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Chemical Bonding in Solids

In this chapter, we discuss different mechanisms that can lead to bonding between
atoms so that they form solids. We will encounter different cases such as ionic,
covalent, or metallic bonding. It has to be kept in mind that these are just idealized
limiting cases. Often mixed bonding types are found, for example, a combination of
metallic and covalent bonding in the transition metals.
As in conventional chemistry, only a restricted number of all the electrons

participate in the bonding. These so-called valence electrons are the electrons in
the outermost shell(s) of an atom. The electrons in the inner shells, or core electrons,
are bound so tightly to the nucleus that they do not feel the presence of other atoms in
their neighborhood.

1.1
Attractive and Repulsive Forces

Two different forces must be present to establish bonding in a solid or in amolecule.
An attractive force is necessary for any bonding.Different types of attractive forces are
discussed below. A repulsive force, on the other hand, is required in order to keep the
atoms fromgetting too close to each other. An expression for an interatomic potential
can be written as

f(r) ¼ A
rn
� B
rm

; ð1:1Þ

where n >m, that is, the repulsive part has to prevail for short distances (sometimes
this is achieved by assuming an exponential repulsion potential). Such a potential and
the resulting force are shown in Figure 1.1. The reason for the strong repulsion at
short distances is the Pauli exclusion principle. For a strong overlap of the electron
clouds of two atoms, the wave functions have to change in order to become
orthogonal to each other, because the Pauli principle forbids having more than two
electrons in the same quantum state. The orthogonalization costs much energy,
hence the strong repulsion.
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1.2
Ionic Bonding

Ionic bonding involves the transfer of electrons from an electropositive atom to an
electronegative atom. The bonding force is the Coulomb attraction between the
two resulting ions. Ionizing both atoms usually costs some energy. In the case of
NaCl, the ionization energy of Na is 5.1 eV but the electron affinity of Cl is only
3.6 eV. The net energy cost for creating a pair of ions is thus 5.1� 3.6¼ 1.5 eV. The
energy gain is given by the Coulomb potential. For just one Na and one Cl ion
separated by a distance a¼ 0.28 nm, this is �e2/4pe0a, which amounts to 5.1 eV.
Potential energies for more complicated structures are discussed below. It is
important to distinguish between the different energy contributions involved: The
ionization energy is the energy needed to turn atoms into ions, the lattice energy is
the electrostatic energy gain by assembling a lattice, and the cohesive energy is the
lattice energy minus the ionization energy, that is, it represents the total energy
balance to form the ionic solid.
The fact that the total potential energy curve in Figure 1.1 contains a repulsive part

in addition to the Coulomb potential means that the actual potential minimum for a
given interatomic distance a is a bit shallower than expected from the pure Coulomb
potential (10% or so). Therefore, the lattice energy can be calculated rather accurately
using classical physics if the interatomic distance a is known. Predicting this
distance, however, requires the inclusion of quantum effects. In any event, ionic
bonding is very strong. The cohesive energy per atom is in the order of several
electron volts.
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Figure 1.1 (a) Typical interatomic potential for bonding in solids
according to (1.1) with n¼ 6 and m¼ 1. (b) Resulting force,
that is, �gradf(r).
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1.3
Covalent Bonding

Covalent bonding is based on the true sharing of electrons between different atoms.
The simplest case is that of the hydrogenmolecule that we will discuss quantitatively
below. In solids, covalent bonding is often found for elements with a roughly half-
filled outer shell. A prominent example is carbon that forms solids as diamond or
graphite as well as complex molecules such as Buckminster Fullerene C60 or carbon
nanotubes. The covalent bonds in diamond are constructed from a linear combina-
tion of the 2s orbital and three 2p orbitals. This results in four so-called sp3 orbitals
that stick out in a tetrahedral configuration from the carbon atoms. In graphite, the 2s
orbital is combinedwith only two 2p orbitals, giving three sp2 orbitals, all in one plane
and separated by an angle of 120�, and one p orbital oriented perpendicular to this
plane. This linear combination of orbitals already reveals an important characteristic
for the covalent bonding: it is highly directional. In addition to this, it is also very
stable and the bonding energies are several electron volts.
A very instructive example for covalent bonding is the hydrogen molecule H2 for

which we will sketch a solution here. We go into some detail, as much of this will be
useful in later chapters. As a starting point, take twohydrogen atomswith their nuclei
at RA and RB and we call |RB�RA|¼R. We do, of course, know the solution of
the Schr€odinger equation for each of the atoms. Let these ground-state wave
functions be YA and YB, respectively. The Hamilton operator for the hydrogen
molecule can be written as

H ¼ � �h2r2
1

2me
� �h2r2

2

2me
þ e2

4pe0
1
R
þ 1

jr1�r2j
�

� 1
jRA�r1j �

1
jRB�r2j �

1
jRA�r2j �

1
jRB�r1j

�
;

ð1:2Þ

where r1 and r2 are the coordinates of the electrons belonging to the A and the B
nucleus, respectively. The first two terms refer to the kinetic energy of the two
electrons. The operatorsr2

1 andr2
2 act only on the coordinates r1 and r2, respectively.

