1 lim
j!1

ðj

�j

1
p

ax
a2 þ x2

dx ¼ 0

Ð1
�1

cos x e�px2dx ¼ Ð1
�1

e�px2þjxdx ¼ e�
1
4p

Annex A: Mathematical Basics
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Some useful Improper Integrals
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n!! - double factorial: It is like factorial but the product is taken either over even or
odd numbers:

7!! ¼ 1 � 3 � 5 � 7
8!! ¼ 2 � 4 � 6 � 8

A.2
Dirac Delta Function and Doublets

The Dirac delta function is a generalised function since it cannot be described in
the classical sense. An introduction into generalised functions is to be found in [1].
There are several definitions for the Dirac delta function in use. Many of them rep-
resent limits of “nascent” delta functions gt tð Þ.

d tð Þ ¼ lim
t!þ0

gt tð Þ )

gt tð Þ ¼ 1
t
rect

t
t

gt tð Þ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t2

p

pt2
; tj j < t

0; tj j � t

8>><
>>:

gt tð Þ ¼ 1

t
ffiffiffi
p

p e�
t
t

� �2

gt tð Þ ¼ 1
t
sinc

t
t

gt tð Þ ¼ 1
2t

e�
tj j
t

..

.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

)

d tð Þ ¼ 1 t ¼ 0
0 t 6¼ 0

�

where at
ð1

�1
d tð Þdt ¼ 1

ðA:1Þ
Some properties of the Dirac delta function:
Symmetry:

d tð Þ ¼ d �tð Þ ðA:2Þ
Fourier and Laplace transform:

ð1

�1
d tð Þe�j2pf tdt ¼ 1

ð1

�1
d t� t0ð Þe�j2pf tdt ¼ e�j2pf t0

ð1

0

d t� t0ð Þe�stdt ¼ e�st0

ðA:3Þ
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Sampling property:

g tsð Þ ¼
ð
g tð Þ d t� tsð Þ dt ðA:4Þ

Convolution:

g t� t0ð Þ ¼ g tð Þ � d t� t0ð Þ ¼ Ð g tð Þ d t� t0 � tð Þ dt
¼ Ð g tð Þ d t� t� t0ð Þð Þ dt since d tð Þ ¼ d �tð Þ
¼ Ð g tð Þ d t� Tð Þ dt with T ¼ t� t0

¼ g Tð Þ due to sampling property

ðA:5Þ
Derivation and Integration:

tu

x t ty

We are defining derivation and integration of a Dirac-function by convolution
with an auxiliary function u tð Þ symbolised by the transmission system in the figure
above. Supposing it provides the first derivation of its input signal, then its output
signal can be written as:

y tð Þ ¼ @x tð Þ
@t

¼ g tð Þ � x tð Þ

leading to the impulse response:

g tð Þ ¼ u1 tð Þ ¼ dd tð Þ
dt

) y tð Þ ¼ u1 tð Þ � x tð Þ ðA:6Þ

u1 tð Þ is called the unit doublet. This procedure can be continued for higher order
derivations and integrations too.

n-fold derivation : x tð Þ � un tð Þ ¼ dnx tð Þ
dtn

) un tð Þ ¼ u1 tð Þ � � � � � u1 tð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

ðA:7Þ

Integration : y tð Þ ¼
ðt

�1
x tð Þdt ) y tð Þ ¼ u�1 tð Þ � x tð Þ ðA:8Þ

u tð Þ ¼ u�1 tð Þ ¼
ðt

�1
d tð Þdt ðA:9Þ

u tð Þ ¼ u�1 tð Þ represents the unit step or Heaviside function.
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n-fold integration:

y tð Þ ¼
ðt1

�1
� � �

ðtn

�1
x tð Þdt1 � � � dtn

) y tð Þ ¼ u�n tð Þ � x tð Þ with u�n tð Þ ¼ u�1 tð Þ � � � � � u�1 tð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

¼ tn�1

n� 1ð Þ! u�1 tð Þ

ðA:10Þ
Generalisation:

u0 tð Þ¼def d tð Þ
un tð Þ � um tð Þ ¼ unþm tð Þ
) u1 tð Þ � u�1 tð Þ ¼ u0 tð Þ � � � ! d

dt

ð
d tð Þdt

� �
¼ d tð Þ

ðA:11Þ

Product rules:

u1 tð Þ � a tð Þ b tð Þð Þ ¼ b tð Þ u1 tð Þ � a tð Þ þ a tð Þ u1 tð Þ � b tð Þ ðA:12Þ
u1 tð Þ � a tð Þ u�1 tð Þ � b tð Þð Þð Þ ¼ u�1 tð Þ � b tð Þð Þ u1 tð Þ � a tð Þð Þ þ a tð Þ b tð Þ ðA:13Þ
a tð Þ b tð Þ ¼ u�1 tð Þ � a tð Þ u1 tð Þ � b tð Þð Þ þ u�1 tð Þ � b tð Þ u1 tð Þ � a tð Þð Þ ðA:14Þ
1
2
a2 tð Þ ¼ u�1 tð Þ � a tð Þ u1 tð Þ � a tð Þð Þ ðA:15Þ

u�1 tð Þ � a tð Þ � b tð Þð Þ ¼ u�1 tð Þ � a tð Þð Þ u�1 tð Þ � b tð Þð Þ ðA:16Þ
Multidimensional Dirac function:
It holds:

ð
d 3ð Þ r� r0ð Þ dV ¼ 1 ðA:17Þ

Cartesian coordinates : d 3ð Þ r� r0ð Þ ¼ d x � x0ð Þd y � y0ð Þd z� z0ð Þ ðA:18Þ

Polar coordinates : d 3ð Þ r� r0ð Þ ¼ 1
r2sinq

d r � r 0ð Þd q� q0ð Þd w� w0ð Þ ðA:19Þ

A.3
Some Definitions and Calculation Rules for Statistic Variables

We suppose a set of random numbers originating e.g. from repeated measure-
ments (sampled data; empirical values). Here, we will refer to the random variables
‘x and ‘y:

‘x ¼ x 1½ � x 2½ � � � � x N½ �½ �

‘y ¼ y 1½ � y 2½ � � � � y N½ �½ �
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Probability Density Function (PDF)

� Random variables which are uniformly distributed between q and p, we assign as:

‘x � U q; pð Þ ) p‘x xð Þ ¼

0 x < q

1
p� q

q 	 x 	 p

0 x > p

8>>><
>>>:

ðA:20Þ

Their mean value is m ¼ qþp
2 and their variance is s2

x ¼ p�qð Þ2
12 . p‘x xð Þ is the PDF of

the random variable ‘x.
� Random variables of Gaussian distribution (normal distribution) are assigned as:

‘x � N m; s2
x

� � ) p‘x xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
sx

e
� 1

2
x�m
sx

	 
2

: ðA:21Þ

� A multivariate process ‘x covers a number of random variables ‘xm which are typi-
cally summarised by vector notation:

‘x ¼ ‘x1 ‘x2 ‘x3 � � � ‘xM
� �T

Since every random variable ‘xm may cover a set of data samples (empirical
values), the random process ‘x actually represents a [N, M] matrix.
We will call the matrix S as covariance matrix which is a generalisation of the

variance (see below). For a real respectively complex valued random process, it is
defined as (refer also to (A.29)):

S ¼ ‘x� mð Þ ‘x� mð ÞT
S ¼ ‘x � mð Þ ‘x � mð ÞH ðA:22Þ

A Gaussian multivariate process is assigned as:

‘x � N m;S2
� �

Its joint PDF is given by:

p‘x xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2pSð Þp e�

1
2 x�mð ÞTS�1 x�mð Þ ðA:23Þ

� The PDF of the sum of two independent variables (for definition of indepen-
dency see below) results from convolution of the individual PDFs:

‘z ¼ ‘x þ ‘y ) p‘z uð Þ ¼ p‘x uð Þ � p‘y uð Þ ðA:24Þ

Expected Value and Variance
Expected value:

m ¼ E ‘xf g ¼ lim
N!1

1
N

XN
n¼1

‘x n½ � ¼
ð1

�1
x p‘x xð Þdx ðA:25Þ

m ¼ E ‘x
 � ¼ lim

N!1
1
N

XN
n¼1

‘x ¼
ð1

�1
x p‘x xð Þdx ¼

ðð
1
� � �

ð1

�1

x1
x2
..
.

2
64

3
75p‘x1; ‘x2 ; � � � x1; x2; � � �ð Þdx1dx2 � � �

ðA:26Þ
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Expected value of function/linear function of sampled/empirical data:

E f ‘xð Þf g ¼
ð1

�1
f xð Þp‘x xð ÞdxE L ‘xð Þf g ¼ L E ‘xf gð Þ ¼ L

ð1

�1
x p‘x xð Þdx

0
@

1
A ðA:27Þ

Variance of sampled/empirical data:

var ‘xf g ¼ s2
x ¼ lim

N!1
1
N

XN
n¼1

‘x n½ � � mð Þ2 ¼ E ‘x � E ‘xf gð Þ2
n o

¼ E ‘x2f g � E ‘xf gð Þ2 ¼
ð1

�1
x � mð Þ2p‘x xð Þdx

ðA:28Þ

Covariance of sampled/empirical data:

cov ‘x; ‘yf g ¼ E ‘x � E ‘xf gð Þ ‘y � E ‘yf gð Þf g ðA:29Þ
In the case of complex valued variables, variance and covariance are defined by:

var ‘xf g ¼ E ‘x � E ‘xf gð Þ ‘x � E ‘xf gð Þ�f g ðA:30Þ
cov ‘x ; ‘yf g ¼ E ‘x � E ‘xf gð Þ ‘y � E ‘yf gð Þ� � ðA:31Þ

Some Rules
a and b are constant (deterministic) values.

E ‘x � að Þ2
n o

¼ var ‘xf g þ E ‘xf g � að Þ2 ðA:32Þ
var aþ b ‘xf g ¼ b2var ‘xf g ðA:33Þ
E a‘x 
 b‘yf g ¼ aE ‘xf g 
 bE ‘yf g ðA:34Þ

var ‘x 
 ‘yf g ¼ var ‘xf g þ var ‘yf g 
 2cov ‘x; ‘yf g ðA:35Þ

E ‘x � ‘yf g ¼ E ‘xf g � E ‘yf g þ cov ‘x; ‘yf g ðA:36Þ
var ‘x � ‘yf g ¼ var ‘xf g � var ‘yf g þ var ‘xf g � E ‘yf gð Þ2 þ var ‘yf g � E ‘xf gð Þ2

if ‘x and ‘y are independent
ðA:37Þ

var ‘x2
 � ¼ E ‘x4

 �� E ‘x2
 �� �2 ¼ 2s2

x for ‘x � N 0; s2
x

� �
; ðA:38Þ

since

E ‘x2
 � ¼ s2

x for ‘x � N 0; s2
x

� � ðresults from ðA:28Þ; ðA:21Þ and Table A-1Þ;
and from chapter 7.1 and (A.21), we get:

E ‘x4
 � ¼

ð1

�1
x4p‘x xð Þdx ¼ 3s2

x for ‘x � N 0; s2
x

� �
:
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Definitions
Two random variables are called

� uncorrelated if: cov ‘x; ‘yf g ¼ 0
� orthogonal if: E ‘x ‘yf g ¼ 0, and
� independent if: p‘x;‘y u; vð Þ ¼ p‘x uð Þ � p‘y vð Þ. (Note if two processes are independent

then they are also uncorrelated.)

We will call a process ergodic if the ensemble means equal the temporal
means, i.e.

x ¼ lim
T!1

1
2T

ðT

�T

x tð Þdt ¼ E ‘xf g ¼ m ðA:39Þ

x2rms � �x2 ¼ lim
T!1

1
2T

ðT

�T

x tð Þ � �xð Þ2dt ¼ E ‘x � E ‘xf gð Þ2
n o

¼ var ‘
x
n o

¼ s2
x ðA:40Þ

A.4
Coordinate Systems

We define position and orientation of a rigid body in space by the location of an
appropriately chosen reference point – expressed by the position vector r - and a set
of angles referred to appropriately chosen reference directions of a local coordinate
system (see Figure A.1).

Azimuth plane

Azimuth angle

Polar axis

Inclination angle

Reference  point,

observation point

Origin 

x
e

y
e

z
e

r
e

e

e

x

y

z

r Pitch  

Yaw  

r

1e 2e

3e

Origin of global coordinates

Reference

point

Roll 

Figure A.1 Assigning the position of an object
in space by Cartesian ex ; ey; ez

� �
or spherical

coordinate system er ; eq; ew
� �

(left) and its
orientation by a set of angles (right) referred to
a local coordinate system e1; e2; e3½ �. Note, that

the spherical system used here is based on the
inclination angle q starting from the zenith. A
different approach is to apply the elevation
angle which starts at the azimuth plane.
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ex; ey; ez
� �

; er ; eq; ew
� �

; e1; e2; e3½ � represent a set of unit direction vectors of an
orthogonal right hand system, i.e. we have (see also annex 7.5):

ei � ej ¼ 1 i ¼ j
0 i 6¼ j

�
with i; j ¼ x; y; z or i; j ¼ r;q;w or i; j ¼ 1; 2; 3

ex � ey ¼ ez and er � eq ¼ ew and e1 � e2 ¼ e3
ðA:41Þ

Position vector:

r ¼ xex þ yey þ zez ¼ rer ðA:42Þ
In Cartesian coordinates, we also often find the notation:

r ¼ x y z½ �T

Conversion between Cartesian and spherical coordinates:

Cartesian to spherical : r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; q ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

;

w ¼ arctan
y
x

ðA:43Þ

Spherical to Cartesian : x ¼ r sinq cos w; y ¼ r sinq sin w;

z ¼ r cos q ðA:44Þ

Examples:

ey ¼ sinq sin w er þ cos q sin w eq þ cos w ew
er ¼ sin q cos w ex þ sin q sin w ey þ cos q ez
r ¼ rer ¼ r sin q cos w ex þ r sinq sin w ey þ r cos q ez ¼ x ex þ y ey þ z ez

Orientation and Rotation:
The orientation of a body is often given by three angles indicating the rotation of
the local coordinates e1; e2; e3½ � with respect to the global coordinate system
ex; ey; ez
� �

. These angles are usually referred as Euler angles. There are 12 possibili-
ties to define these angles. Figure A.2 shows two options of them.

Table A-2 Conversion between unit vectors in Cartesian and spherical
coordinates.

ex ey ez

er sinq cos w sinq sin w cos q
eq cosq cos w cosq sin w �sin q

ew �sin w cos w 0
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We consider two examples of Euler angle applications. In the first one, we like to
express the vector r in coordinates of the system A defined by the unit vectors
ex; ey; ez
� �

as well as in coordinates of a system B based on e1; e2; e3½ �:

r ¼ rx ex þ ry ey þ rz ez ¼ r1 e1 þ r2 e2 þ r3 e3 ¼
rx
ry
rz

2
4

3
5
A

¼
r1
r2
r3

2
4

3
5
B

:

The angles between the both coordinate systems (Figure A.2) are supposed to be
known.
In the second example we keep the coordinate system but we like to rotate a vec-

tor a by a given set of angles resulting in a new vector b. Both problems can be
solved by the same operations where at we have 12 different options from which
we will demonstrate two here.
Option 1 refers to rotations corresponding to Figure A.2 – left (z-x-z convention):

1) rotate about the z-axis by angle a
2) rotate about the line of nodes N (new x-axis) by angle b, and
3) rotate about the (new) z-axis (e3) by x.

These three angles are usually assigned as the actual Euler angles in narrower
sense. Our two examples involves following relations:

r1
r2
r3

2
4

3
5
������
B

¼
cos a �sin a 0
sin a cos a 0
0 0 1

2
4

3
5 1 0 0

0 cos b �sin b
0 sin b cos b

2
4

3
5 cos x �sin x 0

sin x cos x 0
0 0 1

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0eu a;b;xð Þ

rx
ry
ry

2
4

3
5
������
A

In compressed notation, this takes the forms

rjB ¼ 0z að Þ 0x bð Þ 0z xð Þ rjA ¼ 0eu a; b; xð Þ rjA ðA:45Þ
b ¼ 0eu a; b; xð Þ a ðA:46Þ

x
e

y
e

z
e

1e

2e

3e

N

3e

x
e

y
e

z
e

1e

2e

N

y
e

Figure A.2 Orientation of a rigid body in space by Euler (left) and nautical angles (right).

Annexure j11



Option 2 usually applied in nautics (see also Figure A.1) performs rotation corre-
sponding to Figure A.2 right (z-x-y convention):

1) rotate about the z-axis by angle w (yaw angle),
2) rotate about the (new) x-axis (line of nodes N) by angle w (roll angle), and
3) rotate about the (new) y-axis by angle c (pitch angle).

In this case the rotation matrix is given by:

0na w;w; cð Þ¼
cos w �sinw 0

sin w cos w 0

0 0 1

2
4

3
5

1 0 0

0 cos w �sin w

0 sin w cos w

2
4

3
5

cos c 0 sin c

0 1 0

�sin c 0 cos c

2
4

3
5

¼ 0z wð Þ 0z wð Þ 0y cð Þ
ðA:47Þ

For the properties of rotation matrices see Annex A.6.

Angle between two vectors:

cos c ¼ r1 � r2
r1 � r2 ¼ cos q1cos q2 þ sinq1sinq2cos w1 � w2ð Þ ðA:48Þ

A.5
Some Vector Operations and useful Identities

Representation of three-dimensional vectors:

a ¼ axex þ ayey þ azez ¼
ax
ay
az

2
4

3
5; b ¼ bxex þ byey þ bzez ¼

bx
by
bz

2
4

3
5

Dot product; inner product; scalar product:

a � b|{z}
vector notation

¼ aTb|{z}
matrix notation

¼ axbx þ ayby þ azbz ¼ ax ay az
� � bx

by
bz

2
4

3
5 ¼ a b cos a

ðA:49Þ

a

b
α

Outer product; dyadic product:

a� b
|ffl{zffl}

vector notation

¼ a bT|{z}
matrix notation

¼ abx aby abz
� � ¼

axbx axby axbz
aybx ayby aybz
azbx azby azbz

2
4

3
5 ðA:50Þ
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Cross-product; vector product; exterior product:

c ¼ a� b|ffl{zffl}
vector notation

¼ �b� a ¼
0 �az ay
az 0 �ax
�ay ax 0

2
4

3
5 �

bx
by
bz

2
4

3
5 ¼ A� b

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
matrix notation

¼
ex ey ez
ax ay az
bx by bz

������

������
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

determinate

¼
aybz � azby
azbx � axbz
axby � aybx

2
4

3
5 ¼ a b sina e

ðA:51Þ

The vector c ¼ c e is perpendicular to a and b corresponding to the right-hand
rule.

a

b

c

a

b

c

α

90º

90º

For properties of the cross-product matrix see Annex A.6.

