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Atomic Kinematics

In this chapter, we introduce a model for a two-level system, the so-called two-level
atom. We consider a collection of many such systems, and introduce differ-
ent atomic states (Dicke, coherent, and squeezed states). We also discuss a
generalization to systems with an arbitrary structure of energy levels.

1.1
Kinematics of an Atom with Two Energy Levels

The state vector for a two-level system can be written as a linear superposition

|ψ〉 = c0|0〉 + c1|1〉 (1.1)

where vectors |0〉 and |1〉 represent respectively the ground and excited states
of the system and form a basis in an abstract two-dimensional Hilbert space.
The coefficients ck satisfy the normalization condition |c0|2 + |c1|2 = 1, and |ck|2
represents the probability of finding the system in the state ‘‘k’’. In a representation
where

|0〉 →
[

0
1

]
, |1〉 →

[
1
0

]

an arbitrary pure state |ψ〉 is described by a complex two-dimensional vector

|ψ〉 → c =
[

c1

c0

]

Up to a common phase, the amplitudes ck can be conveniently parameterized as
follows:

c1 = cos
ϑ

2
e−iϕ/2, c0 = sin

ϑ

2
eiϕ/2 (1.2)

In the same representation, an arbitrary linear operator f̂ , acting on the two-level
system, has a matrix realization of the form

f̂ =
[

a b
c d

]
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2 1 Atomic Kinematics

and can be expressed in terms of the Pauli matrices,

σx = σ1 =
[

0 1
1 0

]
, σy = σ2 =

[
0 −i
i 0

]

σz = σ3 =
[

1 0
0 −1

]
, I = σ0 =

[
1 0
0 1

]
(1.3)

as

f̂ =
3∑

j=0

fjσj

where the coefficient fj is given by

fj = 1

2
Tr(f̂ σj)

If the operator is Hermitian, f̂ † = f̂ , the coefficients fj are real. Average values of the
Pauli matrices in an arbitrary state |ψ〉 in the parameterization (Equation 1.2) are

〈σx〉 = 2Re (c1c0) = sin ϑ cos ϕ〈
σy
〉 = 2Im(c1c0) = sin ϑ sin ϕ

〈σz〉 = |c1|2 − |c0|2 = cos ϑ

From these, one can infer the average value for f̂ .
In the two-level atom, the physical interpretation of the operator σz can be

understood from the Schrödinger equation for a free system:

i�
dc
dt

= H0c, H0 =
[

E1 0
0 E0

]

If we choose the zero energy to lie exactly between E0 and E1, so that E0 = −ε and
E1 = ε, the free Hamiltonian of the system is then

H0 = ω0�

2
σz, ω0 = E1 − E0

�
= 2ε

�

Clearly, the states |0〉 and |1〉 are eigenstates of the free Hamiltonian H0 (these
states are sometimes called bare states).

The simplest physical realization of a two-level system is clearly a single electron
spin in an external magnetic field. To find more applications for a two-level
system, let us consider the interaction of a general multilevel atom with an external
electromagnetic field. Let us suppose that the atom has only one electron and
designate by |�n〉, n = 0, 1, 2, . . . the eigenstates of the free Hamiltonian H0 of the
atom

H0|�n〉 = En|�n〉 (1.4)
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We assume that the Hamiltonian describing the interaction with the electric field
has the simplified form

Hint = − (d · E)

where d = er is the electric dipole operator, e is the charge, and r is the electron
position vector. In the basis spanned by the |�n〉’s, we obtain

H0 =

 · · · 0 0

0 E1 0
0 0 E0


 , Hint =


 · · · · · · · · ·

· · · H11 H10

· · · H01 H00




where

Hkn = 〈�k|Hint|�n〉 = −
(

E ·
∫

dr �∗
k (r) er �n(r)

)
≡ − (E · dkn)

Since the Hamiltonian is invariant under reflections, the wave functions |�n〉 have
definite parity. Thus, the diagonal matrix elements of the interaction Hamilto-
nian vanish: Hnn = −eE · 〈�n|r|�n〉 = 0. The off-diagonal matrix elements Hkn

describe transitions between the states with energies Ek and En, respectively. These
transitions have frequency ωa = (Ek − En)/�. To stimulate these transitions, the
frequency of the external field must be close to ωa. As the energy levels of an
atom are usually not equidistant, the external field does not, in practice, induce
transition between levels other than Ek and En. This means that, in the matrix for
Hint, we can focus on a single 2 × 2 block corresponding to the elements at the
intersection of the kth and nth rows with the kth and nth columns. This leads us to
the approximation of a two-level atom. We assign an index ‘0’ to the lowest state
and an index ‘1’ to the highest state.

The Hamiltonian of the atom takes on the form

H = H0 + Hint, H0 =
[

E1 0
0 E0

]
(1.5)

where

Hint = −(E · d) =
[

0 g
g∗ 0

]

and we have introduced the notation

−e〈1|(E · r)|0〉 ≡ g = gr + igi

Here, gr and gi are the real and imaginary parts of the complex number g. We
obtain

〈Hint〉 = (
c∗

1〈1| + c∗
0〈0|)Hint (c1|1〉 + c0|0〉)

= gr(c∗
1c0 + c∗

0c1) + igi(c0c∗
1 − c∗

0c1) = gr〈σx〉 − gi〈σy〉

Thus, the dipole moment of a two-level atom can be expressed in terms of operators
σx and σy, as follows:
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d = (
Re d

)
σx − (

Im d
)
σy (1.6)

where d = e〈1|r|0〉. The last equation provides a physical interpretation of the
operators σx and σy.

Note that E and d are vectors in the real physical three-dimensional space. On
the other hand, average values of the Pauli matrices σx,y,z form a pseudospin vector
in the isotopic space (σx,y,z are sometimes called energy spin operators or isotopic spin
operators). These two spaces should not be confused. (At this point, the difference
from spin dynamics in the external magnetic field appears: in the last case the
mean values of the spin operators σ form a vector in the real space).