The electrostatic term contains the repulsion between the two nuclei and the
repulsion between the two electrons as well as the attraction of each electron to
each nucleus.
The solution of this problem is not simple. It would be greatly simplified by

removing the electrostatic interaction between the two electrons because then the
Hamiltonian could be written as the sum of two parts, one for each electron. This
could then be solved by a product of the two wave functions that are solutions to the
two individual Hamiltonians, that is, the two-particle wave function would look
like Y (r1, r2)¼YA (r1)YB (r2). Actually, this is not quite right because such a wave
function is not in accordance with the Pauli principle. Since the electrons are
fermions, the total wave function must be antisymmetric with respect to particle
exchange and the simple product wave function does not fulfill this requirement.

1.3 Covalent Bonding j3



The total wave function consists of a spatial part and a spin part and therefore there
are two possibilities for forming an antisymmetric wave function. We can either
choose a symmetric spatial part and an antisymmetric spin part or vice versa. This is
achieved by constructing the spacial wave function of the form

Y"#(r1; r2) / YA(r1)YB(r2)þYA(r2)YB(r1); ð1:3Þ

Y""(r1; r2) / YA(r1)YB(r2)�YA(r2)YB(r1): ð1:4Þ
The plus sign in (1.3) returns a symmetric spatial wave function that we can take for
an antisymmetric spin wave function with the total spin equal to zero (the so-called
singlet state); the minus in (1.4) results in an antisymmetric spatial wave function
for a symmetric spin wave function with the total spin equal to 1 (the so-called
triplet state).
The antisymmetric wave function (1.4) vanishes if r1¼ r2, that is, the two electrons

cannot be at the same place simultaneously. This leads to a depletion of the electron
density between the nuclei and hence to an antibonding state. For the symmetric
case, on the other hand, the electrons have opposite spins and can be at the same
place, which leads to a charge accumulation between the nuclei and hence to a
bonding state (see Figure 1.2).
An approximate way to calculate the eigenvalues of (1.2) was suggested by W.

Heitler and F. London in 1927. The idea is to use the known single-particle 1s wave
functions for atomic hydrogen for YA and YB to form a two-electron wave function

Figure 1.2 The energy changesDE"" andDE"# for the formation of
the hydrogen molecule. The dashed lines represent the
approximation for long distances. The two insets show gray scale
images of the corresponding electron probability density.
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Y (r1, r2), which is given by either (1.3) or (1.4). An upper limit for the ground-state
energy eigenvalues can then be calculated by

E ¼
Ð
Y(r1; r2)HY(r1; r2)dr1dr2Ð
Y(r1; r2)Y(r1; r2)dr1dr2

: ð1:5Þ

The calculation is quite lengthy and shall not be given here. The resulting ground-
state energies for the singlet and triplet states can be written as

Esinglet ¼ 2E0 þDE"#; ð1:6Þ
Etriplet ¼ 2E0 þDE"": ð1:7Þ

E0 is the ground-state energy for one hydrogen atom that appears here twice because
we start with two atoms. The energies DE"" and DE"# are also shown in Figure 1.2.
DE"" is always larger than zero and does not lead to any chemical bonding. DE"#,
however, shows a minimum below zero at approximately 1.5 times the Bohr radius.
This is the binding state.
For long distances between the nuclei, (1.6) and (1.7) can further be simplified to

give

E ¼ 2E0 þC � X ; ð1:8Þ
that is, the energy change upon bonding has two parts, one that does depend on the
relative spin orientations of the electrons (�X) and one that does not (C). The energy
difference between the two states is then given by 2X, where X is called the exchange
energy. In the case of the hydrogenmolecule, the exchange energy is always negative.
We will encounter similar concepts in the chapter about magnetism where the

underlying principle for magnetic ordering is very similar to what we have here. The
total energy of a system of electrons depends on their relative spin directions through
the exchange energy, and therefore a particular ordered spin configuration is favored.
For two electrons, the �magnetic� character is purely given by the sign of X. For a
negative X, the coupling with two opposite spins is favorable (the antiferromagnetic
case) whereas a positive X would lead to a situation where two parallel spins give the
lowest energy (the ferromagnetic case).