Algebraic Identities

a� b� cð Þ ¼ a � cð Þb� a � bð Þc ðA:52Þ
Special case : e� e� að Þ ¼ e e � að Þ � a ¼ e eT � I

� �
a ¼ E2

� a

e-unit vector; for Ex see ðA:164Þ-ðA:167Þ
a� bð Þ � c ¼ b� cð Þ � a ¼ c� að Þ � b ðA:53Þ

a� bð Þ � c� dð Þ ¼ a� bð Þ � d½ �c� a� bð Þ � c½ �d ðA:54Þ

a� bð Þ � c� dð Þ ¼ a � c b � c
a � d b � d
����

���� ¼ a � cð Þ b � dð Þ � a � dð Þ b � cð Þ ðA:55Þ

Special case ðc ¼ a; d ¼ bÞ : a2 b2 ¼ a � bj j2 þ a� bj j2

Vector decomposition in perpendicular and parallel component (ak -parallel to e;
a?- perpendicular to e):

a ¼ e � að Þe
|fflfflffl{zfflfflffl}

ak

� e� e� að Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

a?

¼ eeTa|ffl{zffl}
ak

� E�2a
|ffl{zffl}

a?

ðA:56Þ

Annexure j13



Differential operators
Cartesian coordinates:

Scalar field : W ¼ W x; y; zð Þ

Vector field : A ¼ Ax x; y; zð Þ ex þ Ay x; y; zð Þ ey þ Az x; y; zð Þ ez ¼
Ax x; y; zð Þ
Ay x; y; zð Þ
Az x; y; zð Þ

2
4

3
5

Gradient : rW ¼
@W=@x
@W=@y
@W=@z

2
4

3
5 ¼ @W

@x
ex þ @W

@y
ey þ @W

@z
ez ðA:57Þ

Laplacian : DW ¼ r � rW ¼ r2W ¼ @2W

@x2
þ @2W

@y2
þ @2W

@z2
ðA:58Þ

Divergence : r � A ¼
@=@x
@=@y
@=@z

2
4

3
5 �

Ax

Ay

Az

2
4

3
5 ¼ @Ax

@x
þ @Ay

@y
þ @Az

@z
ðA:59Þ

Curl ðrotorÞ :
r� A ¼

0 �@=@z @=@y

@=@z 0 �@=@x

�@=@y @=@x 0

2
664

3
775 �

Ax

Ay

Az

2
664

3
775

¼ @Az

@y
� @Ay

@z

� �
ex þ @Ax

@z
� @Az

@x

� �
ey þ @Ay

@x
� @Ax

@y

� �
ez

ðA:60Þ

r � r� Að Þ ¼

� @2

@z2
� @2

@y2
@2

@x@y
@2

@x@z

@2

@x@y
� @2

@z2
� @2

@x2
@2

@y@z

@2

@x@z
@2

@y@z
� @2

@x2
� @2

@y2

2
6666666664

3
7777777775
�

Ax

Ay

Az

2
664

3
775

¼ � @2Ax

@z2
� @2Ax

@y2
þ @2Ay

@x@y
þ @2Az

@x@z

� �
ex

þ @2Ax

@x@y
� @2Ay

@z2
� @2Ay

@x2
þ @2Az

@y@z

� �
ey

þ @2Ax

@x@z
þ @2Ay

@y@z
� @2Az

@x2
� @2Az

@y2

� �
ez

ðA:61Þ

Spherical coordinates:

Scalar field : W ¼ W r;q;wð Þ
Vector field : A ¼ Ar r;q;wð Þ er þ Aq r;q;wð Þ eq þ Aw r;q;wð Þ ew

Gradient : rW ¼ @W

@r
er þ 1

r
@W

@q
eq þ 1

rsinq
@W

@w
ew ðA:62Þ
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Laplacian : DW ¼ r2W ¼ 1
r2

@

@r
r2
@W

@r

� �
þ 1
r2sin q

sinq
@W

@q

� �
þ 1

r2 sin2 q

@2W

@w2

ðA:63Þ

Divergence : r � A ¼ 1
r2
@ r2Arð Þ

@r
þ 1
r sin q

@ sin qAqð Þ
@q

þ 1
r sinq

@Aw

@w
ðA:64Þ

Curl ðrotorÞ :
r� A ¼ 1

r sin q

@ sin qAw

� �
@q

� @Aq

@w

� �
er

þ 1
r

1
sin q

@Ar

@w
� @ rAw

� �
@r

� �
eq þ 1

r
@ rAqð Þ
@r

� @Ar

@q

� �
ew

ðA:65Þ
dlð Þ2 ¼ dr2 þ r2dq2 þ r2sin2dw2

dS ¼ r2 sin q dq dw er

dV ¼ er � dS
r

¼ sin q dq dw

dV ¼ r2sin q dr dq dw

ðA:66Þ

Differential Identities

r� rWð Þ ¼ 0 ðA:67Þ
r � WrYð Þ ¼ WDYþrW � rY ðA:68Þ
r � WrY�YrWð Þ ¼ WDY�YDW ðA:69Þ
r � WAð Þ ¼ rWð Þ � AþWr � A ðA:70Þ
r � WAð Þ ¼ rWð Þ � AþWr� A ðA:71Þ
r � r � Að Þ ¼ 0 ðA:72Þ
r � A� Bð Þ ¼ B � r � Að Þ � A � r � Bð Þ ðA:73Þ
r � r� Að Þ ¼ r r � Að Þ � DA ðA:74Þ

We applied here r � r ¼ D which is also often expressed by r � r ¼ r2

(Laplacian).

Derivations of the position vector:

r ¼ rer ¼ x ex þ y ey þ z ez ) r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x þ y2 þ z2

p
; er ¼ r=r

rr ¼ er ðA:75Þ
rr2 ¼ 2r ðA:76Þ
rr�1 ¼ � er

r2
ðA:77Þ

rr�2 ¼ � 2 er
r3

ðA:78Þ
r � r ¼ 3 ðA:79Þ

r � er ¼ 2
r

ðA:80Þ
r � r ¼ 0 ðA:81Þ
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A.6
Some Matrix Operations and useful Identities

Some Matrix Inversion Identities

Iþ Að Þ�1 ¼ Iþ Að Þ�1 Iþ A� Að Þ ¼ I� ðIþ AÞ�1A

¼ Iþ A� Að ÞðIþ AÞ�1 ¼ I� AðIþ AÞ�1
ðA:82Þ

Aþ ABA ¼ A Iþ BAð Þ ¼ Iþ ABð ÞA
Iþ BAð Þ�1A ¼ A Iþ ABð Þ�1

ðA:83Þ

Inversion of a matrix block (Frobenius/Schur/Woodbury identity):
Consider the system of linear equations:

A x1 þ B x2 ¼ y1
C x1 þ D x2 ¼ y2

ðA:84Þ

A B

C D

=M in which xi; yj are column vectors and A; B; C; D are
matrices of appropriate dimensions (A and D must be
square matrices). We can compress (A.84) in matrix block
form:

MX ¼ Y

M ¼
A B

C D

2
4

3
5; X ¼

x1

x2

2
4

3
5; Y ¼

y1

y1

2
4

3
5 ðA:85Þ

In order to solve (A.85) for X we perform a block Gaussian elimination to reduce
dimensionality of matrix inversion leading to:

SD 0

C D

" #
x1

x2

" #
¼ y rð Þ

1

y2

" #
;

SD ¼ A� BD�1 C

y rð Þ
1 ¼ y1 � BD�1 y2

or

A B

0 SA

" #
¼

x1

x2

" #
¼

y1

y rð Þ
2

" #
;

SA ¼ D� C A�1 B

y rð Þ
2 ¼ y2 � C A�1 y1

ðA:86Þ

Herein SD and SA are called the Schur complements of the block D and A respec-
tively of the matrix M. Taking e.g. the upper version of (A.86), one solves the equa-
tion first for x1 supposing the inverse matrices of SD and D exist. Then one solves
for x2. For the inverse of matrixM, it is easy to show that

M�1 ¼
S�1
D �A�1 B S�1

A

�D�1 C S�1
D S�1

A

" #
ðA:87Þ

Using matrix inversion lemma:

Aþ BDCð Þ�1 ¼ A�1 � A�1 B D�1 þ C A�1 B
� ��1

C A�1 ðA:88Þ
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the inverse of Schur’s complements gets:

S�1
D ¼ A� BD�1 C

� ��1 ¼ A�1 þ A�1 B S�1
A C A�1

S�1
A ¼ D� C A�1 B

� ��1 ¼ D�1 þ D�1 C S�1
D BD�1

ðA:89Þ

so that finally the inverse ofM can be expressed as:

M�1 ¼
A�1 Iþ B S�1

A C A�1
� � �A�1 B S�1

A

�S�1
A C A�1 S�1

A

2
4

3
5

¼
S�1
D �S�1

D BD�1

�D�1 C S�1
D D�1 Iþ C S�1

D BD�1
� �

" # ðA:90Þ

A v

uH α

=M For the special case where A is a square matrix of dimen-
sion N;N½ �, B ¼ v is a N; 1½ �column vector, C ¼ uH is a
1;N½ � row vector and D ¼ a is a scalar, the matrix inver-
sion lemma reads:

Aþ v uH
� ��1 ¼ A�1 � A�1 v

� �
uH A�1
� �

a�1 þ uH A�1 v
ðA:91Þ

and the inverse ofM gets:

M�1 ¼
A�1 þ A�1 v

� �
uH A�1
� �

a� uH A�1 v
� A�1 v

a� uH A�1 v

� uH A�1

a� uH A�1 v

1

a� uH A�1 v

2
66664

3
77775 ðA:92Þ

Least Squares Normal Equation:
Representing a (real or complex valued) sequence as column vector and consider

the approximation (e.g. a signal model) ŷ ¼ ŷ1 ŷ2 � � � ŷn � � � ŷN½ �T of

the sequence (e.g. captured data samples) y ¼ y1 y2 � � � yn � � � yN½ �T by a
linear combination of the M (with M < N) sequences xm ¼ xm1 xm2 � � � xmn½
� � � xmN �T ; m 2 1;M½ �:

ŷ n½ � ¼
XM
m¼1

amxmn ) ŷ ¼ XH

with H ¼ a1 a2 � � � am � � � aM½ �; X ¼ x1 x2 � � � xm � � � xM½ �
ðA:93Þ

where at H is the so called parameter vector. (A.93) represents an overdetermined
set of linear equations.
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The approximation error e ¼ e1 e2 � � � en � � � eN½ �T is:

e ¼ y� ŷ ¼ y� XH ðA:94Þ
The approximation error depends on the selection of the parameters. The goal is

to find a parameter vector H which minimises the L2-norm of the approximation
error

H ¼ arg min
H

e Hð Þk k2 ðA:95Þ

respectively

d
dH

eH Hð Þ e Hð Þ� � ¼ 0 ðA:96Þ

which solves in:

H ¼ XHX
� ��1

XHy ðA:97Þ
The resulting approximation error is:

e Hð Þk k22 ¼ eH Hð Þ e Hð Þ ¼ yH y� XHð Þ ðA:98Þ
The least squares is the simplest and most common method of linear regression.

Eigenvalue Decomposition:
Let A be a [MxM] square matrix and x a column vector of length M, then the scalar
values l which meet (A.99) are called the Eigenvalues of A:

A x ¼ lx ðA:99Þ
The Eigenvalues are the solutions of the characteristic polynomial:

det A� lIð Þ ¼ 0 ðA:100Þ
Eigenvalue decomposition factorises a square matrix by following transforma-

tion:

A ¼ QLQ�1 ðA:101Þ

with L ¼
l1 0 � � � 0
0 l2 � � � 0
..
. ..

.
} ..

.

0 0 � � � lM

2
6664

3
7775; Q ¼ xq1 xq2 � � � xqM

� �

xqm is the Eigenvector which solves (A.99) for the Eigenvalue lm. The Eigenvec-
tors are often normalised xqm

�� ��
2 ¼ 1 but they need not to be. The Eigenvectors are

linearly independent (i.e. detQ 6¼ 0). Eigenvalue decomposition may be used to
diagonalise a matrix. Note, not all square matrices may be diagonalised.
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Properties:

Trace : tr Að Þ ¼
X

lm ðA:102Þ
Determinate : det Að Þ ¼

Y
lm ðA:103Þ

Matrix power : An ¼ QLn Q�1; n 2 Z ðA:104Þ

Singular Value Decomposition:
Let A be an [MxN] matrix. The factorisation

A ¼ US VH ðA:105Þ
is called singular value decomposition of A, with

UUH ¼ I-unitary½MxM� �matrix
V VH ¼ I-unitary½NxN�-matrix
S� ½MxN� diagonal matrix of the so called singular values

e:g: if M > N : S ¼

s1 0 � � � 0
0 s2 � � � 0
..
. ..

.
} ..

.

0 0 � � � sN

..

. ..
.

} ..
.

0 0 � � � 0

2
66666664

3
77777775
; s1 � s2 � � � � � sN

Singular vectors:

A vn ¼ snun; AH un ¼ snvn ðA:106Þ
Left-singular vector : U ¼ u1 u2 � � � un � � � uM½ �
Right-singular vector : V ¼ v1 v2 � � � vn � � � vN½ �

Relation to Eigenvalue decomposition:

AHA ¼ US VH
� �H

US VH ¼ VSHS VH ¼ VSHS V�1

A AH ¼ U S VH U S VH
� �H ¼ US SHUH ¼ U S SHU�1

ðA:107Þ

� V is composed from the Eigenvectors of the matrix AHA
� U is composed from the Eigenvectors of the matrix A AH

� Non-zero singular values and Eigenvalues of AHA or A AH relates by sn ¼
ffiffiffiffiffi
ln

p
.

Pseudo-Inverse (Moore Penrose Inverse)

� Using singular value decomposition, the pseudo inverse of matrix Aþ is given by:

Aþ ¼ V Sþ UH ðA:108Þ
using

A ¼ US VH; Sþ ¼

s�1
1 0 � � � 0
0 s�1

2 � � � 0

..

. ..
.

} ..
.

0 0 � � � s�1
N

..

. ..
.

} ..
.

0 0 � � � 0

2
666666664

3
777777775
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� Explicit solution forM � N (Aþ is left inverse of A; I - [NxN] –matrix):

Aþ ¼ AHA
� ��1

AH ) AþA ¼ I ðA:109Þ
It is related to the least square solution (i.e. minimum L2-norm of the error) of

a set of overdetermined equations (compare (A.97)).
� Explicit solution forM 	 N (Aþ is right inverse of A; I - [MxM] –matrix):

Aþ ¼ AH A AH
� ��1 ) A Aþ ¼ I ðA:110Þ

It represents the solution of a set of underdetermined equations which mini-
mises the L2-norm of the solution vector.

Some Special Matrices
Identity matrix:

I ¼
1 0 � � � 0
0 1 � � � 0
..
. ..

.
} ..

.

0 0 � � � 1

2
664

3
775 ðA:111Þ

I A ¼ A I ¼ A
det I ¼ 1

ðA:112Þ

Reflection matrix:

J ¼
0 � � � 0 1
0 � � � 1 0
..
.

J ..
. ..

.

1 � � � 0 0

2
664

3
775 ðA:113Þ

J ¼ JT

J ¼ J�1; J J ¼ I

Jn ¼
I n even

J n odd

(

tr J ¼
0 n even

1 n odd

(

det J ¼ 
1

ðA:114Þ

Eigenvalues ln ¼ 
1

(Assuming J is a N;N½ � matrix, half of the Eigenvalues are þ1 and the other half
is �1 if N is even. If N is odd, the number of negative Eigenvalues is one less than
the number of positive ones.)
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Reverses ordering of rows:

J A ¼
aM1 aM2 � � � aMN

..

. ..
.

} ..
.

a21 a22 � � � a2N
a11 a12 � � � a1N

2
6664

3
7775 ðA:115Þ

Reverses ordering of columns in matrix A:

A J ¼
a1N � � � a12 a11
a2N � � � a22 a21
..
.

} ..
. ..

.

aMn � � � aM2 aM1

2
6664

3
7775 ðA:116Þ

Correspondingly, J x will reverse the element order of the column vector x and
xT J is doing the same with the row vector xT.

Shift matrix (see also circulant matrix):
Shifts cyclically columns or rows of a matrix

P ¼

0 0 � � � 0 1
1 0 � � � 0 0
..
.

1 } ..
. ..

.

0 } } 0 0
0 � � � 0 1 0

2
66664

3
77775 ðA:117Þ

PT P ¼ P PT ¼ I ðA:118Þ

det P ¼ 1 ðA:119Þ
Eigenvalues ln ¼ ej

n
N ; n 2 0;N � 1½ �

Shift n columns left : A Pn

Shift n columns right : A PT
� �n

Shift n rows down : Pn A
Shift n rows up : PT

� �n
A

Symmetric and skew-symmetric matrix

Symmetric : A ¼ AT ðA:120Þ
Every symmetric matrix with real entries can be diagonalised. It has real valued

Eigenvalues. The Eigen decomposition takes a simpler form, i.e.:

A ¼ QLQT ðA:121Þ
since the Eigenvectors are orthogonal (QQT ¼ I). Symmetric matrices are normal
matrices.
The matrices A; B are supposed to be symmetric. It holds:

Matrix sum : Aþ B ¼ Aþ Bð ÞT
Matrix product A B ¼ A Bð ÞT if A B ¼ B A
Power of matrix An ¼ Anð ÞT if A ¼ AT ; n 2 Z
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Skew-symmetric : A ¼ �AT ðA:122Þ
Let A be an [MxM] matrix:

det Að Þ ¼ 0 if M is odd ðA:123Þ
The Eigenvalues come in pairs. In the case whereM is odd, one unpaired lm ¼ 0

appears.

L ¼

0 l1 0 0 � � � 0
�l1 0 0 0 � � � 0
0 0 0 l2 � � � 0
0 0 �l2 0 � � � 0
..
. ..

. ..
. ..

.
} ..

.

0 0 0 0 � � � 0

2
66666664

3
77777775

ðA:124Þ

Real skew-symmetric matrices are normal matrices.
A square matrix may be decomposed in a symmetric Asy and skew-symmetric

matrix Ask:

A ¼ Asy þ Ask ðA:125Þ
where at Asy ¼ 1

2
Aþ AT
� �

and Ask ¼ 1
2

A� AT
� �

Per- and centrosymmetric matrix:
Persymmetric: square matrix of symmetry about its cross diagonal.