In the case of a pure atomic state, the values 〈σk〉 are the components of a unit
vector in the isotopic space:

〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1

This vector is called the Bloch vector. The tip of this vector is point located on the
surface of a unit sphere, called the Bloch sphere. The orientation of the Bloch vector
on the sphere is uniquely specified by two angles ϑ, ϕ. To each pure state of a
two-level system corresponds a point on the Bloch sphere. The north pole of the
sphere corresponds to the excited state |1〉 and the south pole to the ground state
|0〉. At either pole, the phase ϕ is not defined.

If the system is in an arbitrary state (pure or mixed), described by a density
matrix ρ, where

ρ =
[

ρ11 ρ10

ρ01 ρ00

]

the Bloch vector R = Tr(ρσ), can be written in the following way:

Rx = 2Reρ01, Ry = 2Imρ01, Rz = ρ11 − ρ00

Inversely, given a Bloch vector, one can recover the density matrix via

ρ = 1

2
(1 + Rσ)

It is easy to see that |R|2 = R2
x + R2

y + R2
z = 2Tr

(
ρ2
)− 1 ≤ 1, with the equality

satisfied only for pure states. This means that, while pure states are represented
as points on the surface of the sphere, mixed states are represented as points
inside the sphere. The completely mixed atomic state, which is represented by a
diagonal matrix ρ = I/2, corresponds to the zero-length Bloch vector. In spherical
coordinates (r, ϑ, ϕ), the density matrix elements take the form

ρ00 = 1

2
(1 − r cos ϑ) , ρ01 = 1

2
r sin ϑ eiϕ, ρ11 = 1

2
(1 + r cos ϑ)

where r = 1 corresponds to a pure state.
Note that the basis for linear operators acting in the Hilbert space of the states of

a two-level system can be chosen in a different way:

| j〉〈k|, j, k = 0, 1 (1.7)
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In this basis, Pauli matrices can be written as follows:

σx = |0〉〈1| + |1〉〈0|, σy = i (|0〉〈1| − |1〉〈0|) ,

σz = |1〉〈1| − |0〉〈0|, I = |1〉〈1| + |0〉〈0|

1.2
Dicke States

Let us consider a collection of A two-level atoms with the same transition frequency
ω0. We assume that the atoms are distinguishable and do not interact with each
other. We designate the nth state of the jth atom as | j, n〉, n = 0, 1. Let k be the
number of atoms in the excited state, so that A − k atoms are in the ground state.
The possible outcomes of measuring the energy of the system are

E = �ω0

(
k − A

2

)
, k = 0, 1, . . . , N

Thus, the energy levels are equally spaced and the spectrum is bounded. One
example of a vector that describes a state with k excited atoms has the form

|1, 1〉 . . . |k, 1〉|k + 1, 0〉 . . . |A, 0〉 (1.8)

This energy level has a degeneracy of CA
k = (A!/k!(A − k)!), since any state differing

from the state Equation 1.8 only by permutation of the atoms,

| j1, 1〉 . . . | jk, 1〉| jk+1, 0〉 . . . | jA, 0〉
has the same energy. (Here, A! is the total number of atomic permutations and
k!(A − k)! is the number of permutations that do not interchange excited and
nonexcited atoms.) Now suppose that the states that have the same energy are
indistinguishable and consider a normalized symmetric linear combination of all
the functions that correspond to the same energy

|k, A〉 =
√

k!(A − k)!

A!

∑
p

| j1, 1〉 . . . | jk, 1〉| jk+1, 0〉 . . . | jA, 0〉 (1.9)

where the sum is made over all the possible permutations that interchange excited
and nonexcited atoms. For example, for two atoms these symmetric states are

|0, 2〉 = |1, 0〉|2, 0〉
|1, 2〉 = (|1, 1〉|2, 0〉 + |1, 0〉|2, 1〉) /

√
2

|2, 2〉 = |1, 1〉|2, 1〉

Let us define the collective operators for a system of A two-level atoms in the following
way:
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Sx,y,z = 1
2

A∑
j=1

σ
( j)
x,y,z (1.10)

where σ
( j)
z,y,z are individual operators for each of the atoms. It is obvious that in the

collective basis (1.9),

Sz|k, A〉 =
(

k − A

2

)
|k, A〉

Thus, the operator Sz defines the inversion in the atomic system, that is, the
difference between the number of excited and nonexcited atoms. The operators

σ
( j)
± = 1

2

(
σ

( j)
x ± iσ( j)

y

)
satisfy the commutation relations

[σ( j)
+ , σ( j)

− ] = σ
( j)
z , [σ( j)

z , σ( j)
± ] = ±2σ

( j)
±

and act on the basis elements of each atom as

σ
( j)
+ | j, 0〉 = | j, 1〉, σ

( j)
+ | j, 1〉 = 0, σ

( j)
− | j, 1〉 = | j, 0〉, σ

( j)
− | j, 0〉 = 0

Thus, the collective operators

S± =
A∑

j=1

σ
( j)
± = Sx ± iSy (1.11)

act on symmetric states (Equation 1.9) as follows:

S−|k, A〉 =
√

k!(A − k)!

A!

(
A − k + 1

)∑
p

| j1, 1〉 . . . | jk−1, 1〉| jk, 0〉 . . . | jA, 0〉

=
√

k(A − k + 1) |k − 1, A〉

Similarly, one obtains the action of the operator S+. Finally, the action of the
collective operators on the basis of the subspace of symmetric states (1.9) is
given as

S+|k, A〉 =
√

(k + 1)(A − k) |k + 1, A〉 (1.12)

S−|k, A〉 =
√

k(A − k + 1) |k − 1, A〉

Sz|k, A〉 =
(

k − A

2

)
|k, A〉

The collective operators Sx,y,z satisfy the familiar su(2) algebra commutation
relations:

[Sx , Sy] = iSz , [Sy, Sz] = iSx , [Sz, Sx] = iSy (1.13)
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or, in terms of the operators S±

[Sz, S±] = ±S±, [S+, S−] = 2Sz (1.14)

Since S2
z|k, A〉 =

(
k−A

2

)2 |k, A〉, and

(
S2

x + S2
y

)
|k, A〉 = 1

2
(S+S− + S−S+) |k, A〉 =

(
Ak − k2 + A

2

)
|k, A〉

the state |k, A〉 is the eigenstate of the Casimir operator

S2 = S2
z + S2

x + S2
y = S2

z + 1

2
(S+S− + S−S+) (1.15)

The corresponding eigenvalue does not depend on k:

S2|k, A〉 = A

2

(
A

2
+ 1

)
|k, A〉

Moreover, it is easy to prove that [Sx,y,z, S2] = 0. This means that the symmetric
states |k, A〉 form a basis of the (A + 1)-dimensional irreducible representation of the
su(2) algebra. The vectors |k, A〉 are called Dicke states [13].