1.4
Metallic Bonding

Inmetals, the outer valence electrons are removed from the ion cores, but in contrast
to ionic solids, there are no electronegative ions to bind them. Therefore, they are free
to migrate between the remaining ion cores. These delocalized valence electrons
are involved in the conduction of electricity and are therefore often called conduc-
tion electrons. One can expect metals to form from elements for which the energy
cost of removing outer electrons is not too big. Nevertheless, this removal always
costs some energy that has to be more than compensated by the bonding.
Explaining the energy gain from the bonding in an intuitive picture is difficult
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but we can at least try tomake it plausible. The ultimate reasonmust be some sort of
energy lowering.
One energy contribution that is lowered is the kinetic energy of the conduc-

tion electrons. Consider the kinetic energy contribution in a Hamiltonian,
T ¼ ��h2r2=2m. Amatrix element hY|T |Yimeasures the kinetic energy of a particle.
TY is proportional to the second spatial derivative of the wave function, that is,
the curvature. For an electron that is localized to an atom, the curvature of its wave
function is much higher than that for a nearly free electron in a metal and this is
where the energy gain comes from.
The other contribution to the electron energy is the potential energy. One should

think that the average electrostatic potential of any single electron in a solid is almost
zero because there are (almost) as many other electrons as there are ions with the
same amount of charge. But this turns out to be wrong. In fact, the electrons see an
attractive potential. The reason is again partly due to the Pauli principle that, loosely
speaking, does not allow two electrons with the same spin direction to be at the same
place and therefore theelectronsgo�outof eachothersway.� Inaddition to this, there is
also a directCoulomb interactionbetween the electrons,whichmakes themavoideach
other. We will discuss this in more detail when dealing with magnetism.
Typically, metallic bonding is not as strong as covalent or ionic bonding but it

amounts to a few electron volts per atom. Stronger bonding is found in transition
metals, that is, metals with both s and p conduction electrons and a partially filled d
shell. The explanation for this is that we have amixed bonding. The s and p electrons
turn into delocalized metallic conduction electrons, whereas the d electrons create
much more localized, covalent-type bonds.

1.5
Hydrogen Bonding

Hydrogen atoms have only one electron and can form one covalent bond. If the bond
is to a very electronegative atom (like F or O), the electron is mostly located close to
that atom and the hydrogen nucleus represents an isolated positive (partial) charge.
This can lead to a considerable charge density because of the small size and it can
therefore attract negative (partial) charges in other molecules to form an electrostatic
bond. This type of bonding is called hydrogen bonding. It is usually quite weak but in
some cases the cohesive energy can be up to several hundred meV per atom. It is
responsible for the intermolecular attraction in water ice and for the bonding of the
double helix in DNA.

1.6
van der Waals Bonding

The term van derWaals bonding refers to a weak, purely quantummechanical effect.
The electron cloud around an atomor amolecule has no static charge distribution but
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one governed by quantummechanical fluctuations. For a simple atom with a closed
shell, this can be viewed as a fluctuating dipole moment. This dipole moment can
polarize other atoms nearby and the interaction of the two neighboring dipoles
reduces the total energy, that is, it can lead to bonding. This type of interaction is
present in any solid but it is much weaker than ionic, covalent, or metallic bonding.
Typical binding energies are in the meV range and therefore van der Waals
bonding is only observable for solids that do not show other bonding behavior, for
example, noble gases. Pure van der Waals crystals can only exist at very low
temperatures.

1.7
Discussion and Problems

1.7.1
Discussion

1. Why is a typical interatomic potential, such as in Figure 1.1, so asymmetric?
2. Which elements are likely to form crystals through ionic bonding?
3. What kind of forces are important for ionic bonding?
4. How does the lattice energy in an ionic crystal depend on the interatomic

distance?
5. Explain the difference between cohesive energy and lattice energy.
6. Which elements are likely to form metals?
7. Where does the energy gain in metallic bonding come from?
8. What is the difference between a simple metal and a transition metal (definition

and typical physical properties)?
9. Why is van der Waals bonding much weaker than most other bonding types?

1.7.2
Problems

1. Metallic bonding: One can use some simple-minded arguments to explain why
metallic bonding is stable. One argument is that allowing the wave functions to be
smeared out in space reduces the momentum uncertainty Dp and thereby the
highest momentum (and energy) through DpDx ¼ �h=2. Estimate how much Dp
would be reduced by allowing the wave function to spread from typical atomic
dimensions (Bohr radius) to the typical dimensions of the lattice unit cell (a few
Angstrom or 10 times the Bohr radius). If you assume that the highest p would
correspond to a highest kinetic energy E¼ p2/2me, how much would this reduce
the kinetic energy?

2. van der Waals force: Show that the bonding energy due to the van der Waals force
between two atoms depends on their distance r as r�6. Hint: The van der Waals
interaction is due to the mutual interaction of fluctuating dipoles. Suppose that
one atom forms a dipolemoment, at some time. This can bemodeled as two point
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charges, separated by a distance d. What is the electric field due to this dipole at
some distance r that is much greater than d? Assume that a second atom at the
distance r is polarized in the field such that its induced dipole moment is
proportional to the field (see (9.4) in Chapter 9) and calculate how the potential
energy of the system depends on r.
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