A ¼

a11 � � � a1N�2 a1N�1 a1N
a21 � � � a2N�2 a2N�1 a1N�1

a31 � � � a3N�2 a2N�2 a1N�2

..

.
} ..

. ..
. ..

.

aN1 � � � a31 a21 a11

2
666664

3
777775

AT ¼ J A J
A ¼ J AT J
J AT ¼ A J

ðA:126Þ

Centrosymmetric matrix: Square matrix which is symmetric about its centre, e.g.

c d b
e a e
b d c

2
4

3
5 or

c f e d
h a b g
g b a h
d e f c

2
664

3
775

A J ¼ J A ðA:127Þ
Hermitian and skew-Hermitian matrix:

Hermitian : A ¼ AH ðA:128Þ
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A Hermitian matrix is often also assigned as adjoint matrix. The determinate of a
Hermitian matrix is real:

det Að Þ ¼ det AH
� � ¼ det Að Þð Þ� ðA:129Þ

Every Hermitian matrix is a normal matrix. Hermitian matrices have real valued
Eigenvalues and orthogonal Eigenvectors. The Eigen decomposition simplifies to:

A ¼ QLQH where at QQH ¼ QH Q ¼ I ðA:130Þ
Skew-Hermitian : A ¼ �AH ðA:131Þ

det Að Þ ¼ 0 M odd
real M even

�
ðA:132Þ

The Eigenvalues are purely imaginary. Skew-Hermitian matrices are normal.
Their Eigenvectors are orthogonal.
Orthogonal Matrix:

QT ¼ Q�1

QTQ ¼ QQT ¼ I
ðA:133Þ

det Qð Þ ¼ 
1 ðA:134Þ
Unitary Matrix:

UH ¼ U�1

UHU ¼ UUH ¼ I
ðA:135Þ

det Uð Þ ¼ 
1 ðA:136Þ
Eigenvalues are lying on the unit circle:

ln ¼ ejwn ðA:137Þ
Normal Matrix:

AHA ¼ AAH ðA:138Þ
A matrix is normal if it can be factorised in a diagonal matrix L and a unitary

matrix U by the equation:

A ¼ ULUH ðA:139Þ
Vandermonde matrix:

X ¼

1 x1 x21 � � � xN�1
1

1 x2 x22 � � � xN�1
2

..

. ..
. ..

.
} ..

.

1 xM x2M � � � xN�1
M

2
6666664

3
7777775

ðA:140Þ

det X ¼
YM

n;m ¼ 1
n < m

xm � xnð Þ; if M ¼ N ðA:141Þ
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Application in polynomial fitting: Supposing we have a data set of M samples
y ¼ y1 y2 � � � yM½ �; x ¼ x1 x2 � � � xM½ � which should be fitted by a poly-
nomial of order N � 1:

ŷ ¼ a0 þ a1x þ a2x
2 þ � � � þ aN�1x

N�1 ðA:142Þ

In order to determine the parameter vectorH ¼ a0 a1 � � � aN�1½ �T, we apply
least square estimation which minimises the L2-norm of the fitting error e ¼ y� ŷ
where at (A.142) may be expressed in matrix form by:

ŷ ¼ XH ðA:143Þ

Herein, X represents the Vandermonde matrix (A.140). The polynomial coeffi-
cients result to (refer also to (A.97):

H ¼ XHX
� ��1

XHy ðA:144Þ

Toeplitz matrix: all elements along a diagonal are identical.

AT ¼

a0 a�1 a�2 a�3 � � �
a1 a0 a�1 a�2 � � �
a2 a1 a0 a�1 � � �
a3 a2 a1 a0 � � �
..
. ..

. ..
. ..

.
}

2
666664

3
777775

ðA:145Þ

A square Toeplitz matrix is persymmetric:

AT ¼ J AT
T J ðA:146Þ

The Toeplitz matrix allows writing the discrete convolution in matrix form:

y ¼ gT x ¼

g1 0 � � � 0 0
g2 g1 � � � 0 0
g3 g2 � � � 0 0

..

.
g3 � � � g1 0

gM�1
..
. � � � g2 g1

gM gM�1 } g3 g2

0 gM
..
. ..

.
g3

0 0 � � � gM�1
..
.

0 0 � � � gM gM�1
0 0 � � � 0 gm

2
6666666666666666664

3
7777777777777777775

x1
x2
..
.

xN

2
6664

3
7775 ðA:147Þ

gT - Toeplitz matrix of discrete impulse response of M samples. x column vector
of N > M data samples. See [2] for more on Toeplitz matrix.
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Hankel matrix: All elements along the cross diagonals are identical.

AH ¼

� � � a�3 a�2 a�1 a0
� � � a�2 a�1 a0 a1
� � � a�1 a0 a1 a2
� � � a0 a1 a2 a3

J ..
. ..

. ..
. ..

.

2
666664

3
777775

ðA:148Þ

A square Hankel matrix is symmetric:

AH ¼ AT
H ðA:149Þ

J AH respectively AH J is a Toeplitz matrix.

Circulant Matrix:
Circulant matrices1) are special cases of the Toeplitz or Hankel matrices. Several

versions are in use:

down� circulant; Toeplitz type : AD ¼

a0 aM�1 aM�2 � � � a1
a1 a0 aM�1 � � � a2
a2 a1 a0 � � � a3
..
. ..

. ..
.

} ..
.

aM�1 aM�2 aM�3 � � � a0

2
666664

3
777775

¼
XM�1

m¼0

am Pm ðA:150Þ

with P - shift matrix (A.117).

Left-circulant; Hankel type AL ¼ AD J PT ðA:151Þ
Right-circulant; Toeplitz type AR ¼ J AL P ¼ J AD J ðA:152Þ

Eigenvalues and vectors of AD (corresponding for the other types):

lk ¼
XM�1

m¼0

ame
�j2p k m

M ; xqk ¼

1

ej2p
k
M

ej2p
2 k
M

..

.

ej2p
M�1ð Þ k

M

2
66666666664

3
77777777775
; k;m 2 0;M � 1½ � ðA:153Þ

1) Do not confuse with circular matrix: A ¼ ejB if B is a real matrix.
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Arranging the Eigenvectors in the matrix F and the Eigenvalues in the diagonal
matrix L, we get:

F ¼ xq0 xq1 � � � xq M�1ð Þ
� � ¼ ej2p

z zT
M ; z ¼ 0 1 2 � � � M � 1½ �T

Fk;m ¼ ej2p
k m
M ; k;m 2 0;M � 1½ �

L ¼
l0 0 � � �
0 l1 � � �
..
. ..

.
}

2
6664

3
7775

From this, we can observe

FH F ¼ M I ðA:154Þ
and the Eigenvalues in (A.153) may be expressed as:

lk ¼
XM�1

m¼0

am F�
k;m

diag Lð Þ ¼ FH a

ðA:155Þ

where at diag Lð Þ ¼ l0 l1 � � �½ �T is a vector constituting the diagonal elements
of L and a is a vector representing the first column of the circulant matrix
a ¼ a0 a1 � � � aM�1½ �T . Comparing (A.153) or (A.155) with (2.179), (2.181) and
(2.182), we can state that the Eigenvalues represent the complex spectrum of the
vector a. Finally, the circulant matrix can be factorised as:

AD ¼ FL F�1

AD ¼ 1
M

FL FH

AH
D ¼ FL� F�1 ¼ 1

M
FL� FH

ðA:156Þ

which is nothing but a Fourier decomposition of the circulant matrix AD.
The power of a circulant matrix is given by (applying (A.104):

An
D ¼ FLn F�1

where lnk ¼
XM�1

m¼0

am e�j2p k m
M

 !n ðA:157Þ

which involves the calculation of the nth power of a polynomial. Since a product of
two polynomials may be written as discrete convolution (also assigned as Cauchy
product)

XN�1

n¼0

an

 ! XN�1

n¼0

bn

 !
¼
XM�1

m¼0

cm where cm ¼
X
k

akbm�k;

or
XN�1

n¼0

anx
n

 ! XN�1

n¼0

bnx
n

 !
¼
XM�1

m¼0

cmx
m

M ¼ 2N � 1; k ¼ maxð0;m þ 1� NÞ : minðm;N � 1Þ

ðA:158Þ
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the Eigenvalues of An
D may also be expressed by a n-fold convolution. This observa-

tion coincides well with the product rule of the Fourier-transform from Table B-2.

Hadamard Matrix:
The entries of a [NxN] Hadamard matrix H are either 1 or �1. Their columns

(and rows) are orthogonal:

HT H ¼ N I ðA:159Þ
Hadamard matrixes exist only of order N ¼ 2n or if N is a multiple of 4. We are

only interested in Hadamard matrices whose order is N ¼ 2n. They can be built
recursively by Sylvester’s construction:

H1 ¼ 1

H2n ¼ Hn Hn

Hn �Hn

� �
ðA:160Þ

The Eigenvalues of a Sylvester type Hadamard matrix are lk ¼ 
 ffiffiffiffi
N

p ¼ 
2n=2 with
equal number of positive or negative Eigenvalues. From (A.102) to (A.104), we can
state

det H2nð Þ ¼ ffiffiffiffi
N

p� �N
tr H2nð Þ ¼ 0

Hk
2n ¼

ffiffiffiffi
N

p� �k
I; k even

ffiffiffiffi
N

p� �k�1
H2n; k odd

8<
: ; k 2 Z

ðA:161Þ

Rotation Matrix; Euler angles
(refer also to Annex A.4)

0eu a; b; xð Þ ¼
cos a �sin a 0

sin a cos a 0

0 0 1

2
64

3
75

1 0 0

0 cos b �sin b

0 sin b cos b

2
64

3
75

cos x �sin x 0

sin x cos x 0

0 0 1

2
64

3
75

¼ 0z að Þ 0x bð Þ 0z xð Þ
ðA:162Þ

Note that 12 different versions of rotation matrices may be created. They have all
the same properties:

0T 0 ¼ I

0T 0 ¼ 0 0T

det 0 ¼ 1
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For the sub-matrices holds (f ¼ x; y; z; q ¼ a; b; x;w;w; c:::::):

0Tf 0f ¼ I

0Tf 0f ¼ 0f 0
T
f

det 0f ¼ 1

0f �qð Þ ¼ 0�1
f qð Þ ¼ 0Tf qð Þ

0f q1 þ q2ð Þ ¼ 0f q1ð Þ 0f q2ð Þ
Eigenvalues of 0f qð Þ: l1 ¼ 1; l2;3 ¼ e
jq

Householder Matrix:
The Householder matrix performs a reflection about a plane having the normal
vector u.u being an unitary column vector, i.e. uHu ¼ 1, the Householder matrix is
defined as:

T uð Þ
H ¼ I� 2uuH ðA:163Þ

Properties:

Normal : T uð Þ
H T uð Þ

H

	 
H
¼ T uð Þ

H

	 
H
T uð Þ
H

Hermitian : T uð Þ
H ¼ T uð Þ

H

	 
H

Unitary : T uð Þ
H

	 
�1
¼ T uð Þ

H

	 
H

Involutary : T uð Þ
H

	 
2
¼ I

Eigenvalues : ln ¼ 
1

Determinate : det T uð Þ
H ¼ �1

Cross-Product Matrix
The cross-products of two respectively three vectors may be expressed by following
matrix relation (refer also to (A.52)):

c ¼ a� b ¼
0 �az ay
az 0 �ax
�ay ax 0

2
4

3
5 �

bx
by
bz

2
4

3
5 ¼ A� b ðA:164Þ

a� a� bð Þ ¼ A� A� b ¼ a aT � aT a
� �

I
� �

b ¼ A2
� b ðA:165Þ

Properties:

AT
� ¼ �A�

A2
�

� �T ¼ A2
�
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If a is a unit vector e, we get:

e ¼
sin q cos w

sinq sin w

cos q

2
4

3
5; E� ¼

0 �cos q sinq sin w

cos q 0 �sinq cos w

�sinq sin w sin q cos w 0

2
4

3
5;

E2
� ¼ e eT � I ¼

� cos2 q� sin2 qsin2 w
� �

sin2 q cos w sin w cos q sin q cos w

sin2 qcos wsin w � cos2 q� sin2 q cos2 w
� �

cos q sinq sin w

cos qsinqcos w cos q sinq sin w �sin2 q

2
64

3
75

e� b ¼ E� b ðA:166Þ
e� e� bð Þ ¼ e eT � I

� �
b ¼ E2

� b ðA:167Þ
(note the difference between E2

� to the Householder matrix (A.163))
Properties:

ET
� ¼ �E�

E� ET
� ¼ ET

� E�
detEx ¼ 0

ln ¼ 0;
j

E2
�

� �T ¼ E2
�

E2
� E2

�
� �T ¼ E2

�
� �T

E2
�

det E2
�¼ 0

ln ¼ 0;
1

A.7
Quadric Surfaces and Curves

A quadric defines the locus (given by position vector r) of zeros of a quadratic poly-
nomial. The geometric interpretation of the loci is either a surface or a curve of
second order (by restricting to three dimensions). It can be written in any of the
three forms:

rT A rþ BT r ¼ C0

r� r0ð ÞT A r� r0ð Þ ¼ C
r� r0ð ÞT 0 Ac 0

T r� r0ð Þ ¼ C
ðA:168Þ

0 - rotation matrix; r0 - midpoint; BT ¼ �rT0 Aþ AT
� �

; C ¼ C0 � rT0 A r0; Ac - diago-
nal matrix (see below).
Canonical quadric (main axes coincide with the axes of the Cartesian coordinate

system):

rT Ac r ¼ C ðA:169Þ
The Eigenvector decomposition results to A ¼ QLQ�1 ¼ QLQT since A is

symmetric. The Eigenvalues provide the length of the major axes L ¼ Ac and the
Eigenvectors define their directions Q ¼ 0T .
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Tangent plane and normal vector respectively [3]:

n ¼ A r� r0ð Þ
A r� r0ð Þj j ðA:170Þ

Some quadric surfaces:

Sphere : Ac ¼ I
a2

; C ¼ 1

Spheroid : Ac ¼
a�2 0 0
0 a�2 0
0 0 b�2

2
4

3
5; C ¼ 1

Ellipsoid : Ac ¼
a�2 0 0
0 b�2 0
0 0 c�2

2
4

3
5; C ¼ 1

Circular paraboloid : Ac ¼
a�2 0 0
0 a�2 0
0 0 �1

2
4

3
5; C ¼ 0

Circular hyperboloid of one (þ1) or two (�1) sheets:

Ac ¼
a�2 0 0
0 a�2 0
0 0 �c�2

2
4

3
5; C ¼ 
1

Some quadric curves (conic sections):

Circle : Ac ¼
a�2 0 0
0 a�2 0
0 0 0

2
4

3
5; C ¼ 1

Ellipse : Ac ¼
a�2 0 0
0 b�2 0
0 0 0

2
4

3
5; C ¼ 1

Hyperbole : Ac ¼
a�2 0 0
0 �b�2 0
0 0 0

2
4

3
5; C ¼ 
1

Rotation of an ellipse in canonical position about the main axis (equals the x-axis)
by the angle a:

AR ¼ 0Tx að Þ Ac 0x að Þ ðA:171Þ

Rotation of an ellipse of arbitrary orientation about its main axis by the angle a:

AR ¼ Q2 0Tx að ÞA 0x að Þ QT
� �2 ðA:172Þ

Q represents the Eigenvectors of A.
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A.7.1
Ellipse

By definition, an ellipse is the locus of all points P of the plane whose distances to
two fixed points F1;2 ¼ 
e; 0½ � (the focal point) add to the same constant, i.e.

l1 þ l2 ¼ 2a ðA:173Þ
Ellipse in canonical position:

Implicit form :
x2

a2
þ y2

b2
¼ 1 ðA:174Þ

1l

2l

a

x

y

b

Q

Tangent point

P

F1

F2

Normal in P = bisecting line

M = [0,0];  P = [x0,y0];  F1,2 = [±e,0]; Q = [xq,0]

e

Major semi-axis a

Minor semi-axis b

n
l

M

Figure A.4 Ellipse in canonical position.

a

x

y

b

F1 F2

e

r

Δr

n

z

x

y

n

z

0r

r

F1

a

b

e

F2

Figure A.3 Example of an elliptic curve in 3D-space at canonical position (left: focal points are
placed at the x-axis and the curve is within the xy-plane) and at arbitrary position and orientation
(right).
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Parametric form :
x ¼ a cos f f ¼ 0 � � � 2p
y ¼ b sin f

ðA:175Þ

where at a2 ¼ e2 þ b2: ðA:176Þ

Eccentricity:

e ¼ e
a
¼ cos c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

s
ðA:177Þ

Slope of the tangent in point P ¼ x0; y0
� � ¼ a cos f0; b sin f0½ �:

tan q ¼ dy
dx

¼ y0

x0
¼ � b

a
cot f0: ðA:178Þ

Slope of the normal in point P:

tan b ¼ � 1
tan q

¼ � dx
dy

¼ a
b
tan f0 ðA:179Þ

Length of bisecting line in point P:

ln ¼ y0
sin b

¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 cos2f0

p
ðA:180Þ

Intersection xq of bisecting line with x-axis:

xq ¼ x0 � y0
tan b

¼ a cos f0 �
b2

a
cos f0 ¼ a 1� b2

a2

� �
cos f0 ¼ ae2cos f0 ðA:181Þ

The relation between the central angle w and the curve parameter f is given by:

tan w ¼ y0
x0

¼ b
a
tan f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
tan f ðA:182Þ
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A.7.2
Hyperbola

x

y

a

b

F1 F2

Normal in P

e

Tangent in P

1l

2l

QV

Circle approaching the 

curvature in the vertex

Major semi-axis 

Minor semi-axis

00

1,2

00 00

, y

with cosh ; sinh

,0
c

xP

e,0F

x a y a

a,0V

rQ

P

Figure A.5 Hyperbola in canonical position.