1.3
Atomic Coherent States

Let us again consider a system of A (distinguishable) two-level atoms that do not
interact with each other. Now we suppose that all the atoms are in the same
quantum state, so that the state of the whole system is simply the product of the
states of individual atoms. In the polar parameterization (Equation 1.2), we obtain

|ϑ, ϕ〉 =
A∏

j=1

(
cos

ϑ

2
e−iϕ/2| j, 1〉 + sin

ϑ

2
ei(ϕ/2)| j, 0〉

)
(1.16)

It is easy to see that this product transforms into

|ϑ, ϕ〉 =
A∑

k=0

cosk ϑ

2
sinA−k ϑ

2
ei((A−2k)ϕ/2)

∑
p

| j1, 1〉 . . . | jk, 1〉| jk+1, 0〉 . . . | jA, 0〉

where, on the right hand side, one can recognize the Dicke state |k, A〉

|ϑ, ϕ〉 = ei A
2 ϕ

A∑
k=0

√
A!

k!(A − k)!
e−ik ϕ cosk ϑ

2
sinA−k ϑ

2
|k, A〉 (1.17)

= e−iϕSz

A∑
k=0

√
A!

k!(A − k)!
cosk ϑ

2
sinA−k ϑ

2
|k, A〉

The state |ϑ, ϕ〉 is, in fact, a coherent state for the su(2) group [14] (see
Appendix 11.2). Let us replace ϑ = θ + π in Equation 1.17 and introduce the
state [15, 16]
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|ξ〉 = e−iϕA/2|ϑ = θ + π, ϕ〉, ξ = − tan
(

θ

2

)
e−iϕ

The state |ξ〉 can be generated from vector |0, A〉, describing a state with no atom
excited, by the displacement operator D(z):

D(z) = exp
(
zS+ − z∗S−

)
, z = − θ

2
e−iϕ (1.18)

D†(z) = D−1(z) = D(−z)

The displacement operator can be rewritten in different ways:

D(z) = exp(−iϕSz) exp(−iθSy) exp(iϕSz)

= exp(ξS+) exp
[
ln
(
1 + |ξ|2) Sz

]
exp(−ξ∗S−)

Thus, the ket |ξ〉 takes the form

|ξ〉 = D(z)|0, A〉 = (
1 + |ξ|2)−A/2

exp [ξ S+] |0, A〉 (1.19)

It is easy to write the expansion of the coherent state |ξ〉 in the basis of the Dicke
states:

|ξ〉 = 1(
1 + |ξ|2)A/2

A∑
k=0

ξk

√
A!

k!(A − k)!
|k, A〉 (1.20)

The coherent state (1.17) can also be obtained by applying the operator exp(−iϕSz)
exp(−iϑSy) to the fully excited state |A, A〉:

|ϑ, ϕ〉 = exp(−iϕSz) exp(−iϑSy)|A, A〉

To understand the physical properties of the atomic coherent states, we calculate
the expectation values of the operators Sx,y,z. It follows directly from Equation 1.20
that

〈ξ|S+|ξ〉 = 1(
1 + |ξ|2)A

A∑
k,n=0

ξ∗kξn

k!n!
〈A, 0|Sk

−S+Sn
+|0, A〉

and, using the relation

〈A, 0|Sk
−Sn+1

+ |0, A〉 = δk,n+1
k!A!

(A − k)!

we immediately obtain

〈ξ|S+|ξ〉 = ξ∗(
1 + |ξ|2)A

A∑
k=1

|ξ|2(k−1)A!

(k − 1)!(A − k)!
= A ξ∗

1 + |ξ|2
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or, in the angular representation

〈ξ|S+|ξ〉 = −A

2
sin θ eiϕ = 〈ξ|S−|ξ〉∗

If we now observe that

S+|ξ〉 = 1

ξ

(
Sz + A

2

)
|ξ〉, S−|ξ〉 = ξ

(
A

2
− Sz

)
|ξ〉 (1.21)

we can easily evaluate 〈ξ|Sz|ξ〉 = ξ〈ξ|S+|ξ〉 − A/2, and finally, we have

〈ξ|Sx|ξ〉=−A

2
sin θ cos ϕ, 〈ξ|Sy|ξ〉=−A

2
sin θ sin ϕ, 〈ξ|Sz|ξ〉=−A

2
cos θ

or for the coherent states (Equations 1.16 and 1.17),

〈ϑ, ϕ|S |ϑ, ϕ〉 = A

2
n, n = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos θ) (1.22)

where S = (Sx , Sy, Sz) and n is the unit vector that determines the direction of the
classical angular momentum. The averages of the operators Sj then form a vector
in the direction of the classical momentum (collective Bloch vector):

R = 〈ϑ, ϕ|S |ϑ, ϕ〉 = A

2
n

These average values are identical to those obtained for the single atom case, except
for the change in the value of the isotopic spin: 1/2 → A/2. This suggests that
a coherent state |θ, ϕ〉 can be interpreted as a symmetric generalization of the
one-atom state. In fact, Equation 1.22 follows from the observation that the spin
coherent states are eigenstates of the operator (S · n), as shown in Appendix 11.2.

Fluctuations of the pseudospin projection Sx in the state |ϑ, ϕ〉

〈∆S2
x〉 = 〈

S2
x − 〈Sx〉2〉 , 〈. . . 〉 ≡ 〈ϑ, ϕ| . . . |ϑ, ϕ〉

can be easily found from Equation 1.17. However, it is more interesting to use the
definition (Equation 1.16) directly. We have

〈S2
x〉 = 1

4

〈(
A∑

j=1

σ
( j)
x

)2〉
= 1

4

〈
A∑

j=1

(
σ

( j)
x

)2 +
∑
i�=j

σ
(i)
x σ

( j)
x

〉

In the first term on the far right,
(
σ

( j)
x
)2 = 1 while the additional term

〈
σ

(i)
x σ

( j)
x
〉 =〈

σ
(i)
x
〉〈
σ

( j)
x
〉 = sin2 ϑ cos2 ϕ, due to the factorized form of the state (1.16). This leads to

〈S2
x〉 = A

4
+ A(A − 1)

4
sin2 ϑ cos2 ϕ

Using Equation 1.22, we obtain

〈∆S2
x〉 = A

4

(
1 − sin2 ϑ cos2 ϕ

)
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Relative fluctuations are

δx =
√〈∆S2

x〉
〈Sx〉 = 1√

A

√
1 − sin2 ϑ cos2 ϕ

sin ϑ cos ϕ

For the states with ϕ = ±π/2 as well as for the states |0〉 and |1〉 corresponding to
the values ϑ = 0 and ϑ = π (north and south poles of the Bloch sphere), 〈Sx〉 = 0
and relative fluctuations δx → ∞. For all other coherent states, relative fluctuations
δx tend toward zero in the limit of a large number of atoms, A → ∞. States with
the lowest fluctuations of Sx correspond to the points on the equator of the Bloch
sphere, ϑ = π/2. In this case, half of the atoms are excited. Fluctuations 〈∆S2

x〉
completely disappear when ϑ = π/2 and ϕ = 0, or ϕ = π: these two coherent states
are eigenstates of the operator Sx . It is worth noting that the directions of the axes
of the coordinate system can always be chosen in such a way that fluctuations of a
given operator (Sx , Sy or Sz) depend on one angle only. For example, in the case of
operator Sx, this angle is between the x axis and the direction of n.

Finally, fluctuations for the operators Sx,y,z in the atomic coherent states |ϑ, ϕ〉
are

(∆Sx)
2 = A

4

(
1 − sin2 ϑ cos2 ϕ

)
(1.23)

(∆Sy)2 = A

4

(
1 − sin2 ϑ sin2 ϕ

)
(∆Sz)

2 = A

4

(
1 − cos2 ϑ

)
One can observe that the square fluctuations in the coherent states are A times
larger than in the case of one atom. Further note that

(∆Sx)
2 + (

∆Sy
)2 + (∆Sz)

2 = 〈S2〉 − 〈S〉2 = A

2

It is also easy to calculate the fluctuations of the component of the vector operator
S in the direction perpendicular to the direction n of the average spin R =
〈ϑ, ϕ|S|ϑ, ϕ〉. For this goal one can write

S = n(S · n) + S⊥

where S⊥ is a two-dimensional vector that belongs to the plane tangent to the
sphere at point (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ):

S⊥ = S(1)
⊥ + S(2)

⊥ , S(1)
⊥ ⊥ S(2)

⊥

Using Equation 1.22, we have

〈ϑ, ϕ|S⊥|ϑ, ϕ〉 = 0 (1.24)

As stated earlier, |ϑ, ϕ〉 is the eigenvector of the operator (S · n):

(S · n)|ϑ, ϕ〉 = A

2
|ϑ, ϕ〉
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thus,

〈(∆S⊥)2〉 = 〈S2〉 − 〈(S · n)〉2 = A

2

(
A

2
+ 1

)
−
(

A

2

)2

= A

2

where the reader is reminded that 〈. . .〉 is taken over the coherent state |ϑ, ϕ〉.
From Equation 1.19, we conclude that, for the coherent states, the fluctuations

of the components of vector S⊥ are equal. This is obvious for the coherent state
|0, A〉, i.e. the coherent state located at θ = 0 (or, equivalently, at ϑ = π). As physical
properties of the coherent states do not depend on rotations, these properties are
not changed by the action of the operator D(θ, ϕ). Thus, we obtain

〈ϑ, ϕ|
(
∆S (1)

⊥
)2 |ϑ, ϕ〉 = 〈ϑ, ϕ|

(
∆S (2)

⊥
)2 |ϑ, ϕ〉 = A

4
(1.25)

This equation, taken in conjunction with Equation 1.22, allows us to visualize a
coherent atomic state as a symmetric segment of radius

√
A/2 on a Bloch sphere

of radius A/2, centered at the point determined by the vector n of Equation 1.22.
In the classical limit, where A → ∞, the radius of this segment divided by the
Bloch sphere radius is proportional to 1/

√
A → 0. This means that the relative

fluctuations in the directions perpendicular to the Bloch vector disappear.
It is important to note that, for a system described by a coherent state, the

number of excitations is not well defined, except at the poles, where ϑ = 0 or π.
From Equation 1.17, one can obtain the probability of finding k excitations in the
system

pk = |〈ϑ, ϕ|k, A〉|2 = A!

k!(A − k)!
xk (1 − x)A−k

where x = sin2 ϑ/2. This expression corresponds to the binomial distribution,
which tends to the Poisson distribution when A → ∞ (and A sin2 ϑ/2 is a finite
number). Assuming that each excitation has the energy �ω0/2 and each nonexcited
state has the energy −�ω0/2, we find the average energy in a coherent state:

E = �ω0

2

∑
k

(2k − A)pk = �ω0
A

2
cos ϑ

This result may be obtained by calculating the mean energy as the average of the
free Hamiltonian over the coherent state and using Equation 1.22.

E = 〈ϑ, ϕ|H0|ϑ, ϕ〉 , H0 = �ω0Sz

It can easily be seen that at the poles, ϑ = 0 and ϑ = π, the energy takes its
maximum and minimum values, while for points on the equator, ϑ = π/2, the
mean energy equals to zero.