By definition, a hyperbola is the locus of all points P of the plane whose distances to
two fixed points F1;F2 (the focal points) differ in the same constant 2a, i.e.

l1 � l2j j ¼ 2a ðA:183Þ
Canonical forms of hyperbola:

Implicit form :
x2

a2
� y2

b2
¼ 1 ðA:184Þ

Parameter form :
x ¼ a cosh f f 2 R

y ¼ b sinh f
ðA:185Þ

with

e2 ¼ a2 þ b2: ðA:186Þ
Eccentricity:

e ¼ e
a
¼ 1

cos a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 a

p
ðA:187Þ

Slope of the tangent in point P:

tan b ¼ dy
dx

����
P

¼ y0

x0
¼ b

a
coth f ðA:188Þ
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The asymptote represents the tangent with the lowest slope a ¼ bk k�1:

ya ¼ 
 b
a
x ¼ 
tan a x ðA:189Þ

Slope of the normal in point P:

� 1
tan b

¼ �dx
dy

����
P

¼ � x0

y0
¼ � a

b
tanh f ðA:190Þ

Radius rv and midpoint Q ¼ rc; 0½ �of the circle approaching the vertex curvature:
The curvature k of a hyperbola can be calculated via

k ¼ x0y00 � y0x00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02
� �3q

�������

�������
; ðA:191Þ

using the parametrically given curve. Insertion of (A.185) leads to

k fð Þ ¼ abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sinh2 fþ b2cosh2f
� �3q ; ðA:192Þ

and consequently the “vertex circle” has a radius of

rv ¼ 1
kv

¼ 1
k f ¼ 0ð Þ ¼

b2

a
: ðA:193Þ

Hence, its midpoint Q is placed at

x ¼ rc ¼ aþ rv ¼ a 1þ tan2a
� � ¼ a e2: ðA:194Þ

A.7.3
Intersection of two Circles

We are interested in the location of point P with respect to point M if radii r1; r2
and centre positions 
d; 0½ � of the two circles are known. We get from Figure A.6:

x0 þ dð Þ2 þ y20 ¼ r21

x0 � dð Þ2 þ y20 ¼ r22
ðA:195Þ

r
2r

1r

dd
M

00 ,P yx

y

x

Figure A.6 Intersection of two circles
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which yields:

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

r21 þ r22
� �� d

r

sin a ¼ x0
r
¼ r21 � r22

4 d r
¼ r21 � r22

4d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

r21 þ r22
� �� d

r ðA:196Þ

Assuming the radii are affected by independent random errors of variance
s2
r1 ¼ s2

r2 ¼ s2, the variances of range and angle are:

s2
r ¼

@r
@r1

� �2

þ @r
@r2

� �2
 !

s2 ¼ 1
2

1þ d
r

� �2
 !

s2 ðA:197Þ

s2
a ¼ @a

@r1

� �2

þ @a

@r2

� �2
 !

s2 ¼ 1
cos2a

@a
@r1

� �2

þ @a
@r2

� �2
 !

s2 ðA:198Þ

with a ¼ r21 � r22
4 d r

;
@a
@r1

¼ r1 4r2 � r21 þ r22
� �

8 d r3
;

@a
@r2

¼ � r2 4r2 þ r21 � r22
� �

8 d r3

Figure A.7 depicts the dependency of range and angular error as function of the
position of point P. Both, sr=sð Þ2 and sa d cos a=sð Þ2 tend to 0.5 at large distance r.

In case of radar imaging or localisation, the value of s may be given by the spatial
extension dr  c=2 3B of the sounding wave or the precision of pulse position esti-
mation s  c w=2.

Annex B: Signals and Systems

B.1
Fourier and Laplace Transform
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d
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d
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d

2
dcos

Normalized angular variance

Figure A.7 Normalized range and angular variance of circle intersection.
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Table B-1 Fourier-Transform of selected elementary signals.

Name Time domain x(t) Frequency domain X(f )

Dirac-pulse (see also annex A.2) x tð Þ ¼ d tð Þ ¼ u0 tð Þ X fð Þ ¼ 1

Cosine x tð Þ ¼ cos 2pf 0t
� �

X fð Þ ¼ 1
2

d f � f 0
� �þ d f þ f 0

� �� �

Sine x tð Þ ¼ sin 2pf 0t
� �

X fð Þ ¼ j
2

d f þ f 0
� �� d f � f 0

� �� �

Exponential x tð Þ ¼ ej2pf 0t X fð Þ ¼ d f � f 0
� �

Exponential with sinusoidal phase modulation x tð Þ ¼ eja sin 2pf 0 t
X nf 0
� � ¼ Jn að Þ ¼ 1

2p

ðp

�p

e�j nt�asintð Þdt

Jn að Þ � Bessel function of first kind and nth order

Signum function x tð Þ ¼ sgn t ¼
1 t > 0
0 t ¼ 0
�1 t < 0

8<
: X fð Þ ¼ 1

jpf

Step function; Heaviside function (see also annex A.2) x tð Þ ¼ u tð Þ ¼ u�1 tð Þ

¼ 1
2

sgn tþ 1ð Þ ¼
1 t > 0
1=2 t ¼ 0
0 t < 0

8<
:

X fð Þ ¼ 1
j2pf

þ 1
2
d fð Þ

Exponential step x tð Þ ¼ u�1 tð Þ 1� e�t=t
� �

¼ 1� e�t=t t � 0
0 t < 0

� X fð Þ ¼ 1
j2pf 1þ j2pf tð Þ þ

1
2
d fð Þ

Gaussian step
x tð Þ ¼ 1

t

ðt

�1
e�p

j
t

� �2
dj

¼ 1
t
u�1 tð Þ � e�p

j
t

� �2
X fð Þ ¼ 1

j2pf
þ 1
2
d fð Þ

� �
e�p tfð Þ2

¼ e�p tfð Þ2

j2pf
þ 1
2
d fð Þ
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Table B.1 (Continued)

Gaussian pulse x tð Þ ¼ e�p
t
t

� �2
X fð Þ ¼ te�p tfð Þ2

Cosine square pulse x tð Þ ¼ cos2
pt
2t

	 

; tj j 	 t X fð Þ ¼ t

sinc 2tfð Þ
1� 2tfð Þ2

Rectangular pulse (normalised boxcar function) x tð Þ ¼ rect
t
t

	 

¼

1 tj j < t=2
1=2 tj j ¼ t=2
0 tj j > t=2

8<
: X fð Þ ¼ t sinc f tð Þ

Sinc-pulse x tð Þ ¼ sinc
t
t

	 

¼ sinpt=t

pt=t
X fð Þ ¼ t rect tfð Þ

Triangular pulse xðtÞ ¼ tri
t
t

	 

¼ 1

t
rect

t
t

	 

� rect t

t

	 


¼
1� tj j=t tj j 	 t

0 tj j > t

(
X fð Þ ¼ t sinc2 tfð Þ

Exponential pulse x tð Þ ¼ u�1 tð Þ e�t=t ¼ e�t=t t � 0
0 t < 0

�
X fð Þ ¼ t

1þ j2pf t

Decaying sine wave x tð Þ ¼ u�1 tð Þ sin 2pf 0t e
�t=t

¼ sin 2pf 0t e
�t=t t � 0

X fð Þ ¼ jt
2

1

1þ j2p f þ f 0
� �

t
� � �

 

� 1

1þ j2p f � f 0
� �

t

!

Dirac-comb DDtP tð Þ ¼ x tð Þ ¼ P1
n¼�1

d t� ntPð Þ X fð Þ ¼ 1
tP

X1
m¼�1

d f �m f 0
� �

¼
X1

m¼�1
e�j2pf m tp ; f 0 ¼ 1=tP

Note that complex time signals x tð Þ are not physical. They are usually applied to join two physically real signals into one (often applied in
connection with IQ-modulation).

A
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Table B-2 Useful properties and rules of the Fourier-Transform.

Description Time domain Frequency domain Remarks

Real time function x tð Þ ¼ x� tð Þ X �fð Þ ¼ X � fð Þ

Even time function x tð Þ ¼ x �tð Þ X fð Þ ¼ X � fð Þ Pure real spectrum

Odd time function x tð Þ ¼ �x �tð Þ X fð Þ ¼ �X � �fð Þ Pure imaginary spectrum

Linearity a x tð Þ þ b y tð Þ a X fð Þ þ b Y fð Þ

Scaling x atð Þ 1
aj jX

f
a

� �
a 6¼ 0; a 2 R ;

Time shift x t� tð Þ X fð Þ e�j2pf t

Frequency shift (modulation) x tð Þ cos 2pf 0t
� � 1

2
X f þ f 0
� �þ X f � f 0

� �� �
Mixing or modulation with a cosine carrier

x tð Þ sin 2pf 0t
� � j

2
X f þ f 0
� �� X f � f 0

� �� �
Mixing or modulation with a sine carrier

x tð Þ ej2pf 0 t X f � f 0
� �

IQ-mixing or modulation

Time reversal x �tð Þ X � fð Þ

Differentiation
d
dt
x tð Þ ¼ u1 tð Þ � x tð Þ j2pf X fð Þ u1 tð Þ unit doublet

Integration
ðt

�1
x tð Þdt ¼ u�1 tð Þ � x tð Þ 1

j2pf
þ 1
2
d fð Þ

� �
X fð Þ

Moments
ð1

�1
tnx tð Þdt 1

�j2pð Þn
dnX fð Þ
df n

����
f ¼0

dnx tð Þ
dtn

����
t¼0

j2pð Þn
ð1

�1
f nX fð Þdf
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Table B.2 (Continued)

Convolution (product of spectra)
ð1

�1
x tð Þ y t� tð Þdt X fð Þ Y fð Þ Short form: x tð Þ � y tð Þ

Correlation
ð1

�1
x� tð Þ y tþ tð Þdt X � fð Þ Y fð Þ Short form: x� tð Þ � y �tð Þ

Product (frequency domain
convolution)

x tð Þ y tð Þ
ð1

�1

X wð Þ Y f � wð Þdw Short form: X fð Þ � Y fð Þ

Sampling
x tð Þ Pn d t� nDtsð Þ
¼Pn x nDtsð Þ

f s X fð Þ �Pn d f �mf s
� �

¼ f s
P

n
X f �mf s
� �

; f s Dts ¼ 1

Parseval’s theorem
ð1

�1

x tð Þ y� tð Þ dt
ð�1

�1

X fð Þ Y � fð Þ df

ð1

�1
x tð Þ2dt

ð1

�1

X fð Þj j2df Energy conservation in time and frequency
domain

Causality g tð Þ ¼ g tð Þ for t > 0
� 0 for t 	 0

� Re G fð Þf g ¼ 1
p
PV

ð1

�1

Im G jð Þf g
f � j

dj

Im G fð Þf g ¼ � 1
p
PV

ð1

�1

Re G jð Þf g
f � j

dj

PV: Cauchy principal value; Hilbert transform

A
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Table B-3 Some elementary properties of the Laplace-Transform (s0 ¼ s0 þ j2pf 0).

Description Time domain s-domain

Delta pulse d tð Þ 1

Sine u�1 tð Þ sin2pf 0t
1

s2 þ 2pf 0
� �2

Cosine u�1 tð Þ cos 2pf 0t
s

s2 þ 2pf 0
� �2

Damped sine u�1 tð Þ tn�1

n� 1ð Þ! e
s0 t 1

s� s0ð Þn

Time shift x t� tð Þ X sð Þ e�st

Differentiation
d
dt
x tð Þ s X sð Þ

Integration
ðt

0

x jð Þ dj 1
s
X sð Þ

Convolution x tð Þ � y tð Þ X sð Þ Y sð Þ

Product (mixing) x tð Þ y tð Þ X sð Þ � Y sð Þ
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Table B.3 (Continued)

Periodic function x tð Þ ¼ x0 t� ntp
� �

x0 tð Þ ¼
0 t < 0

x0 tð Þ 0 	 x0 tð Þ 	 tP

0 > tP

8>><
>>:

X sð Þ ¼ X 0 sð Þ
1� e�s tP

Limit theorems lim
t!0

x tð Þ ¼ x þ0ð Þ lim
s!1 s X sð Þ

lim
t!1 x tð Þ ¼ x 1ð Þ lim

s!0
s X sð Þ

Feedback loop (see also Annex B.7)
g tð Þ ¼ h tð Þ � 1� h tð Þ � k tð Þ þ h tð Þ � k tð Þ � h tð Þ � k tð Þ � � �½

� h tð Þ � k tð Þ � h tð Þ � k tð Þ � h tð Þ � k tð Þ þ � � ��
G sð Þ ¼ H sð Þ

1�H sð Þ K sð Þ
open loop gain : H sð Þ K sð Þk k < 1

A
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B.2
Properties of Convolution

Table B-4 Some properties of the convolution operation.

Description Equation

Commutativity x tð Þ � y tð Þ ¼ y tð Þ � x tð Þ
Associativity x tð Þ � y tð Þ � z tð Þð Þ ¼ x tð Þ � y tð Þð Þ � z tð Þ ¼ x tð Þ � z tð Þð Þ � y tð Þ
Distributativity x tð Þ � y tð Þ þ z tð Þð Þ ¼ x tð Þ � y tð Þ þ x tð Þ � z tð Þ
Multiplication with scalar a x tð Þ � y tð Þð Þ ¼ a x tð Þð Þ � y tð Þ ¼ x tð Þ � a y tð Þð Þ
Convolution with Dirac
function

x tð Þ � d tð Þ ¼ x tð Þ

Inverse element x �1ð Þ tð Þ � x tð Þ ¼ d tð Þ
Integration2)

ð

T

x tð Þ � y tð Þdt ¼
ð

T

x tð Þdt
ð

T

y tð Þdt

Differentiation
d
dt

x tð Þ � y tð Þð Þ ¼ dx tð Þ
dt

� y tð Þ ¼ x tð Þ � dy tð Þ
dt

¼ u1 tð Þ � x tð Þ � y tð Þð Þ

Shift invariance x t� t0ð Þ � y tð Þ ¼ x tð Þ � y t� t0ð Þ ¼ d t� t0ð Þ � x tð Þ � y tð Þ

Young’s inequality x tð Þ � y tð Þk kr 	 x tð Þk kp y tð Þk kq for
1
p
þ 1

q
¼ 1þ 1

r
p; q; r � 1

2) Results from Fubini’s theorem:
ð

A�B

f x; yð Þdx dy ¼
ð

A�B

g xð Þ h yð Þdx dy ¼
ð

A

g xð Þdx
ð

B

h yð Þdy if
f x; yð Þ ¼ g xð Þ h yð Þ
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Table B-5 Illustration of convolution for idealised functions. Note the ordinate must not necessarily be the
time axis. It also may relate to the frequency (convolution in frequency domain describes signal mixing); to
magnitude values (superposition of random variables) or it may relate to space coordinates (e.g. in case of
the point spread function of a sensor arrays).

t t t

t t t

Edge detection; differentiation 

Signal compression by convolution with time reversed signal 

Smoothing by rectangular function (e.g. short time integrator) 

Smoothing by exponential function (e.g. RC-low pass filter) 

Central limit theorem 

(Convolution of infinit number of non-periodic, unipolar, time limited functions results in the 

Gaussian function) 

t t t

t t t

t t t

t

t

t

t t

t t

t

tt t t t
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B.3
Spectrum of Complex Exponential (FMCW-Signal)

Signal:

xexpn tð Þ ¼ e
j2p f 0tþ at2

2

	 

ðB:1Þ

Fourier-Transform:

X expn fð Þ ¼
ð1

�1
e
j2p f 0tþ at2

2

	 

e�j2pf tdt ¼

ð1

�1
e
jpa t2� 2Df

a

	 

dt with Df ¼ f � f 0

¼ e�jp
Df 2

a

ð1

�1
e
jpa t� Df

a

	 
2

dt

ðB:2Þ
Substituting

j2 ¼ �jpa t� Df
a

	 
2
; j ¼ 1� jð Þ

ffiffiffiffiffiffi
pa
2

r
t� Df

a

� �
; dj ¼ 1� jð Þ

ffiffiffiffiffiffiffiffi
pa
2

r
dt

we result in

X expn fð Þ ¼ e�jp
Df 2

a

ð1

�1
e
jpa t� Df

a

	 
2

dt ¼ e�jp
Df 2

a

ffiffiffi
2

p

1� jð Þ ffiffiffiffiffiffi
pa

p
ð1

�1
e�j2 dj: ðB:3Þ

The remaining integral is related to the error function erf xð Þ ¼ 2ffiffiffi
p

p
Ðx
0
e�j2 dj for

which holds erf x ! 1ð Þ ¼ 1. Thus, we finally we result in:

X expn fð Þ ¼ e�jp
Df 2

a
1þ jð Þffiffiffiffiffi
2a

p ¼ e
�jp

Df 2

a � 1
4

	 

ffiffiffi
a

p : ðB:4Þ

B.4
Product Detector

B.4.1
ACF of Band Limited White Gaussian Noise

We consider a product detector as depicted in Figure B.1 which is fed by two input
signals x tð Þ and y tð Þ representing both Gaussian noise n tð Þ � N 0; s2

n

� �
. We will

distinguish two cases: (i) the noise has base-band spectrum; and (ii) the noise has
band-pass spectrum. Both signals originate from the same source but one of them
is delayed by t; hence, we can write x tð Þ ¼ n tð Þ; y tð Þ ¼ n tþ tð Þ. The noise has
constant power spectral density 3Wn ¼ 3Yn=R0 distributed over the bandwidth 3Bn.
The auto spectrum 3Yn and the variance s2

n are linked by n2rms ¼ s2
n ¼ 3Yn 3Bn. The
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average noise power (i.e. the variance) does not depend on time (stationary and
ergodic signal).
In what follows, we will estimate the expected value and the variance of the signal

product by a simple estimation. For that purpose, we consider the input signals as
random processes. In a first step, we calculate the expected value and variance of
the product ‘z tð Þ, and then investigate the role of the low-pass filter (short-time
integrator).
In order to simplify the situation, we will discuss only two cases:

� Both random processes are mutually delayed (t � tcoh) so that they are
uncorrelated.