The free evolution of the coherent state |ϑ, ϕ〉

|� (t)〉 = U(t)|ϑ, ϕ〉, U(t) = exp
(

−it
H0

�

)
is obtained from Equation 1.17 replacing ϕ → ϕ + ω0t, since

H0|k, A〉 = Ek|k, A〉, Ek = �ω0

(
k − A

2

)
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1.4
Squeezed Atomic States

As we have seen, if an atomic system is prepared in a coherent state, the square
fluctuations of the components of the vector S in any direction perpendicular to 〈S〉
are equal to A/4. Thus fluctuations are uniformly distributed, that is, fluctuations
of any component lying in the plane tangent to the sphere and perpendicular to
the average spin vector are the same. Physically, this is clear since in a coherent
state, individual atoms are all in the same state (1.16) and, thus, the square of
the fluctuation of the component of S is simply the sum of the fluctuations
corresponding to different atoms. One may say that the atoms are not correlated, in
the sense that the mean value of any observable can be calculated by averaging over
individual atomic states.

In principle, it is possible to form a correlated superposition of atomic states in
such a way that fluctuations are no longer distributed uniformly in the tangent
plane and, in some directions, the fluctuations would be smaller than A/4, at the
expense of the fluctuations in the other perpendicular directions, which will be
larger than A/4.

To correlate the atoms with each other, a transformation generated by a nonlinear
combination of generators of the su(2) algebra representation is required, since
linear transformations only rotate individual isotopic spins and would not produce
between the atoms a correlation of the type described above. One way to introduce
a correlation into a collective atomic system consists in inserting a nontrivial phase
in Equation 1.17, that depends on a set of parameters µ

|ϑ, ϕ, µ〉 = eiA/2ϕ

A∑
k=0

√
A!

k!(A − k)!
e−ik ϕ−if (k,µ) cosk ϑ

2
sinA−k ϑ

2
|k, A〉

Here f (k, µ) is a nonlinear function of k, which is equivalent to the application
to the coherent state (1.17) of a unitary transformation, which is nonlinear in the
collective inversion operator Sz: |ϑ, ϕ, µ〉 = Us(µ)|ϑ, ϕ〉. A simple model for such a
transformation was discussed in [17]

Us(µ) = exp
[−iµS2

z

]
(1.26)

This model is analogous to the field-mode evolution in the presence of the Kerr
medium; however, it has a finite number of states and we call it the finite Kerr
medium. Upon applying the transformation (1.26) to the atomic operators S±,
nonlinear phases are generated:

S+(µ) = U†
s S+Us = S+ exp

[
2iµ

(
Sz + 1

2

)]

S−(µ) = U†
s S−Us = exp

[
−2iµ

(
Sz + 1

2

)]
S−

which leads to a redistribution of quantum fluctuations in the plane tangent to the
Bloch sphere. Note that the operators S2

z and {S+, S−} ≡ S+S− + S−S+ commute
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with Sz, and are thus unchanged by the transformation of (Equation 1.26). The
value of fluctuations in the tangent plane are obviously invariant with respect to
rotations about the z axis. In other words, the distribution of fluctuations in the
tangent plane does not depend on the phase ϕ of the Bloch vector ; so, we assume,
without loss of generality, that ϕ = 0. The direction in the plane tangent to the
Bloch sphere at the point with coordinates (ϑ, ϕ = 0) is determined by a unit vector

n⊥ = (− cos ϑ sin δ, cos δ, sin ϑ sin δ), n ⊥ n⊥

where the unit vector n = (sin ϑ, 0, cos ϑ) defines the direction of the collective
Bloch vector (Equation 1.22) and δ is the angle between the vector n⊥ and the
positive direction of the y axis. Fluctuations of the projection of the vector S in the
direction n⊥,

sδ = (S · n⊥) = −Sx cos ϑ sin δ + Sy cos δ + Sz sin δ sin ϑ (1.27)

depend on the angle ϑ that determines the position on the Bloch sphere. For a
given value of the angle ϑ, we can find the direction of maximum squeezing by
changing the angle δ. It is easy to see that[

sδ, sδ+π/2
] = S · n

Formally, the atomic squeezing can be quantified by the ratio

ζ = min σsδ√
A/4

(1.28)

where min σ2
sδ

= min
[〈s2

δ〉 − 〈sδ〉2
]

is the smallest variation of the isotopic spin
component normal to the mean spin 〈S〉. Clearly, in the coherent state ζ = 1, and
the state is squeezed if ζ < 1.

Let us find, for example, the amount of squeezing generated in a set of A atoms
by the transformation (1.26) applied to a coherent atomic state |π/2, 0〉, located at
the equator of the Bloch sphere ( i.e. ϑ = π/2):

|ψc〉 = Us(µ)|π/2, 0〉 (1.29)

From Equation 1.27, we obtain

〈ψc|sδ|ψc〉 =
〈
Sz sin δ + cos δ

2i

(
S+(µ) − S−(µ)

)〉
0

〈ψc|s2
δ |ψc〉 = 〈S2

z〉0 sin2 δ − 〈
S2

+(µ) + S2
−(µ) − {S+, S−}〉0 cos2 δ

4

+〈{Sz, S+(µ)} − {Sz, S−(µ)}〉0
sin 2δ

4i

where 〈. . .〉0 means the average over the coherent state |π/2, 0〉. Following
Equation 1.17, we have

〈Sz〉0 =0, 〈S2
z〉0 = A

4
, 〈{S+, S−}〉0 = A(A−1)

2
, 〈exp [2iµSz]〉0 =cosA µ
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It is easy to find, using the relations (1.21), that

〈
S+(µ)

〉
0 = A

2
cosA−1 µ (1.30)

〈[
S+(µ)

]2
〉
0

= A(A − 1)

4
cosA−2 2µ

〈{Sz, S+(µ)}〉0 = i
A(A − 1)

2
cosA−2 µ sin µ

We obtain the following expression for the fluctuations of the spin projection (1.27)
in the state (1.29):

(
∆sδ(µ)

)2 = 〈ψc|s2
δ |ψc〉 − (〈ψc|sδ|ψc〉)2

= A

4

[
1 + A − 1

4

(
a +

√
a2 + b2 cos (2δ − 2ν)

)]
(1.31)

where

a = 1 − cosA−2 2µ, b = 4 sin µ cosA−2 µ, tan 2ν = b

a

From Equation 1.31, we can see that the fluctuations are minimized in the direction
determined by the angle

δ = 1

2
arctan

b

a
+ π

2
(1.32)

and reach the value

(
∆s(µ)

)2
min = A

4

[
1 − A − 1

4

(√
a2 + b2 − a

)]
≤ A

4
(1.33)

Obviously, fluctuations in the direction perpendicular to Equation 1.32 are max-
imized. It is clear that no squeezing can occur in the case of one atom (since
this atom would not have another to correlate to). In the particular case of two
atoms, the minimum value of the fluctuations (Equation 1.31) may be zero. It
may also happen that both the mean spin and min σ2

sδ
takes zero values at some

state (for instance, in the two-atom Dicke state |1, A = 2〉), so that the parameter
(Equation 1.28) becomes undefined.