� Both random processes are perfectly correlated (t ¼ 0)

The signals are not correlated (t � tcoh): Two wideband signals from the same source
are not correlated if their mutual time shift is much larger than the coherence time.
Since we have by assumption:

cov ‘n tð Þ; ‘n tþ tð Þf g ¼ 0; tj j � tcoh

E ‘n tð Þf g ¼ E ‘n tþ tð Þf g ¼ 0

var ‘n tð Þf g ¼ var ‘n tþ tð Þf g ¼ s2
n

tt nx

tt ny

LP
B

tt tnz n LP
tz

Frequency 

n
B

n

Spectrum of input signal

2

n

2

n

Frequency 2B
n

nz

LP
B Low pass filter  

Spectrum of product signal

2

z

Frequency 

n

Spectrum of input signal

n
B

0f

n
B

0f

2 2
n

2 2
n

Frequency 

nz

LP
B Low pass filter  

2

n

Spectrum of product signal

2
n

B 02 f02 f

2 2
z

2 4
z

2 4
z

Figure B.1 Product detector with random noise input signals. The upper spectra relate to a low-
pass signal. The spectra at the bottom refer to a band-pass signal of central frequency f 0.
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the calculation rules (A.36) and (A.37) provide expected value and variance of the
signal behind the multiplier:

E ‘z tð Þf g ¼ 0 ðB:5Þ
var ‘z tð Þf g ¼ s‘

2
z ¼ s4

n: ðB:6Þ

That is, the signal mixture does not have a DC-component and its total AC-power is
proportional to s4

n. The spectrum of ‘z tð Þ results roughly from the convolution of
two rectangular spectra which approximately lead to a triangular spectrum of
twice the width. These spectra are different for low- and band-pass signals (see
Figure B.1).
Case 1 - low-pass spectrum: The area under the triangular spectrum represents the

total AC-power of ‘z tð Þ which equals s4
n. Hence, the peak value of the spectral den-

sity is Ynz 3Bn  s‘
2
z ¼ s4

n. Supposing, the low-pass filter is implemented by a short-
time integrator having a sufficiently long integration time tI . Its IRF is shaped like a
rectangular pulse g tð Þ ¼ rect t=tIð Þ=tI so that its bandwidth is about 3BLP ¼ 3B2;rect ¼
1=tI (compare Table 2-1 chapter 2.3.1). Within this small bandwidth, the spectral
density of ‘z tð Þ can be considered as constant. Consequently, the AC-power of the
output signal (representing nothing but the uncertainty of the measurement) is:

var ‘zLP tð Þ ���
case 1

¼ s2
‘zLP

 Ynz 3BLP  s4
n

3Bn tI
¼ n4rms

3Bn tI
¼ n4rms

TB
; ðB:7Þ

Case 2-– band-pass spectrum: The AC-power of ‘z tð Þwithin the central triangular spec-
trum is s4

n=2. The width of the triangle is 2 ‰
_
Bn ¼ 3Bn, so that we get Ynz3Bn=2 ¼

s4
n=2 which leads to an AC-power behind the integrator of:

var ‘zLP tð Þ ���
case 2

¼ s2
‘zLP

 Ynz 3BLP  s4
n

3Bn tI
¼ n4rms

3Bn tI
¼ n4rms

TB
ðB:8Þ

Obviously, the same result is obtained if we refer in both cases to the two-sided
bandwidth. The product from signal bandwidth and integration time 3Bn tI is usu-
ally assigned as the time-bandwidth (TB)-product of the correlation. As the two
equations (B.7) and (B.8) show, a stable measurement requires a large TB-product.
The signals are completely correlated (t ¼ 0): Both signals are correlated if their

mutual time shift is zero t ¼ 0. Consequently, we have from eq. (A.28) and (A.38):

E ‘z tð Þf g ¼ E ‘n2 tð Þ � ¼ var ‘n tð Þf g ¼ s2
n ðB:9Þ

var ‘z tð Þf g ¼ var ‘n2 tð Þ � ¼ 2s4
n: ðB:10Þ

After the multiplier, the DC-value of the signal ‘z tð Þ corresponds to the power P �
s2
n of the input signal and the AC-power of ‘z tð Þ is 2s4

n, causing the uncertainties of
the measurement. The spectrum of ‘z tð Þ is like that of the previous cases, but is has
a DC-component and twice the spectral density of the AC-part as before, i.e.
Ynz 3Bn  s‘

2
z ¼ 2s4

n. Hence, after the low-pass filter, we will get for both cases:

E ‘z tð Þf gj case 1
case 2

¼ E ‘zLP tð Þ ���
case 1
case 2

¼ s2
n ¼ n2rms; and ðB:11Þ
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var ‘zLP tð Þ ���
case 1
case 2

¼ s2
‘zLP

 Ynz 3BLP  2 s4
n

3Bn tI
¼ 2 n4rms

3Bn tI
¼ 2 n4rms

TB
: ðB:12Þ

B.4.2
CCF between a Perturbed and Unperturbed Version of the same Signal

We refer to the schematics depicted in Figure B.1, where the input signals are:

Perturbed signal : ‘x tð Þ ¼ x0 tð Þ þ ‘n tð Þ; ‘n tð Þ � N 0; s2
n

� �
Reference signal : y tð Þ ¼ x0 tþ tð Þ

Here, x0 tð Þ shall represent a deterministic (periodic) signal. Both, x0 tð Þ and n tð Þ
shall have the same bandwidth 3BN .
As is clear from the definition (2.49) (chapter 2.2.4) and the calculation rule

(A.34), the expected value of the mixer output already represents the auto-
correlation function of the unperturbed signal:

E ‘z tð Þf g ¼ E ‘zLP tð Þ � ¼ E x0 tð Þx0 tþ tð Þ þ x0 tþ tð Þ‘n tð Þf g, Cx0x0 tð Þ ðB:13Þ
since E x0 tþ tð Þ‘n tð Þf g ¼ x0 tþ tð ÞE ‘n tð Þf g ¼ 0.
The variance of the random process after the mixer is (by applying rule (A.33)):

var ‘z tð Þf g ¼ var x0 tð Þx0 tþ tð Þ þ x0 tþ tð Þ‘n tð Þf g
¼ var x0 tþ tð Þ‘n tð Þf g
¼ s2

nx
2
0 tþ tð Þ

ðB:14Þ

since x0 tð Þ is a deterministic signal.
We can again approximately assume that the AC-components of the mixer output

have a triangular spectrum comparable to that already depicted in Figure B.1. On
average, this spectrum provides an AC-power of

P � s2
nx

2
0 tð Þ ¼ s2

n x0 tð Þk k22
and its width at the base is 2 3Bn. This leads to a maximum power spectral density at
low frequencies to:

Ynz ¼ s2
n x0 tð Þk k22 3Bn

so that we finally get at the integrator output:

var ‘zLP tð Þ � ¼ s2
‘zLP

 Ynz 3BLP  s2
n x0 tð Þk k22
3Bn tI

¼ s2
n x0 tð Þk k22
TB

ðB:15Þ

It should be noted, that the signal product x0 tð Þ x0 tþ tð Þ also causes AC-
components. Since by assumption, our signal x0 tð Þ is periodic, the resulting spec-
trum is a line spectrum so that we can always exclude perturbing spectral lines by
an appropriate choice of BLP of the low-pass filter/integrator, i.e. tI > tp.
The signal-to-noise ratio (SNR) at the integrator output finally is:

SNRzLP ¼ zLP tð Þk k21
s2
zLP

¼ max E2 ‘zLP tð Þ � �
var ‘zLP tð Þ � ¼ x0 tð Þk k42

s2
n x0 tð Þk k22

3BntI ¼ x0 tð Þk k22
s2
n

TB

ðB:16Þ
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B.4.3
ACF of a Perturbed Deterministic Signal

We again allude to Figure B.1, and we use the conditions and results from the two
previous chapters. The two signals feeding the product detector, we write as:

‘x tð Þ ¼ x0 tð Þ þ ‘n tð Þ; ‘y tð Þ ¼ x0 tþ tð Þ þ ‘n tþ tð Þ ‘n tð Þ � N 0; s2
n

� �

Hence, the output signal of the multiplier results as:

‘z tð Þ ¼ x0 tð Þ þ ‘n tð Þð Þ x0 tþ tð Þ þ ‘n tþ tð Þð Þ
¼ x0 tð Þx0 tþ tð Þ þ ‘n tð Þx0 tþ tð Þ þ x0 tð Þ‘n tþ tð Þ þ ‘n tð Þ‘n tþ tð Þ ðB:17Þ

The expected value of (B.17) leads to the superposition of the ACF of both signal
components (note: E x0 tð Þ‘n tþ tð Þf g ¼ x0 tð ÞE ‘n tþ tð Þf g ¼ 0):

E ‘z tð Þf g ¼ E ‘zLP tð Þ � ¼ E x0 tð Þx0 tþ tð Þf g þ E ‘n tð Þ‘n tþ tð Þf g
¼ Cx0x0 tð Þ þ Cnn tð Þ

ðB:18Þ

By using (B.6), (B.10) and (B.14), the variance of (B.17) can be approximated by
(tn;coh  3B�1

n - coherence time of the noise):

var ‘z tð Þf g ¼
s2
n x20 tð Þ þ x20 tþ tð Þ þ s2

n

� �
; t � tn;coh

2s2
n x20 tð Þ þ s2

n

� �
; t ¼ 0

(
ðB:19Þ

so that we can find for the remaining measurement variations behind the low-pass
filter:

var ‘zLP tð Þ �  1
TB

2s2
n x0 tð Þk k22 þ

1
2
s2
n

� �
; t � tn;coh

2s2
n x0 tð Þk k22 þ s2

n

	 

; t ¼ 0

8>><
>>:

ðB:20Þ

B.4.4
IQ-demodulator
We consider two product detectors arranged in an IQ-demodulator as exhibited in
Figure B.2. Both inputs are fed with pure sine waves. The signal x tð Þ represents a
reference signal which will not be affected by noise. Furthermore, we assume that
both signals originate from the same source involving identical phase noise Dw tð Þ.
The signal y tð Þ represents a response of a LTI system i.e. it is subjected to propagation
delay t and additive randomnoise n tð Þ. In what follows, we will investigate the impact
of additive random noise and phase jitter onto the output quantities I andQ .

Additive Random Noise
We model our input signals as:

x tð Þ ¼ X 0cos2pf 0t

y t� tð Þ ¼ Y0cos2pf 0 t� tð Þ þ n tð Þ ðB:21Þ

where at n tð Þ is white Gaussian noise limited to a spectral band around the carrier,
i.e. n tð Þ � N 0; s2

n

� �
; s2

n ¼ 3Yn f 
 f 0
� �

3Bn (3Yn - noise spectral density; 3Bn- noise
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bandwidth; compare the figure). It can be decomposed in two components:

n tð Þ ¼ n0 tð Þ ej2pf 0t ¼ nI tð Þ þ jnQ tð Þ� �
ej2pf 0t ðB:22Þ

where at n0 tð Þ represents a complex valued baseband noise having the spectral
components 3Yn;I and 3Yn;Q for which hold:

3Yn;I fð Þ ¼ 3Yn;Q fð Þ
3Yn;I fð Þ þ 3Yn;Q fð Þ ¼ 3Yn f 
 f 0

� � ðB:23Þ

It is interesting to note, that the noisy parts of the I and Q components are de-
correlated, even though they originate from the same source.
The output signals of the two mixers are:

z tð Þ ¼ i tð Þ þ jq tð Þ
i tð Þ ¼ X0 cos 2pf 0t Y0 cos 2pf 0 t� tð Þ þ n tð Þ� �
q tð Þ ¼ X0 sin 2pf 0t Y0 cos 2pf 0 t� tð Þ þ n tð Þ� � ðB:24Þ
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Figure B.2 IQ-demodulator and corresponding power spectra.
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The spectra of the two mixing products are depicted in Figure B.2. The DC-com-
ponents of these signals are:

Z0 ¼ I0 þ j Q0

I0 ¼ i tð Þ ¼ E
1
tI

ð
tI

‘i tð Þdt
8<
:

9=
; ¼ X 0Y0

2
cos 2pf 0t

Q0 ¼ q tð Þ ¼ E
1
tI

ð
tI

q
~
tð Þdt

8<
:

9=
; ¼ X 0Y0

2
sin 2pf 0t ðB:25Þ

They comply with the expected values of the averaged mixer products (tI 3BLP ¼ 1)
if we consider the noise as ergodic random process.
The variances of I and Q represent the AC-power passing the low-pass filters.

They are both identical and are simply estimated from Figure B.2 and (B.23):

s2
I ¼ s2

Q ¼ 1
tI

ð
tI

i tð Þ � I0ð Þdt
������

������
2

2

¼ 1
tI

ð
tI

q tð Þ �Q0

� �
dt

������

������
2

2

¼ var
1
tI

ð
tI

‘i tð Þdt
8<
:

9=
; ¼ var

1
tI

ð
tI

‘q tð Þdt
8<
:

9=
; ¼ 1

4
X2

0 3Yn;I;Q 3BLP ¼ 1
8
X 2

0
s2
n

3Bn tI

ðB:26Þ
The SNR-value3) of an IQ-pair is therefore:

SNRIQ ;n ¼ E ‘Zf g E ‘Zf gð Þ�
var ‘Zf g ¼ I20 þQ2

0

s2
I þ s2

q
¼ Y2

0

s2
n
3BntI ðB:27Þ

The noise remaining after low-pass filtering forms a circular uncertainty area in
the complex IQ-plane around the wanted IQ-value. Figure B.3 exhibits the IQ-
demodulator output in the complex plane representing a point surrounded by an
area of uncertainty.

Phase Noise
We suppose for simplicity that both signals originate from the same (phase noise
affected) source and that the response signal is not additionally influenced by the
measurement object except the propagation delay t. The phase noise Dw tð Þ is
expected to be ergodic and of zero mean, i.e. E Dw

~

n o
¼ Dw tð Þ ¼ 0. We can write

for the inputs signals

x tð Þ ¼ X 0cos 2pf 0t� Dw tð Þ� �
y tð Þ ¼ Y0cos 2pf 0 t� tð Þ � Dw t� tð Þ� � ðB:28Þ

3) This definition of SNR-value relates peak signal power to average noise power as defined by
definition (2.42). Note that in connection with sinusoids, the SNR-value is defined very often
by the ratio of average signal and noise power.
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The output signals of the mixers are (RF-components omitted):

z tð Þ ¼ i tð Þ þ jq tð Þ ¼ X0Y0

2
ej 2pf 0t�Dwc t;tð Þð Þ ¼ Z0 e

�jDwc t;tð Þ

Z0 ¼ X0Y0

2
ej2pf 0t ¼ Z0e

j2pf 0t

i tð Þ ¼ X0Y0

2
cos 2pf 0t� Dwc t; tð Þ� �

q tð Þ ¼ X0Y0

2
sin 2pf 0t� Dwc t; tð Þ� �

ðB:29Þ

where at (see also (2.7); (2.297))

Dwc t; tð Þ ¼ Dw t� tð Þ � Dw tð Þ ¼ 2p
ðt

t�t

f n tð Þdt ¼ 2p tDf t tð Þ

with Df t tð Þ ¼ 1
t

ðt

t�t

f n tð Þdt
ðB:30Þ

Dwc t; tð Þ is called the cumulative phase noise and Df t tð Þ represents the average
frequency fluctuation within the time interval t� t; t½ � [4].
Figure B.4 illustrates (B.29) if we consider the IQ-output as random process. It

depicts an ensemble of phase noise affected IQ-measurements. The individual

0

0I

0Q

2 I

00 mod2 ,1f

0Z
Domain of uncertainty

00 0

1

2
Z YX

Z

Z

Figure B.3 IQ-demodulator output in the complex IQ-plan for additive random noise.

0

0Q

z

z

0Z

E

z0I

c

Geometric mean

= Arithmetic mean

Figure B.4 IQ-demodulator output in the complex IQ-plan for random phase noise.
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measurements are placed at the circumference of a circle of radius Z0 ¼ :5 X 0Y0.
They are concentrated around the angle w0 ¼ 2pf 0t. Their spreading depends on
the strength of the phase noise. In the case of normal distributed phase noise,
about 68% from all measurements will be located within the interval w0 
 sDwc

.
Intuitively, as depicted in Figure B.4, the mean respectively expected value �z tð Þ ¼

E ‘zf g of the IQ-output will be placed at the correct angle but with reduced magni-
tude due to the symmetric scattering of the measurements. According to (A.27), it
is estimated as

E ‘zf g ¼ E Z0 e
�jD‘wc

n o
¼ Z0

ð1

�1
e�jw pDw

~
c
wð Þdw ðB:31Þ

where at pDw
~

c
wð Þ represents the PDF of the phase noise. Concerning to our

assumption, the cumulative phase noise is normal distributed having the variance
var Dw

~
c

n o
¼ s2

Dwc

p
D‘wc

wð Þ ¼ 1

sDwc

ffiffiffiffiffiffi
2p

p e
� 1

2
w

sDwc

	 
2

ðB:32Þ

so that (B.31) leads to:

E ‘zf g ¼ Z0

sDwc

ffiffiffiffiffiffi
2p

p
ð1

�1
e
� 1

2
w

sDwc

	 
2

�jw
dw: ðB:33Þ

Applying the substitution j ¼ wffiffi
2

p
sDwc

þ j sDwcffiffi
2

p and referring to Table A-1, we yield
for (B.33):

E ‘zf g ¼ z tð Þ ¼ Z0ffiffiffi
p

p e�
s2
Dwc
2

ð1

�1
e�j2dj ¼ Z0 e

� 1
2s

2
Dwc ðB:34Þ

The equation implies that the magnitude of the IQ-output will be reduced by
increasing phase noise. Figure B.4 illustrates that behaviour. That is we get a biased
estimation in case of the arithmetic mean. We can avoid this bias if magnitude and
phase are averaged separately which represents nothing but the geometric mean of
the data samples (see (2.288)). Hence, the application of the geometric mean is in
favour to the classical use of the arithmetic mean if phase noise bestrides additive
random noise.
The variance of the complex random process ‘z is defined by (A.30), thus we get

var ‘zf g ¼ Z2
0 E e�jDw

~
c tð Þ � e�

1
2s

2
Dwc

� �
e�jDw

~
c tð Þ � e�

1
2s

2
Dwc

� ��� �
ðB:35Þ
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So that we result in

var ‘zf g ¼ Z2
0 E 1� e�

1
2s

2
Dwc e jD

w
~

c tð Þ � e�
1
2s

2
Dwc e�jDw

~
c tð Þ þ e�s2

Dwc

� �

¼ Z2
0 1þ e�s2

Dwc � e�
1
2s

2
Dwc E ejD

w
~

c tð Þ þ e�jDw
~

c tð Þ
n o� �

¼ Z2
0 1� e�s2

Dwc

	 

ðB:36Þ

since E ejD
w
~

c tð Þ þ e�jDw
~

c tð Þ
n o

¼ 2E cosDw
~
c tð Þ

n o
¼ 2

sDwc

ffiffiffiffi
2p

p
Ð1

�1
cos w e

� 1
2

w
sDwc

	 
2

dw

¼ 2 e�
1
2s

2
Dwc .

It still remains the estimation of the phase noise variance from measurable spec-
tral quantities as the phase noise level (Figure 2.93, (2.300)).

s2
Dwc

¼ var Dw
~

c t; tð Þ
n o

¼ Dwc t; tð Þk k22 ¼ E Dw
~

c t� tð Þ � w
~

c tð Þ
	 
2� �

¼ 2 E Dw
~

2 tð Þ
n o

� E Dw
~

t� tð ÞDw
~

tð Þ
n o	 


¼ 2 CDwDw 0ð Þ � CDwDw tð Þ� �
since E Dw

~

2 tð Þ
n o

¼ E Dw
~

2 t� tð Þ
n o ðB:37Þ

CDwDw tð Þ is the auto-correlation function of the phase noise and the associated

power spectrum is 3mw fð Þ so that holds CDwDw tð Þ ¼ Ð1
�1

3mw fð Þej2pf tdf . Respecting
the symmetry of 3mw fð Þ, equation (B.37) may also be expressed as:

s2
Dwc

¼ 2
ð1

�1
3mw fð Þ 1� ej2pf t

� �
df ¼ �4

ð1

�1
3mw fð Þsinh jpf tð Þejpf tdf

¼ 4
ð1

�1
3mw fð Þsin2pf t df

ðB:38Þ

Assuming Cauchy-Lorentz phase noise spectrum (chapter 2.6.3. (2.302)), the
equation leads to following expression4):

s2
Dwc

¼ 4a
p

ð1

�1

sin2pf t

a2 þ f 2
df  4apt

ð1

�1

sin2pj

pjð Þ2 dj ¼ 4apt ðB:39Þ

The constant is taken from the phase noise spectrum according to a ¼
pDf 23mw Dfð Þ where at Df is the offset frequency which should be selected suffi-
ciently away from the carrier in order to be in the quadratic region of the Cauchy-
Lorentz distribution. Thus, we can finally write for expected value and variance of
the mixed signal z tð Þ:

E ‘zf g ¼ z tð Þ ¼ Z0 e
�2pat ¼ Z0 e

� 1
2 2pDfð Þ23mw Dfð Þ t

var ‘zf g ¼ Z2
0 1� e�4apt
� � ¼ Z2

0 1� e� 2pDfð Þ23mw Dfð Þ t
	 


ðB:40Þ

4) The approximation in (B.39) causes errors smaller than 10% if a t 	 3 � 10�2; smaller than 3%
if a t 	 8 � 10�3 or smaller than 1% if a t 	 10�3.
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The variance in (B.40) represents pure AC-power (signal components around 2f 0
are not respected). The low-pass filter at the output of the IQ-demodulator will addi-
tionally suppress these AC-components as long as its bandwidth is very small or
the signal source is very instable. This may happen if the rectangular bandwidth
3B2w;rect of the phase noise exceeds the bandwidth 3BLP of the low-pass filter. Accord-
ing to (2.74), we yield 3B2w;rect ¼ p a=2. The expected value remains untouched by
that filter. Due to low pass filtering, we have to modify (B.39) as follows:

s2
w ¼ 4a

p

ð3BLP=2

�3BLP=2

sin2pf t

a2 þ f 2
df ¼ 4apt

ð3BLP t=2

�3BLP t=2

sin2pj

p t að Þ2 þ pjð Þ2 dj if 3BLP <
p a
2

ðB:41Þ
The relation can be simplified for short range applications since t only takes

small values and bearing in mind that f represents here an offset frequency which
is always rather small compared to the operational frequencies of an UWB-sensor.

With the identity
Ðb
�b

j2

c2þj2
dj ¼ b� 2 c arctan b

c, we can finally find:

s2
w  4apt

1
2
t3BLP � ta arctan

3BLP

2a

� �
ðB:42Þ

In summary, we can write for the output signals of the IQ-modulator:

E ‘Zf g ¼ Z0 e
� 1

2s
2
Dwc

var ‘Zf g ¼
Z2

0 1� e�s2
Dwc

	 

; 3BLP >

p a
2

; s2
Dwc

¼ 4apt

Z2
0 1� e�s2

w

	 

; 3BLP <

p a
2

; s2
w  2pat t3BLP � 2at arctan

3BLP

2a

� �
8>><
>>:

ðB:43Þ
where at the case 3BLP < p a=2 is practically unimportant. Thus, the phase noised
affected SNR-value results mostly to:

SNRIQ ;Dw ¼ E ‘Zf g E ‘Zf gð Þ�
var ‘Zf g ¼ e�s2

Dwc

1� e�s2
Dwc

 1
s2
Dwc

¼ 1
4apt

¼ 1

2pDfð Þ23mw Dfð Þt
ðB:44Þ

where at we assumed short range measurements causing only small t values and
hence a small phase noise variance, i.e. e�s2

Dwc  1� s2
Dwc

.
We can observe that the SNR-value depends on the quality of the frequency

source (i.e. 3mw @ Df ) as expected and it also depends on the DUTnamely its delay
time t, but it is not affected by the signal levels.
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B.5
Shape Factors

B.5.1
Generalised Shape Factors of Triangular Pulse
We consider the triangular pulse as simple signal model for the class of compact,
short pulse waveforms. The results of the simple calculation below approve the
relations depicted in chapter 4.7.3. However it is not expected, that this very simple
model still holds for pulse signals which are composed from a couple of
oscillations.

The different Lp-norms result from Figure B.5 to:

x tð Þk k22 ¼
1
T

ðT=2

�T=2

x2 tð Þdt ¼ 2V2
ptr

3T
; ðB:45Þ

x tð Þ1 ¼ Vp ðB:46Þ

_x tð Þx tþ tð Þk k22 ¼
1
T

ðT=2

�T=2

_x tð Þx tþ tð Þð Þ2dt ¼
2V4

p

3T tr
for t ¼ 0

0 for tj j > 2tr

8<
: ðB:47Þ

x tð Þk k22 ¼ m tð Þk k22 �
N
2

ramp tð Þk k22 ¼ V2
m 1� tr

12 tc

� �

with ramp tð Þk k22 ¼
1
T

ðtr=2

�tr=2

2Vm
tr

t

	 
2
dt ¼ V2

mtr
12 tc

ðB:48Þ

so that the shape factors defined in chapter 2.2.2 and radar chapter 4.7.3 can be
expressed by

CF2 ¼ x tð Þk k21
x tð Þk k22

¼ 3T
2tr

¼ TB ðB:49Þ

p
V

Time

Time

r
t

p

r

V

t

T

Triangular pulse

Derivation 

x t

x t

Figure B.5 Triangular pulse and its derivation.
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SAF2 tð Þ ¼ t2r
_x tð Þx tþ tð Þk k22

x tð Þk k42
 CF2 ¼ TB for t ¼ 0

0 for tj j > 2tr

�
ðB:50Þ

B.5.2
Generalised Shape Factors of M-Sequence
In order to simplify the calculation, we will use M-sequence signals which are com-
posed from linear ramps. Figure B.6 shows a small section of such a signal and its
derivation. In what follows, we will consider the case in which the rising or falling
edge of an individual chip covers half the chip duration, i.e. tc ¼ 2tr .

An M-sequence of order n includes N ¼ 2n � 1 chips and 2n�1  N=2 transi-
tions. It has a duration of T ¼ N tc . Its power (second order moment) can be calcu-
lated from the power of the ideal sequence minus the power of the missing
triangles at the signal edges:

x tð Þk k22 ¼ m tð Þk k22 �
N
2

ramp tð Þk k22 ¼ V2
m 1� tr

6 tc

� �

with ramp tð Þk k22 ¼
1
T

ðtr=2

�tr=2

2Vm
tr

t

	 
2
dt ¼ V2

mtr
3 T

¼ V2
mtr

3N tc

ðB:51Þ

The remaining Lp-norms are

x tð Þ1 ¼ Vm ðB:52Þ

_x tð Þx tþ tð Þk k22 ¼
1
T

ðT

0

_x tð Þx tþ tð Þð Þ2dt  N
2

1
Ntc

ðtr=2

�tr=2

2Vm
tr

2Vm
tr

t

	 
2
dt ¼ 2

3
V4

m

t2r

tr
tc

ðB:53Þ

r
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x t

x t
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Time
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Time

Time
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Figure B.6 Part of a simplified M-Sequence and its derivation if tc > 2tr .
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and the considered shape factors result to:

CF2 ¼ V2
m

x tð Þk k22
¼ 1

1� tr
12tc

 1 ðB:54Þ

SAF2 tð Þ ¼ t2r
_x tð Þx tþ tð Þk k22

x tð Þk k42
¼ 2

3
tr
tc

V4
m

V4
m 1� tr

12 tc

	 
2  1
3

for
tr
tc
¼ 1

2
ðB:55Þ

As expected, all shape factors are independent from the signal length and they
take values close to unity.

B.6
Conversions between N-Port Parameters

The N-port parameters are defined in chapter 2.5.2 and 2.5.3. Some conversion
rules are summarised her. We apply following transformation matrices:

Q 11ð Þ ¼
1 0

0 0

" #
; Q 12ð Þ ¼

0 1

0 0

" #
; Q 21ð Þ ¼

0 0

1 0

" #
; Q 22ð Þ ¼

0 0

0 1

" #

P1 ¼
ffiffiffiffiffiffi
Z0

p ffiffiffiffiffiffi
Z0

p

1=
ffiffiffiffiffiffi
Z0

p �1=
ffiffiffiffiffiffi
Z0

p
" #

; P2 ¼
ffiffiffiffiffiffi
Z0

p ffiffiffiffiffiffi
Z0

p

�1=
ffiffiffiffiffiffi
Z0

p
1=

ffiffiffiffiffiffi
Z0

p
" #

Herein, Z0 is the intrinsic impedance of the cable feeding the ports of the DUT.

QV ¼
1 �1 0 0
0 0 1 �1
1=2 1=2 0 0
0 0 1=2 1=2

2
664

3
775; QI ¼

1=2 �1=2 0 0
0 0 1=2 �1=2
1 1 0 0
0 0 1 1

2
664

3
775

M1 ¼ 1
2

1=
ffiffiffiffiffiffi
Zb

p
0 0 0

0 1=
ffiffiffiffiffiffi
Zb

p
0 0

0 0 1=
ffiffiffiffiffiffi
Zu

p
0

0 0 0 1=
ffiffiffiffiffiffi
Zu

p

2
664

3
775;

M2 ¼ 1
2

ffiffiffiffiffiffi
Zb

p
0 0 0

0
ffiffiffiffiffiffi
Zb

p
0 0

0 0
ffiffiffiffiffiffi
Zu

p
0

0 0 0
ffiffiffiffiffiffi
Zu

p

2
664

3
775

Herein, Zb is the intrinsic impedance of the balanced mode of the feeding cable
and Zu is the intrinsic impedance of the unbalanced mode of the feeding cable.
Conversions between A-, Y-, Z-parameters:

Z ¼ Y�1

For two-ports only:

Y ¼ 1
det Zð Þ

Z22 �Z12

�Z21 Z11

� �
; Z ¼ 1

det Yð Þ
Y22 �Y12

�Y21 Y11

� �

A ¼ Q 11ð Þ þQ 21ð ÞY
	 


Q 12ð Þ �Q 22ð ÞY
	 
�1

¼ � 1
Y21

Y22 1
det Yð Þ Y11

� �
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A ¼ Q 11ð ÞZþQ 21ð Þ
	 


Q 12ð ÞZ�Q 22ð Þ
	 
�1

¼ 1
Z21

Z11 det Zð Þ
1 Z22

� �

Y ¼ AQ 22ð Þ þQ 21ð Þ
	 
�1

AQ 12ð Þ �Q 11ð Þ
	 


¼ 1
A21

A22 �det Að Þ
�1 A11

� �

Z ¼ AQ 12ð Þ �Q 11ð Þ
	 
�1

AQ 22ð Þ þQ 21ð Þ
	 


¼ 1
A21

A11 det Að Þ
1 A22

� �

Conversion between S- and T-parameters (for two-ports only):

S ¼ Q 11ð Þ � TQ 22ð Þ
	 
�1

TQ 12ð Þ �Q 21ð Þ
	 


¼ � 1
T22

T12 det Tð Þ
1 �T21

� �

T ¼ Q 11ð ÞS�Q 21ð Þ
	 


Q 22ð ÞSþQ12

	 
�1
¼ 1

S21

�det Sð Þ S11
�S22 1

� �

Conversion between Y-, Z- and S-parameters:

S ¼ Z� Z0Ið Þ Zþ Z0Ið Þ�1

S ¼ I� Z0Yð Þ Iþ Z0Yð Þ�1

Z ¼ Z0 I� Sð Þ�1 Iþ Sð Þ
Y ¼ 1

Z0
Iþ Sð Þ�1 I� Sð Þ

Conversion between A- and T-parameters:

T ¼ A P2ð Þ�1P1

¼ 1
2Z0det Zð Þ

Z0 A22 � A11ð Þ þ Z2
0A21 � A12 Z0 A22 þ A11ð Þ þ Z2

0A21 þ A12

Z0 A22 � A11ð Þ � Z2
0A21 � A12 Z0 A22 � A11ð Þ � Z2

0A21 þ A12

" #

A ¼ P1 P2 Tð Þ�1

¼ 1
2det Tð Þ

T11 � T12 � T21 þ T22 Z0 T11 � T12 þ T21 � T22ð Þ
�T11 � T12 þ T21 þ T22ð Þ=Z0 �T11 � T12 � T21 � T22

" #

Modaldecomposition; mixed modeconversion:

� Z- and Y-parameters (ZM; YM - modal parameters):
The notation of the port signals applied here refers to Figure 2.66 and 2.69

chapter 2.5.2.

V ¼ V1A V1B V2A V2B½ �T ; I ¼ I1A I1B I2A I2B½ �T

VM ¼ Vb1 Vb2 Vu1 Vu2½ �T ; IM ¼ Ib1 Ib2 Iu1 Iu2½ �T

)

)
VM ¼ QV V; IM ¼ QI I

V ¼ Z I; I ¼ Y V

VM ¼ ZM IM; IM ¼ YM VM

) ZM ¼ QV ZQ�1
I

) YM ¼ QI Y Q�1
V
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� Scattering parameters (SM- modal parameters)

AM ¼ ab1 ab2 au1 au2½ �T ; BM ¼ bb1 bb2 bu1 bu2½ �T

VM ¼ Vb1 Vb2 Vu1 Vu2½ �T ; IM ¼ Ib1 Ib2 Iu1 Iu2½ �T

)

)

AM ¼ M1VM þM2IM

BM ¼ M1VM �M2IM

BM ¼ SMAM

VM ¼ ZM IM
) I� SMð ÞM1ZM ¼ SM þ Ið ÞM2

Insertion of conversion rule from above, leads finally to:

SM ¼ N1 I� Sð Þ�1 � N2 Iþ Sð Þ�1
	 


N2 Iþ Sð Þ�1 þ N1 I� Sð Þ�1
	 
�1

with N1 ¼
ffiffiffiffiffiffi
Z0

p
M1QV ; N2 ¼ M2QIffiffiffiffiffiffi

Z0
p

For the practical relevant case of uncoupled feeding lines; i.e. k ¼ 0 from
which follows Zb ¼ 2Z0; Zu ¼ Z0=2 (see chapter 2.5.3), the conversion rule sim-
plifies to (exploiting matrix inversion identity (A.82)):

N ¼ N1 ¼ N2 ¼
ffiffiffi
2

p

4

1 �1 0 0
0 0 1 �1
1 1 0 0
0 0 1 1

2
664

3
775

SM ¼ N I� Sð Þ�1 � Iþ Sð Þ�1
	 


I� Sð Þ�1 þ Iþ Sð Þ�1
	 
�1

N�1

¼ N SN�1

B.7
Mason Graph

The Mason-graph (respectively signal flow graph) is an illustrative mean to symbol-
ise graphically linear equations and relations. We will apply it to represent the sig-
nal flow in a physical system or numerical algorithm. It descriptively represents the
relations of cause and effect.

branch

nodes = signals

C xy

yx C

Branch weight

branch

nodes = signals

L  xy

yx xL

Branch weight

Initial definition Extended definition

Figure B.7 Basic element of a Mason-graph: initial and extended definition.
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The basic elements of a Mason-graph as depicted in Figure B.7 consist of nodes
and a branch. The nodes are the variables and the branch represents a weighting.
In our case, the nodes symbolise signals as e.g. x; y, which are affected by the
branch (transmission path) following the relation:

y ¼ C x ðB:56Þ
By definition, the Mason-graph can only respect multiplications and additions.

We will extend this approach by allowing arbitrary linear operations:

y tð Þ ¼ L x tð Þf g ðB:57Þ
which covers the classical operations defined by (B.56) as e.g.

y tx t C
y t C x t

fYX f
fG

fY fG fX

but also operations like:

tyx t

d

dt

1

dx t

uy x tt

dt

tyx t
dt

1x ty dt u xt t

tyx t
g t

y tg tx

Since the last three examples deviate from pure multiplication, attention has to
be paid for the correct handling of a graph network in time domain. Here, multipli-
cations have to be replaced by convolution and any division by time functions must
be avoided. Table B-6 summarises some examples and calculation rules for funda-
mental Mason-graphs. These rules can be used to reduce successively complicated
structured graphs to simpler ones.

Mason Rule
The transfer function between the arbitrary nodes x and y in a complex Mason
graph can be calculated by [5]:

Syx ¼

P
m

Pm 1�P
km

L 1ð Þ
km

þP
lm

L 2ð Þ
lm

�P
mm

L 3ð Þ
mm

þ � � �
 ! !

1�P
k
L 1ð Þ
k þP

l
L 2ð Þ
l �P

m
L 3ð Þ
m þ � � �

ðB:58Þ

With

Pm - FRF of the mth forward path between x and y
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L 1ð Þ
k ; L 2ð Þ

l ; L 3ð Þ
m ; � � �- FRF of all loops5)of first, second6) and higher order.

L 1ð Þ
km
; L 2ð Þ

lm
; L 3ð Þ

mm
; � � �- FRF of all loops which does not touch path m

An example is given in chapter 4.9 Figure 4.84 and (4.293) and (4.294).

B.8
S-Parameters of Basic circuits

The scattering matrices are given in frequency domain notation. If the matrix
entries are purely real, the notation is valid for both time and frequency domain.

Table B-6 Fundamental structural elements of Mason-graphs and their algebraic expression in
frequency and time domain.

Mason-graph Frequency domain Time domain 

Z C f

C f

f fX D Yf

D f

f

Y f

tz tC tx tD ty

Z f tz tC tD tx

0

1

n

n

fC fD fX

fZ

D E ff

fC fD fX

fD fE

See footnote5

1

tz tC tD tx

tD tE

tD tE tD tE

x

y

C

D

z

C D

x y z

C D

E

x y z

x
z

v

w

y

A

B

C

D

xv

w

y

AB CB

CD
AD

5) The conversion exploits the identity 1� xð Þ�1 ¼Pn¼0 x
n; xj j < 1 which can be applied for

open loop gain smaller one: D fð Þ E fð Þj j < 1.
6) A second order loop is a product of two first order loops which does not touch. A third order

loop is a product of three non-touching loops, etc.
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Three port devices
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Four port devices
A pair of coupled lines:
Supposing, the electric and magnetic fields of two lines are able to interact within

a couple section of length l (see Figure B.8).