It is instructive to visualize the state (1.29) on the two-dimensional sphere in
terms of the so-called Q function (see, e.g. Chapter 10)

Q µ(ϑ, ϕ) = ∣∣〈ϑ, ϕ
∣∣e−iµS2

z
∣∣π/2, 0

〉∣∣2 (1.34)

where |ϑ, ϕ〉 is the coherent state (1.17), in the limit of large number of atoms,
A � 1. The matrix element appearing in Equation 1.34 takes the form

〈
ϑ, ϕ

∣∣e−iµS2
z
∣∣π/2, 0

〉 = 1(
1 + |ξ|2)A/2

1

2A/2

A∑
k=0

ξ∗kCA
k e−iµ(k−(A/2))

2
(1.35)



1.4 Squeezed Atomic States 15

where ξ = cot (ϑ/2) e−iϕ and CA
k are the binomial coefficients. In the limit A � 1,

the binomial coefficients can be approximated by a Gaussian

CA
k ≈ 22S

√
πS

exp

[
−
(
k − S

)2

S

]
(1.36)

where S = A/2. Substituting Equation 1.36 in Equation 1.35 and changing the
summation index k − S = n, we get

〈
ϑ, ϕ

∣∣ e−iµS2
z
∣∣π/2, 0

〉 = 1(
1 + |ξ|2)S

ξS

2S

S∑
n=−S

exp
[
−n2

s
− iµn2 + n ln |ξ| + inϕ

]

Using the Poisson summation formula
∞∑

n=−∞
f (n) =

∞∑
m=−∞

∫ ∞

−∞
dx f (x) e2πimx

we obtain (extending the summation to infinity),

S∑
n=−S

exp
[
−n2

S
− iµn2 + n ln |χ| + inϕ

]
≈
√

π

a

∞∑
m=−∞

e(b2
m/4a)

where

a = 1
S

+ iµ, bm = ln |ξ| + i(ϕ + 2πm)

Finally, the Q function takes the form of cyclic Gaussian (describing, in particular,
the formation of the Schrödinger cats on the sphere)

Qµ(ϑ, ϕ) = 22S√
1 + s2µ2

( |ξ|
1 + |ξ|2

)2S
∣∣∣∣∣

∞∑
m=−∞

e(b2
m/4a)

∣∣∣∣∣
2

(1.37)

Let us note that |a| 
 1 for typical values of the parameter µ. With this assumption,
the maximally squeezed state corresponds to a situation where each Gaussian
in Equation 1.37 is very narrow. In this case, the dominant contribution to the
Equation 1.37 comes from the m = 0 term. In this case, the approximate expression
for the Q function takes the form

Qµ(ϑ, ϕ) = 2A√
1 + A2µ2/4

( |ξ|
1 + |ξ|2

)A

exp
[

A((ln |ξ|)2 − ϕ2) + A2µϕ ln |ξ|
4(1 + A2µ2/4)

]

(1.38)
In particular, the coherent states correspond to the value 0 of the parameter µ

Q0(ϑ, ϕ) = 2A
( |ξ|

1 + |ξ|2
)A

exp
[
−A

4

(
ϕ2 − (ln |ξ|)2)] (1.39)

Recalling that in the limit A � 1, relative fluctuations in the direction perpendicular
to n = (1, 0, 0) are of order ∼A−1/2, we can expand ξ in series of ς, |ς| 
 1, where
ϑ ∼ π/2 − ς, thereby obtaining an expression for the projection of the Q function
onto the tangent plane (ϕ, ς):
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Q0(ϕ, ς) = exp
[
−A

4

(
ϕ2 + ς2)] (1.40)

with the plane centered on the x axis.
The corresponding level curves for Qµ(ϑ, ϕ) take the form of ellipses for values of

µ that are not very large, i.e. the initial coherent state becomes squeezed in a certain
direction. For larger values of µ, these ellipses become twisted and deformed due
to quantum self-interference effect (appearance of Schrödinger cat states on the
sphere [18]). This deformation and deviation from the elliptical shape put limits to
the maximum possible squeezing that can be achieved in the system with a given
number of atoms subjected by the transformation (1.26).

An approximate expression for the Q function on the tangent (ϕ, ς) plane can be
obtained by expanding |ξ| in series of ς, giving

Qµ(ς, ϕ) = 1√
1 + A2µ2/4

exp

[
−A

ς2
(
2 + A2µ2

)+ 2Aµϕς + 2ϕ2

8
(
1 + A2µ2/4

)
]

(1.41)

The major axis of the ellipse makes an angle

tan 2φ = 2

Aµ

with the ϕ axes. In the rotated frame,

ϕ́ = ϕ cos φ + ς sin φ

ς́ = ς cos φ − ϕ sin φ

the Q function takes the form

Qµ(ς́, ϕ́ ) = 1√
A2µ2/4 + 1

exp

[
−A

8

(
ϕ́

2

a2
+ ς́

2

b2

)]

where

a2 =
(

2 − Aµ√
A2µ2/4 + 1

)−1

, b2 =
(

2 + Aµ√
A2µ2/4 + 1

)−1

For large values of µ, a2 → A2µ2/4, b2 → 1/4, exhibiting growing squeez-
ing – beyond the maximum value (Equation 1.33). The above equations show that
the tangent plane description of the atomic squeezing fails for large values of µ.

Another transformation that generates squeezing when applied to atomic coher-
ent states is of the form

Vs(µ) = exp(µS2
+ − µ∗S2

−)

Unfortunately, calculations for this transformation are not as simple as for the
transformation (1.26). However, in the limit of small µ, we can use the Taylor
expansion and find the transformed collective atomic operators up to the second
order in µ with a consecutive calculation of fluctuations in the tangent plane.
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1.5
Atoms with n > 2 Energy Levels

This section is devoted to the description of atomic systems with more than
two energy levels [19]. First, we introduce a general formalism for a collection
of A atoms, each atom containing n energy levels. We assume that the atoms
are distinguishable, so the state vector describing the system is symmetric under
permutation of indices labeling the individual atoms. We then specialize the
discussion to systems with three energy levels, and then we consider a particular
case of systems with three energy levels.

1.5.1
Systems with n Energy Levels

Let us consider a single atom with n energy levels. Vectors | j〉, j = 1, 2, . . . , n,
describing states with energies Ej (bare states) form an orthonormal basis, 〈k| j〉 =
δjk,

∑n
j=1 | j〉〈 j| = I, in the n-dimensional Hilbert space for this single atom. We

represent the states | j〉 as column vectors in the n-dimensional linear space

|1〉 →




0
. . .

0
. . .

1


 , | j〉 →




0
. . .

1j

. . .

0


 , |n〉 →




1
. . .

0
. . .

0


 (1.42)

It is easy to see that a parameterization, similar to Equation 1.2, of an arbitrary state
|ψ〉 has the form

|ψ〉 →




eiϕ1 cos
ϑ1

2

eiϕ2 sin
ϑ1

2
cos

ϑ2

2
· · ·
· · ·

eiϕn−1 sin
ϑ1

2
· · · sin

ϑn−2

2
cos

ϑn−1

2

sin
ϑ1

2
· · · sin

ϑn−1

2




(1.43)

where the phase of the ground state is chosen to be zero for simplicity. Clearly, the
transformations preserving the norm of the state vector (1.43) are elements of the
group U(n).

The free Hamiltonian of the system has the form

H0 =
n∑

j=1

Ej| j〉〈 j| (1.44)

The configuration of the energy levels may be arbitrary, but it is convenient
to choose the energies in such a way that Ej ≤ Ej+1. Operators that generate



18 1 Atomic Kinematics

transitions between levels are s ij = | j〉〈i|, (j �= i), i, j = 1, . . . , n and satisfy the
following commutation relations:[

s ij, slk
]

= δikslj − δjls
ik (1.45)

which are those for the generators of the U(n) algebra (see Appendix 11.1).
Let us recall that any element of the U(n) group can be represented as the product

of an element of the su(n) group by an element of the U(1) group. Obviously the
element of the U(1) group is related to a global phase of the system state. To exclude
this phase, we use the traceless combinations

s
j j+1
z = 1

2

(| j + 1〉〈 j + 1| − | j〉〈 j|) , j = 1, . . . , n − 1

These operators are interpreted as atomic inversions between levels j + 1 and j.
This interpretation is convenient considering the ordering of our energy levels.
Obviously, there are n − 1 independent operators s j j+1

z . The projectors | j〉〈 j| are
expressed in terms of s j j+1

z as

s j j = | j〉〈 j| = 1
n

+ 2
j−1∑
k=1

sk k+1
z − 2

n

n−1∑
k=1

(
n − k

)
sk k+1
z (1.46)

Thus, the free Hamiltonian (1.44) in terms of the operators s
j j+1
z has the form

H0 = 2
n−1∑
k=1

sk k+1
z


Ek −

k∑
j=1

Ej


+ E (1.47)

where E is the ‘‘energy of the center of the spectrum’’, which is defined
as E = 1

n

∑n
j=1 Ej. The operators s

j j+1
z , s ij = |i〉〈 j|, j �= i, i, j = 1, . . . , n form the

n-dimensional representation of the su(n) algebra.
In the case of A identical atoms with n energy levels, the collective operators

S ij =
A∑

a=1

|a, i〉〈a, j|, i, j = 1, . . . , n (1.48)

are introduced where |a, i〉 is a state of the ath atom. The operators S ij obviously
satisfy commutation relations identical to those of the individual atomic operators
of Equation 1.45. Thus the problem is reduced to the construction of the irreducible
representations for the su(n) group.

If the atoms are identical (the Hamiltonian is invariant under permutations of
atoms), it is sufficient to consider only the symmetric representation. A useful
method for obtaining the matrix elements of operators acting in the space of this
representation of su(n) is the so-called Schwinger construction. Let us introduce
a set of auxiliary creation and annihilation operators satisfying the usual bosonic
commutation relations:[

bi, b†
j

]
= δij,

[
bi, bj

] =
[
b†

i , b†
j

]
= 0
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We may think of bi and b†
i as the creation and annihilation operators for the

excitation at the ith atomic level (i = 1, 2, . . . , n). In terms of bi and b†
j , the collective

atomic operators have the form

S ij = b†
j bi, i, j = 1, 2, . . . , n (1.49)

It is directly checked that these operators satisfy the commutation relations of the
u(n) algebra (1.45). The collective operators (1.49) act on the Hilbert space of n
harmonic oscillators with the basis

|k1, k2, . . . , kn〉 = |k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kn〉
such that

bi|k1, . . . , ki, . . . , kn〉 =
√

ki |k1, . . . , ki − 1, . . . , kn〉
It can easily be seen that the following operator commutes with all the operators of
the algebra:

Â =
n∑

j=1

S j j,
[
Â, S ij

]
= 0

The eigenvalue of this operator Â is just k1 + k2 + · · · + kn = A. Here, ki represents
the number of atoms at the ith energy level and A is the total number of atoms.
The free atomic Hamiltonian takes on the form

H0 =
n∑

i=1

EiS
ii =

n∑
i=1

Eib
†
i bi

The atomic inversion operators are now introduced as

S
ij
z = 1

2

(
S j j − Sii

)
= 1

2

(
b†

j bj − b†
i bi

)
and the transition operators S

ji
±, (j > i)