Within that section the lines are characterised by two characteristic impedances
depending on the type of feeding:

Even mode impedance; common mode : a1 ¼ a4 or a2 ¼ a3 ) Zeven

Odd mode impedance; differential mode : a1 ¼ �a4 or a2 ¼ �a3 ) Zodd

The four lines which feed the coupling section have the characteristic
impedance Z0

These three characteristic impedances are related by:

Z2
0 ¼ Zeven Zodd

k ¼ Zeven � Zodd

Zeven þ Zodd

ðB:59Þ

where at k represents the coupling factor expressing the strength of mutual
interaction.
If the length of the couple section equals a quarter wavelengths, the 4-port scat-

tering matrix for an ideally symmetric coupled line may be written as:

S ¼
0 �j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
0 k

j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
0 k 0

0 k 0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
k 0 j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
0

2
66664

3
77775 ðB:60Þ

The corresponding Mason-graph is depicted in Figure B.8. Here, we will not fur-
ther penetrate into the theory of coupled lines. More on this topic can be found e.g.
in [6]. We are mainly interested in the specific structure of the scattering matrix
which we will exploit in what follows.
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kk kk

Figure B.8 Two coupled lines as four port device. Left: schematics. Right: idealised Mason-graph
for a couple section of quarter wavelength.
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Coupled line as directional device:
As obvious from (B.60) or the Mason-graph of Figure B.8, the diagonal ports 1-3

and 2-4 are decoupled. We can take advantage of this behaviour to separate the
waves at one of the lines. Supposing the line which connects port 1 and 2 is the
main line from which we want to know the waves travelling toward right a ¼ a1 or
toward left b ¼ a2.
If the ports 3 and 4 are matched with R0 ¼ Z0, the Mason-graph degenerates to

the structure depicted in Figure B.9 (bold lines only). The voltages across these
resistors are proportional to the waves injected either in port 1 or 2. Typically one
applies however only one receiver per directional coupler in order to reduces error
signals due to mismatches at the ports 3 and 4, i.e. one of these ports is matched
with a high quality resistor R0 while the other one feeds the more imperfectly
matched voltmeter. Consequently, two directional couplers are required to measure
both waves. A further imperfection relates to the cross-talk of the unwanted wave to
the measurements port. These signal paths are indicated by dashed lines in the
Mason-graph of Figure B.9. Finally, Table B-7 summarises the definition of the
most important parameter of a directional coupler. Here, we supposed that the
measurement device is connected to port 4.

4
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V
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interest

34
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21S

12S

41S

32S31S
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Figure B.9 Coupled line as directional coupler.

Table B-7 Important parameters of a directional coupler (port 4 is the measurement port).

Definition Ideal device

Coupling factor CF ¼ �20lg S41j j CF ¼ �20lg k

Insertion loss IL ¼ �20lg S21j j IL ¼ �10lg 1� k2
� �

Return loss RL ¼ �20lg Siij j 1
Isolation IS ¼ �20lg S42j j 1
Directivity D ¼ �20lg S42

S21S41

���
��� ¼ IS� IL� CF 1
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The scattering matrix (B.60) is exactly valid for only one frequency. However, a
simple line coupler can be applied over approximately one octave without dramatic
loss of its performance. For wideband operation, the coupler must have several cou-
ple sections. The lower cut-off frequency determines its overall mechanical
dimensions.
Resistive coupler:
The resistive coupler as shown in Figure B.10 actually represents a Wheatstone

bridge. This can easily be seen by adding the external circuit elements and redraw-
ing the schematic (compare Figure B.11). The resistive coupler is not frequency
selective by principle (parasitic effects neglected) since it contains only ohmic resis-
tors. Though it requires a floating ground measurement of V3 and V4. Recently,
this is done via transformers which finally yet limit the bandwidth of the overall
device.
For Z2

0 ¼ R1 R2, the scattering matrix results to:

S ¼ 1
Z0 þ R2

0 Z0 0 R2

Z0 0 R2 0
0 R2 0 Z0

R2 0 Z0 0

2
664

3
775 ¼

0 A 0 B
A 0 B 0
0 B 0 A
B 0 A 0

2
664

3
775 ðB:61Þ
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Figure B.10 Circuit schematic and Mason-graph of a resistive coupler. See (B.61) for definition of
the S-parameters A and B.
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Figure B.11 Resistive coupler drawn as Wheatstone bridge.
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Compared with the line coupler, the coupling factor of the resistive coupler is
worsening due to its internal losses. Figure B.12 compares both types of couplers.

B.9
M-Sequence and Golay-Sequence

B.9.1
M-Sequence
Table B-8 summarises the feedback taps for shift registers of different length which
provide an M-sequence. The whole set of possible feedback structures are only
given till M-sequences of order nine. For the orders above, only one version (typi-
cally with the lowest number of taps) is indicated.
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Figure B.12 Coupling factor versus insertion loss for line and resistive couplers.

Table B-8 Selection of feedback structure for M-sequence shift register.

Order Number of chips Prime factorisation Number of sets Feedback taps

3 7 7 1 3, 2
4 15 3�5 1 4, 3
5 31 31 3 5, 3

5, 4, 3, 2
5, 4, 3, 1

6 63 3�3�7 3 6, 5
6, 5, 4, 1
6, 5, 3, 2

7 127 127 9 7, 6
7, 4

(continued )
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Table B.8 (Continued)

Order Number of chips Prime factorisation Number of sets Feedback taps

7, 6, 5, 4
7, 6, 5, 2
7, 6, 4, 2
7, 6, 4, 1
7, 5, 4, 3
7, 6, 5, 4, 3, 2
7. 6, 5, 4, 2, 1

8 255 3�5�17 8 8, 7, 6, 1
8, 7, 5, 3
8, 7, 3, 2
8, 6, 5, 4
8, 6, 5, 3
8, 6, 5, 2
8, 7, 6, 5, 4, 2
8, 7, 6, 5, 2, 1

9 511 7�31�73 24 9, 5
9, 8, 7, 2
9, 8, 6, 5
9, 8, 5, 4
9, 8, 5, 1
9, 8, 4, 2
9, 7, 6, 4
9, 7, 5, 2
9, 6, 5, 3
9, 8, 7, 6, 5, 3
9, 8, 7, 6, 5, 1
9, 8, 7, 6, 4, 3
9, 8, 7, 6, 4, 2
9, 8, 7, 6, 3, 2
9, 8, 7, 6, 3, 1
9, 8, 7, 6, 2, 1
9, 8, 7, 5, 4, 3
9, 8, 7, 5, 4, 2
9, 8, 6, 5, 4, 1
9, 8, 6, 5, 3, 2
9, 8, 6, 5, 3, 1
9, 7, 6, 5, 4, 3
9, 7, 6, 5, 4, 2
9, 8, 7, 6, 5, 4, 3, 1

10 1,023 3�11�31 30 e.g. 10, 7
11 2,047 23�89 88 e.g. 11, 9
12 4,095 3�3�5�7�13 72 e.g. 12, 11, 10, 2
13 8,191 8,191 315 e.g. 13, 12, 11, 8

(continued )
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Supposing the stimulation of a LTI-system having the IRF g tð Þ with the M-
sequence m tð Þ leads to the system reaction

y tð Þ ¼ g tð Þ �m tð Þ: ðB:62Þ
Involving correlation functions, the corresponding relation reads:

Cym tð Þ ¼ g tð Þ � Cmm tð Þ ðB:63Þ
where at we can find from Figure 2.33 that

Cmm tð Þ ¼ V2 N þ 1
N

tri
t
tc

� �
� 1
N

� �
: ðB:64Þ

Hence, we get for the cross-correlation from stimulus and system reaction

Cym tð Þ ¼ V2 N þ 1
N

g tð Þ � tri t
tc

� �
� V2

N
g tð Þ: ðB:65Þ

It consists of two terms. The second one comes from the convolution with a con-
stant. It provides a constant value which is proportional to the mean value of the
IRF. It will however be mostly negligible since we are considering usually AC-
coupled systems (e.g. any DC transmission between two antennas) for which hold
g tð Þ ¼ 0. Furthermore, the DC-component of a measurement is often affected by
an offset-value so that its quantity is less reliable.
We are mainly interested in the first term since it contains the wanted IRF g tð Þ of

the system under test. Therefore, we will investigate the influence of the triangular
function onto the convolution product:

z tð Þ ¼ g tð Þ � tri t
tc

� �
¼
ð
g tþ tð Þ tri t

tc

� �
dt: ðB:66Þ

For that purpose, we decompose the IRF in a Taylor-series

g tþ tð Þ ¼
X1
n¼0

1
n!
dng jð Þ
djn

����
j¼t

tn ðB:67Þ

Table B.8 (Continued)

Order Number of chips Prime factorisation Number of sets Feedback taps

14 16,383 3�43�127 376 e.g. 14, 13, 12, 2
15 32,767 7�31�151 900 e.g. 15, 14
16 65,535 3�5�17�257 1032 e.g. 16, 15, 13, 4
17 131,071 131,071 1941 e.g. 17, 14
18 262,143 3�3�3�7�19�73 1544 e.g. 18, 11
19 524,287 524,287 4314 e.g. 19, 18, 17, 14
20 1,048,575 3�5�5�11�31�41 2864 e.g. 20, 17
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so that we yield:

z tð Þ ¼
X1
n¼0

1
n!
dng jð Þ
djn

����
j¼t

ð
tn tri

t

tc

� �
dt ¼

X1
n¼0

2
nþ 2ð Þ!

dng jð Þ
djn

����
j¼t

tnþ1
c ðB:68Þ

for n ¼ even. Components with n ¼ odd do not contribute to z tð Þ. If the maximum
curvature of g tð Þ within the duration 2 tc of the triangular function is weak (i.e. the
spectrum of g tð Þ must be narrower than that of the triangular function), the higher
order terms in (B.68) may be neglected so that we can finally write for the correla-
tion function of an AC-coupled system:

Cym tð Þ  V2 tc g tð Þ for n ¼ 0 ðB:69Þ

B.9.2
Complementary Golay-Sequence
Golay-sequences appear in pairs. Assuming a tð Þ and b tð Þ represent a pair of such
sequences, then the sum of their auto-correlation functions Caa tð Þ and Cbb tð Þ
results by definition in a triangular function, i.e.:

CGG tð Þ ¼ Caa tð Þ þ Cbb tð Þ
2

¼ V2 tri
t
tc

� �
ðB:70Þ

that is the main lobe of both auto-correlation functions superimpose where at the
sidelobes mutually cancel out.
Figure B.13 depicts an example for a Golay-sequence of length 25.
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Figure B.13 Example of periodic Golay-sequences. Only one period is shown.
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Starting from a pair of primitive Golay-sequences a1 tð Þ; b1 tð Þ, higher order
sequences may be constructed via the recursive rule:

anþ1 tð Þ ¼ an tð Þ bn tð Þ½ �
bnþ1 tð Þ ¼ an tð Þ �bn tð Þ½ �

ðB:71Þ

where at the simplest primitives are given by:

a1 tð Þ ¼ 1 1½ �
b1 tð Þ ¼ 1 �1½ � ðB:72Þ

Other primitives and more details on construction rules can be found in [7], [8], [9].
The measurement of the IRF by Golay-sequences is a two step procedure. First,

the system under test is stimulated by the sequence a tð Þ which can also be done
repetitively in order to perform averaging. This gives us

Cya tð Þ ¼ g tð Þ � Caa tð Þ: ðB:73Þ
The second measurement is done with the sequence b tð Þ by the same way, i.e.

Cyb tð Þ ¼ g tð Þ � Cbb tð Þ ðB:74Þ
so that we can write finally:

CyG tð Þ ¼ Cya tð Þ þ Cyb tð Þ
2

¼ g tð Þ � CGG tð Þ

¼ V2 g tð Þ � tri t
tc

� �
 tc V2 g tð Þ

ðB:75Þ

Disregarding the DC-component, (B.75) and (B.65) lead to the same results for
sequences of comparable length where at the Golay-approach will (at least theoreti-
cally neglecting any DC-offset of the measurements) provide also the correct DC-
behaviour of the DUT.
Since the measurement with Golay-sequences takes twice the time of an M-

sequence, we have normalised the sum functions by the factor 1=2 in order to be
comparable. Basically, the considerations in chapter 3.3 with respect to M-
sequences also hold for Golay-sequences. However, Golay-sequences cannot be
generated by simple feedback-shift registers so that they have to be readout from a
fast memory and their number of chips is always even. Thus in case of interleaved
sampling, the sampling clock must be provided by a 2m � 1 or a 2m þ 1 divider
(refer to Figure 3.35) if Golay-sequences of length 2n are applied.

Annex C: Electromagnetic Field

C.1
Time Domain Reciprocity Relation

We will ask for the mutual relation between two electromagnetic fields
E1 rð Þ; H1 rð Þ½ � and E2 rð Þ; H2 rð Þ½ � caused from the source distributions J1 r1ð Þ or
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J2 r2ð Þ. For that purpose, we relate the fields created by source 1 at the position of
source 2, i.e. E1 r2ð Þ; H1 r2ð Þ½ �, to the fields created by source 2 at position of source
1, i.e. E2 r1ð Þ; H2 r1ð Þ½ �. Figure 5.2 illustrates the considered scenario for two point
sources.
The so-called Lorentz reciprocity gives us the wanted relation between the two

fields. In the literature, it is usually written in frequency domain notation by an
integral or differential form:
Þ
S

E1 r2ð Þ �H2 r1ð Þ � E2 r1ð Þ �H1 r2ð Þð Þ � dA ¼ Ð
V

J1 r1ð Þ � E2 r1ð Þ � E1 r2ð Þ � J2 r2ð Þð ÞdV
r � E1 r2ð Þ �H2 r1ð Þ � E2 r1ð Þ �H1 r2ð Þð Þ ¼ J1 r1ð Þ � E2 r1ð Þ � E1 r2ð Þ � J2 r2ð Þ

ðC:1Þ
One can show7) that the surface integral vanishes in the case of localised sources

(i.e. sources of final dimension) and if the integration volume covers all sources.
Thus, (C.1) simplifies to the form which is important for our purposes:

ð

V

J1 r1ð Þ � E2 r1ð Þ � E1 r2ð Þ � J2 r2ð Þð ÞdV ¼ 0: ðC:2Þ

A reciprocity theorem for arbitrary time-dependent fields has been given
in [10], [11], [12] 8) by:

ð ð

V

J1 t; r1ð Þ � E2 t� t; r1ð Þ � E1 tþ t; r2ð Þ � J2 t; r2ð Þð ÞdVdt ¼ 0

with t ¼ r1 � r2j j
c

ðC:3Þ

Note that (C.3) represents a correlation as function of t. The relation supposes
however retarded (E2) as well as “advanced” fields (E1). Advanced field contradicts
the causality. This may be acceptable for field simulations and theoretical purposes
but for understanding the behaviour of measurement scenario causality should be
respected. Furthermore, the reciprocity relation (C.3) is restricted to lossless field
propagation as we will see later (refer also to [10], [12]).
To be generic, we will introduce another form of the Lorentz reciprocity which

we can simply gain from the conversion of the well accepted frequency domain
relation (C.2) into the time domain by Fourier transform:

Ð
V

J1 f ; r1ð Þ � E2 f ; r1ð Þ � E1 f ; r2ð Þ � J2 f ; r2ð Þð ÞdV ¼ 0

# FTÐ
V

J1 t; r1ð Þ � E2 t; r1ð Þ � E1 t; r2ð Þ � J2 t; r2ð Þð ÞdV ¼ 0
ðC:4Þ

7) The simplest way to show this is by supposing small propagation losses. In this case, the fields
decay exponentially with distance and the surface integral vanishes for a large diameter of S.

8) Relation (C.3) actually refers to the last of the three references which uses the difference of the
two integral expressions. In the two other references, the sum of both terms is used which is
less common to the more familiar Lorentz reciprocity relation (C.2).
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Proof:
From Maxwell’s equations we get the following:
We suppose that a source J1 located at position r1 causes fields at position r2

according to:

r�H1 t; r2ð Þ ¼ @D1 t; r2ð Þ
@t

þ J1 t; r1ð Þ ðC:5Þ

r � E1 t; r2ð Þ ¼ � @B1 t; r2ð Þ
@t

: ðC:6Þ

Correspondingly, we can assume that a source J2 located at position r2 causes the
fields in the point r1 related to:

r�H2 t; r1ð Þ ¼ @D2 t; r1ð Þ
@t

þ J2 t; r2ð Þ ðC:7Þ

r � E2 t; r1ð Þ ¼ � @B2 t; r1ð Þ
@t

ðC:8Þ

Introducing the exterior-convolution operator ) as

A tð Þ)B tð Þ ¼
ð
A tð Þ � B t� tð Þdt;

the dot-convolution operator � as

A tð Þ � B tð Þ ¼
ð
A tð Þ � B t� tð Þdt;

using the vector identity �r � A� Bð Þ ¼ A � r � Bð Þ � B � r � Að Þ and
convolving (C.5) to (C.8) with E2; H2; E1 respectivelyH1 lead to:

E1 � r �H2 �H2 � r � E1 ¼ �r � E1)H2ð Þ ¼ E1 � J2 þ E1 � @D2

@t
þH2 � @B1

@t

E2 � r �H1 �H1 � r � E2 ¼ �r � E2)H1ð Þ ¼ E2 � J1 þ E2 � @D1

@t
þH1 � @B2

@t

For shortness, we have omitted the arguments r and t in above expressions. After
subtraction of both equations we have:

�r � E1)H2 � E2)H1ð Þ
¼ E1 � J2 � E2 � J1ð Þ þ E1 � @D2

@t
� E2 � @D1

@t

� �
þ H2 � @B1

@t
�H1 � @B2

@t

� �

ðC:9Þ
The two bracket terms on the right of (C.9) still have to be considered in detail.
Firstly, we can write for two time functions a tð Þ and b tð Þ:

a tð Þ � @

@t
b tð Þ ¼ @

@t
a tð Þ � b tð Þ ¼ @

@t
a tð Þ � b tð Þð Þ

a tð Þ � u1 tð Þ � b tð Þð Þ ¼ u1 tð Þ � a tð Þð Þ � b tð Þ ¼ u1 tð Þ � a tð Þ � b tð Þð Þ
;
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which immediately results from doublet notation or the basic rules of Fourier
transform and the commutative law of convolution (see also Table B-4). Secondly,
the relation

A � B � C ¼ C � B � A
holds between the two vectors A and C if the matrix B ¼ BT is a symmetric one.
Hence, under the conditions (which are the prerequisites of reciprocity) that

� the tensors of material parameters are symmetric (which is always the case for
isotropic materials), i.e. e ¼ eT ; m ¼ mT ,

� the material parameters are independent from the strength of the fields (i.e. all
substances behave linearly), i.e. e 6¼ e E;H; Jð Þ; m 6¼ m E;H; Jð Þ

� the material is homogeneously distributed in space, i.e. e rð Þ ¼ e; m rð Þ ¼ m (later,
this condition will be dropped), and

� the properties of the considered space are time independent9) (only with respect
to observation time), i.e. e t;TRð Þ ¼ e tð Þ; m t;TRð Þ ¼ m tð Þ,

we can write:

E1 � @D2

@t
� E2 � @D1

@t

� �
¼ @

@t
E1 � e � E2 � E2 � e � E1ð Þ ¼ @

@t
E1 � e � E2 � E1 � eT � E2
� � ¼ 0

H2 � @B1

@t
�H1 � @B2

@t

� �
¼ @

@t
H2 � m �H1 �H1 � m �H2ð Þ ¼ @

@t
H2 � m �H1 �H2 � mT �H1
� � ¼ 0

If we switch to the integral representation of (C.9) (applying Gauss’ divergence
theorem) and supposing that all sources are covered by the considered integration
volume, we end up in:

�
þ

S

E1)H2 � E2)H1ð Þ � dA ¼
ð

V

E1 � J2 � E2 � J1ð Þ dV ¼ 0 ðC:10Þ

what we already expected from (C.4). Here, we made again use of the fact that the
surface integral tends to zero if we consider a sufficiently large region (see also
remarks concerning (C.1) and (C.2))
However with respect to (C.4), we did not require a homogenous propagation

medium as we did above under (C.10). But actually, we can drop this requirement
because we can divide an inhomogeneous propagation scenario in several homoge-
nous parts on which a modified consideration may be stepwise extended which also
respects boundaries. Such an exercise is to be found e.g. in [13]. Further readings
on reciprocity are given e.g. in [14].

9) Time independence does not exclude relaxation effects etc. It only refers to “long time
effects”, i.e. the substances exposed by the field must not change their properties during the
recording time of any signals or fields.
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Finally, we will repeat the above exercise via a second procedure in which we
convolve (C.5) to (C.8) with time reversed versions of E2; H2; E1respectively H1 by
following schematic, i.e. we are performing correlation:

r�H1 t; r2ð Þ ¼ @D1 t; r2ð Þ
@t

þ J1 t; r1ð Þ
���� � E2 �t; r1ð Þ

r � E1 t; r2ð Þ ¼ � @B1 t; r2ð Þ
@t

���� �H2 �t; r1ð Þ

r �H2 �t; r1ð Þ ¼ @D2 �t; r1ð Þ
@t

þ J2 �t; r2ð Þ
���� � E1 t; r2ð Þ

r � E2 �t; r1ð Þ ¼ � @B2 �t; r1ð Þ
@t

���� �H1 t; r2ð Þ

An equivalent calculation as before, leads us to:

�r � E1 t; r2ð Þ)H2 �t; r1ð Þ � E2 �t; r1ð Þ)H1 t; r2ð Þð Þ
¼ E1 t; r2ð Þ � J2 �t; r2ð Þ � E2 �t; r1ð Þ � J1 t; r1ð Þ þ @

@t
x tð Þ þ y tð Þð Þ

where at the scalar functions x tð Þ and y tð Þ are:
x tð Þ ¼ E1 t; r2ð Þ �D2 �t; r1ð Þ � E2 �t; r1ð Þ �D1 t; r2ð Þ

¼ E1 t; r2ð Þ � e �t; r1ð Þ � E2 �t; r1ð Þ � E2 �t; r1ð Þ � e t; r2ð Þ � E1 t; r2ð Þ
¼ E1 t; r2ð Þ � e �t; r1ð Þ � E2 �t; r1ð Þ � E1 t; r2ð Þ � eT t; r2ð Þ � E2 �t; r1ð Þ

y tð Þ ¼ H2 �t; r1ð Þ � B1 t; r2ð Þ �H1 t; r2ð Þ � B2 �t; r1ð Þ
¼ H2 �t; r1ð Þ � m t; r2ð Þ �H1 t; r2ð Þ �H1 t; r2ð Þ � m �t; r1ð Þ �H2 �t; r1ð Þ
¼ H2 �t; r1ð Þ � m t; r2ð Þ �H1 t; r2ð Þ �H2 �t; r1ð Þ � mT �t; r1ð Þ �H1 t; r2ð Þ

Both expressions equal zero if the following holds:

e t; r1ð Þ ¼ eT �t; r2ð Þ @
FT

IFT
e f ; r1ð Þ ¼ eH f ; r2ð Þ

m t; r2ð Þ ¼ mT �t; r1ð Þ @
FT

IFT
m f ; r2ð Þ ¼ mH f ; r1ð Þ

That means, that beside the already mentioned conditions, the frequency domain
material parameters must be additionally purely real (i.e. lossless) which further-
more involves that material parameters must also be frequency independent in
order to meet causality (i.e. e and m have to respect (2.150) – Kramers-Kronig rela-
tion – which leads to a constant real part if the imaginary part must be zero).
Hence, the resulting reciprocity relation

� Þ
S
E1 t; r2ð Þ)H2 �t; r1ð Þ � E2 �t; r1ð Þ)H1 t; r2ð Þð Þ � dA
¼ Ð

V
E1 t; r2ð Þ � J2 �t; r2ð Þ � E2 �t; r1ð Þ � J1 t; r1ð Þð Þ dV ¼ 0

ðC:11Þ

is restricted to lossless propagation which exactly holds only for vacuum. Note that
above relation is nothing but the generalised case of (C.3) for arbitrary time lag t.
The frequency domain counterpart of (C.11) follows from Fourier transform to:

�
þ

S

E1 �H�
2 � E�

2 �H1

� � � dA ¼
ð

V

J�
2 � E1 � E�

2 r2ð Þ � J1
� �

dV ¼ 0 ðC:12Þ
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For completeness, we should also mention that the derivation of (C.10) indeed
includes propagation losses due to relaxation phenomena (expressed by depen-
dency from propagation time e tð Þ) but we did not yet explicitly include losses by
conductivity s. It is a usual praxis for time harmonic fields to join permittivity and
conductivity by es ¼ e þ s=j2pf in which e only respects relaxation effects. For the
time domain, this results in the operation es tð Þ � � � � ¼ e tð Þ þ u�1 tð Þ � s tð Þð Þ � � � � if
we apply doublet notation. Insertion in (C.9), let us come to comparable conclu-
sions for e and s with respect to the reciprocity relation (C.10) as above.

C.2
Scattering of Plane Waves at a Planar Interface

We consider the scenario as illustrated in Figure C.1 which symbolises the scatter-
ing of a pulse shaped plane wave at a planar interface between two dispersion less
dielectric media having the intrinsic impedance Zn ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m0=en

p
and the propagation

speed cn ¼ 1=
ffiffiffiffiffiffiffiffiffi
m0en

p
.

We write the incident wave in the normalised form:

Wi t; rð Þ ¼ Aiw0 t� ei � r
c1

� �
� qi tð Þ ðC:13Þ

in which ei and qi are the propagation direction and polarisation respectively of the
incident wave. w0 tð Þ relates to the time shape with unity amplitude and Ai is the
amplitude of the incident wave. In the case of non-dispersive material, we can
assume that the time shape of the involved waves rest the same so that reflected
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Figure C.1 Scattering of a planar pulse wave at a planar boundary – definition of quantities.
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and refracted wave may be written as:

Wr t; rð Þ ¼ Arw0 t� er � r
c1

� �
� qr tð Þ ðC:14Þ

Wt t; rð Þ ¼ Atw0 t� et � r
c2

� �
� qt tð Þ ðC:15Þ

If the incident wave bounces the interface the boundary conditions (5.26) must
be satisfied. This usually requires the creation of two new waves – one is penetrat-
ing and a second is reflected. In what follows, we like to determine these two waves.
The boundary condition (5.26) relates to the tangential components of the electric
and magnetic field respectively. In order to determine them, we first summarise
some vector relations describing the geometry of the scenario. Refer to Figure 5.15
and Figure C.1 for the definition of the vectors.
Any point whose position vector rI obeys the condition

n � rI � r0ð Þ ¼ n � rs ¼ 0 ðC:16Þ
is located in the scattering plane. The plane of incidence is defined by its unity
normal vector u:

u ¼ n� ei
n� eij j ðC:17Þ

The intersection line of the plane of incidence with the scattering interface is
given by the unity vectorm:

m ¼ u� n ðC:18Þ
Finally, we still define the unit vector vn lying in the plan of incidence and perpen-
dicular to the propagation of the incident field:

vn ¼ en � u: ðC:19Þ
The vectors e;u; vn½ � are forming a right hand system. The index n is n¼ i for inci-
dent field, n¼ r for the reflected and n¼ t for the refracted wave.
The boundary conditions (5.26) have to be satisfied within the whole boundary at

any time. Hence, we have to require:

n� E1 � E2ð Þ ¼ n� Ei þ Erð Þ � Etð Þ ¼ 0 )
ffiffiffiffiffiffi
Z1

p
n� Ai w0 t� ei � rI � r0ð Þ

c1

� �
qi þ Arw0 t� er � rI � r0ð Þ

c1

� �
qr

� �

¼ ffiffiffiffiffiffi
Z2

p
Atw0 t� et � rI � r0ð Þ

c2

� �
n� qt

ðC:20Þ
n� H1 �H2ð Þ ¼ n� Hi þHrð Þ �Htð Þ ¼ 0 )

1ffiffiffiffiffiffi
Z1

p n� Ai w0 t� ei � rI � r0ð Þ
c1

� �
ei � qi þ Arw0 t� er � rI � r0ð Þ

c1

� �
er � qr

� �

¼ 1ffiffiffiffiffiffi
Z2

p Atw0 t� et � rI � r0ð Þ
c2

� �
n� et � qt

ðC:21Þ
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Propagation term: These conditions are only met at any time if

ei � rI � r0ð Þ
c1

¼ er � rI � r0ð Þ
c1

¼ et � rI � r0ð Þ
c2

: ðC:22Þ

With rs ¼ rI � r0, we may split (C.22) into

ei � erð Þ � rs ¼ 0 ðC:23Þ
and

ei
c1

� et
c2

� �
� rs ¼ 0 ðC:24Þ

Both conditions are only valid if

ei � er ¼ l n ðC:25Þ
and

ei � g21 et ¼ m n ðC:26Þ
where at l; m represents two scalar values and

g21 ¼
c1
c2

¼ Z1

Z2
¼

ffiffiffiffiffi
e2
e1

r
ðC:27Þ

is the refraction index. Since from (C.25) follows that ei �m ¼ er �m, we result in
the reflection law:

er ¼ ei � 2 n � eið Þ � n ðC:28Þ
which is better known under

ai ¼ ar ¼ a1 ðC:29Þ
Equation (C.28) may also be expressed in matrix notation:

er ¼ T nð Þ
H ei ðC:30Þ

T nð Þ
H - Householder matrix – see (A.163)

Corresponding we get from (C.26)

ei �m ¼ g21 et �m ðC:31Þ
which is better know under

sin ai ¼ sin a1 ¼ g21 sin at ¼ g21 sin a2 ðC:32Þ
representing Snell’s law. Hence the vector et gets:

g21 et ¼ ei �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g221 � ei �mð Þ2

q
þ ei � n

� �
n

¼ ei �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g221 � sin2 a1

q
� cos a1

� �
n

ðC:33Þ
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Amplitude relations: In order to determine the amplitude of the reflected and
refracted wave, we decompose the fields in u and vn components. The u-polarised field
components10) are parallel to the interface plane and the vn-polarised field compo-
nents11) are parallel to the plane of incidence. Thus we canwrite for the involvedwaves:

Wn ¼ u �Wnð Þuþ vn �Wnð Þvn ¼ Unuþ Vnvn; n 2 i; r; t½ � ðC:34Þ
where at holds A2

n ¼ U2
n þ V2

n.
u-polarised wave: Applying (C.27) and insertion of the u-polarised components of the

waves into (C.20) and (C.21) gives:
ffiffiffiffiffiffiffi
g21

p
Ui þUrð Þ ¼ Ut

n� Uiei � uþUrer � uð Þ ¼ ffiffiffiffiffiffiffi
g21

p
n� et � u

ðC:35Þ

Using the vector identity (A.52) and respecting u � n ¼ 0, we get n� e� uð Þ ¼
�u n � eð Þ so that the reflection coefficient Ru ¼ Ur=Ui and transmission coefficient
Tu ¼ Ut=Ui become:

Luu ¼ Ur

Ui
¼ g21n � et � n � ei

n � er � g21n � et ¼
Z2 cos a1 � Z1 cos a2

Z2 cos a1 þ Z1 cos a2
ðC:36Þ

Tuu ¼ Ut

Ui
¼ 2

ffiffiffiffiffiffiffi
g21

p
n � er

n � er � g21n � et ¼
2
ffiffiffiffiffiffiffiffiffiffiffi
Z1Z2

p
cos a1

Z2 cos a1 þ Z1 cos a2
ðC:37Þ

v-polarised waves: The v-polarised fields inserted in (C.20) and (C.21) gives:
ffiffiffiffiffiffiffi
g21

p
n� Vi vi þ Vr vrð Þ ¼ Vt n� vt

n� Vi ei � vi þ Vr er � vrð Þ ¼ ffiffiffiffiffiffiffi
g21

p
Vt n� et � vtð Þ ðC:38Þ

Insertion of (C.19) and using the identities n� v ¼ n� e� uð Þ ¼ �u n � eð Þ as well
as n� e� vð Þ ¼ n� e� e� uð Þð Þ ¼ �n� u leads to

Lvv ¼ Vr

Vi
¼ g21n � ei � n � et

n � et � g21n � er ¼
Z1 cos a1 � Z2 cos a2

Z1 cos a1 þ Z2 cos a2
ðC:39Þ

Tvv ¼ Vt

Vi
¼ 2

ffiffiffiffiffiffiffi
g21

p
n � er

g21n � er � n � et ¼
2
ffiffiffiffiffiffiffiffiffiffiffi
Z1Z2

p
cos a1

Z1 cos a1 þ Z2 cos a2
ðC:40Þ

The relations (C.36), (C.37), (C.39) and (C.40) are denoted as Fresnel equations
(for normalised waves). They are valid for time and frequency domain notations as
long as the material parameters are frequency independent. Otherwise, they are
only valid for frequency domain notation.

C.3
Scattering of a Plane Wave at a Sphere

We refer to the scattering geometry depicted in Figure C.2 and a perfect conducting
sphere of radius a placed in the origin of the coordinate system. A planar time

10) They are often referred as horizontal polarised waves.
11) They are often referred as vertical polarised waves.
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harmonic electromagnetic wave propagates along the negative z-axis. It should be
polarised in x-direction so that electric and the magnetic field as well as the normal-
ised wave are expressed by:

Ei ¼ E0 ejkz ex

Hi ¼ �E0

Zs
ejkz ey

Wi ¼ E0ffiffiffiffiffi
Zs

p ejkz ex

The scattered far field in the observation point r0 ¼ r 0; q; w½ � and for k a ¼
2 p a

l ¼ 2 pf a
c is determined by [10]:

Scattered field eq - polarized:

WS;q r 0;q;wð Þ ¼ Eq r 0;q; wð Þffiffiffiffiffi
Zs

p ¼
ffiffiffiffiffi
Zs

p
Hw r 0;q;wð Þ ¼ L

q k a;q;wð Þ e�jkr 0

r 0
E0ffiffiffiffiffi
Zs

p

Lq k a;q;wð Þ ¼ j cos w
k

�
X1
n¼1

�1ð Þn nþ 1
2

� �
bn � anð Þ; q ¼ 0

X1
n¼1

�1ð Þn 2nþ 1
n nþ 1ð Þ bn

@P1
n cos qð Þ
@q

� an
P1
n cos qð Þ
sin q

� �
; q 2 0;pð Þ

�
X1
n¼1

nþ 1
2

� �
bn þ anð Þ; q ¼ p

8>>>>>>>>>><
>>>>>>>>>>:

ðC:41Þ
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Figure C.2 Planar wave scattering at a sphere.

(C.41)
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Scattered field ew - polarized:

WS;w r 0;q; wð Þ ¼ Ew r 0;q;wð Þffiffiffiffiffi
Zs

p ¼ �
ffiffiffiffiffi
Zs

p
Hq r 0;q;wð Þ ¼ L

w k a;q;wð Þ e�jkr 0

r 0
E0ffiffiffiffiffi
Zs

p

L
w k a;q;wð Þ ¼ j sin w

k

X1
n¼1

�1ð Þn nþ 1
2

� �
bn � anð Þ q ¼ 0

�
X1
n¼1

�1ð Þn 2nþ 1
n nþ 1ð Þ bn

P1
n cos qð Þ
sin q

� an
@P1

n cosqð Þ
@q

� �
; q 2 0;pð Þ

�
X1
n¼1

nþ 1
2

� �
bn þ anð Þ q ¼ p

8>>>>>>>>>><
>>>>>>>>>>:

ðC:42Þ
Whereat:

an ¼ Sn kað Þ
f 1ð Þ
n kað Þ ; bn ¼ @Sn kað Þ=@ka

@f 1ð Þ
n kað Þ=@ka

Sn xð Þ ¼ xjn xð Þ; f 1ð Þ
n xð Þ ¼ xh 1ð Þ

n xð Þ � Riccati-Bessel functions

jn xð Þ; h 1ð Þ
n xð Þ � spherical Bessel=Hankel function

P1
n xð Þ � associated Legendre function of first order

a� radius of sphere

k ¼ 2p
l

¼ 2pf
c

� wave number

The bi-static scattering cross section normalised to the geometric cross section of
the sphere is calculated by:

s q;wð Þ
p a2

¼ 4
a2

Lqj j2 þ L
w

�� ��2	 

ðC:43Þ
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orthogonal matrix 27
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pseudo-inverse 22
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reflection law 87
reflection matrix 23
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Schur complement 18
shift matrix 24
singular value decomposition 21
skew-Hermitian matrix 27
skew-symmetric matrix 25
Snell’s law 88
spectrum 30
spherical coordinate system 10
symmetric matrix 25
Toeplitz matrix 28
transmission coefficient 89
uncorrelated 9
uniform distribution 6
unit step 5
unitary matrix 27
Vandermonde matrix 27
variance 8
vector product 14
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