S
ij
+ = S ij = b†

j bi, S
ij
− =

(
S

ij
+
)† = S ji = b†

i bj

It is easy to find the matrix elements of the operators S ij
±, Using Equation 1.49

S ij
+|k1, . . . , ki, . . . , kj, . . . , kn〉=

√
ki(kj + 1)|k1, . . . , ki − 1, . . . , kj + 1, . . . , kn〉,

S
ij
−|k1, . . . , ki, . . . , kj, . . . , kn〉=

√
kj(ki + 1)|k1, . . . , ki + 1, . . . , kj − 1, . . . , kn〉,

S
ij
z |k1, . . . , ki, . . . , kj, . . . , kn〉= 1

2
(kj − ki)|k1, . . . , ki, . . . , kj, . . . , kn〉 (1.50)

The operators {S ij
z , S

ij
+, S

ij
−}i�=j span a representation of the su (n) algebra. Note that

the operators S
ij
z and S

ij
± form su (2) subalgebras:[

S
ij
z , S

ij
±
]

= ±S
ij
± (1.51)
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1.5.2
Systems with Three Energy Levels

Let us consider a particular case of systems with three energy levels. A pure state
is a superposition of bare states | j〉, j = 1, 2, 3,

|ψ〉 = cos ϑ1|1〉 + eiϕ1 sin ϑ1 cos ϑ2|2〉 + eiϕ2 sin ϑ2 sin ϑ1|3〉
where 0 ≤ ϕ1,2 ≤ 2π, 0 ≤ ϑ1,2 ≤ π/2. In terms of the diagonal projectors | j〉〈 j|,
the free Hamiltonian for a single atom has the form

H0 = E1|1〉〈1| + E2|2〉〈2| + E3|3〉〈3|
so that |1〉〈1| + |2〉〈2| + |3〉〈3| = I.

We suppose that the transitions in atomic systems only take place in the dipole
approximation, that is, there are no transitions between levelswith the same parity.
Thus, there are only three possible configurations for systems with three energy
levels: cascade (�), lambda (�), and (V) configurations. Enumerating energy levels
in such a way that E1 ≤ E2 ≤ E3, we see that the transitions allowed in the � system
are 1 ↔ 2 ↔ 3; in the � system, 1 ↔ 3 ↔ 2; and in the V system 3 ↔ 1 ↔ 2.
Inversion operators relevant to each physically different configuration can be
constructed without difficulty:

1. For the �-type system the inversion operators are defined as

s12
z = 1

2
(|2〉〈2| − |1〉〈1|) , s23

z = 1
2

(|3〉〈3| − |2〉〈2|)

and the free Hamiltonian takes on the form

H0 = 2

3
(E2 + E3 − 2E1) s12

z + 2

3
(2E3 − E1 − E2) s23

z + E (1.52)

Here, the energy of the center of a spectrum E is equal to

E = 1

3
(E1 + E2 + E3)

2. For the �-type system, the inversion operators are defined as

s13
z = 1

2
(|3〉〈3| − |1〉〈1|) , s23

z = 1

2
(|3〉〈3| − |2〉〈2|)

and the free Hamiltonian takes on the form

H0 = 2
3

(E2 + E3 − 2E1) s13
z + 2

3
(E1 + E3 − 2E2) s23

z + E (1.53)

3. For the V -type system the inversion operators are defined as

s12
z = 1

2
(|2〉〈2| − |1〉〈1|) , s13

z = 1

2
(|3〉〈3| − |1〉〈1|)

and the free Hamiltonian takes on the form

H0 = 2

3
(2E2 − E1 − E3) s12

z + 2

3
(2E3 − E1 − E2) s13

z + E (1.54)
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The transition operators in the system are given by Equations 1.7 and 1.45. Some of
the transitions are absent in the �, �, or V configurations. Explicitly, the transition
operators for these cases are

� : |2〉〈1|, |3〉〈2|, h.c.

� : |3〉〈1|, |3〉〈2|, h.c.

V : |2〉〈1|, |3〉〈1|, h.c

We can immediately write, using Equations 1.48, the operators describing a col-
lection of A indistinguishable atoms with three energy levels. There are still three
configurations, and appropriate operators are simply obtained by substituting
s

jk
z ↔ S

jk
z and E → AE. Then the atomic transition operators are

� : S12
± , S23

±

� : S13
± , S23

±

V : S12
± , S13

±

The matrix realization of each S
jk
z , S

jk
± for each configuration form a symmetric

irreducible representation of the su(3) algebra of the dimension (A + 1)(A + 2)/2.
The operators {S jk

z , S
jk
+ , S

jk
−} form the su(2) subalgebras (1.51) and all the S

jk
z

operators commute. All the other commutation relations and the matrix elements
of the collective operators in symmetric representations are easily obtained using
the Schwinger representation for the collective atomic operators.

1.6
Problems

1.1 Show that the Von Neumann entropy of a two-level system, defined as
S = −Tr(ρ log ρ) is a monotonous function of the purity of the atomic
state, P = Tr(ρ2) in the interval 1/2 ≤ P ≤ 1. Hint: prove that S = −λ1

log λ1 − λ2 log λ2, where λ1,2 = (1 ± √
2P − 1)/2.

1.2 For squeezed states in the case of two atoms, A = 2, find the state |ψ0〉 =
Us(µ0)|π/2, 0〉 and direction δ0 for which the fluctuation of the projection of
vector S is zero (i.e. |ψ0〉 is the eigenstate of the operator s(δ0)). Answer:

|ψ0〉 = 1

2


 1

−i
√

2
1


 , δ0 = 3π

4
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1.3 Prove that for squeezed states in the case of many atoms, A � 1 and |µ| 
 1,
the following approximation can be made for 〈∆s2(µ)〉 in Equation 1.27,

〈∆s2(µ)〉 ≈ A

4

(
1

4α2
+ 2

3
β2
)

where α = (A/2)µ and β = (A/2)µ2, and its minimum value,

〈∆s2(µ)〉min ≈ 1

2

(
A

6

)1/3

(1.55)

is achieved when

µ0 = 241/6

2

(
A

2

)−2/3

(1.56)


