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1
Wave–Particle Duality of the Neutron

1.1
Discovery of Matter Waves

The fundamental fact that every particle with mass is at the same time a wave was
discovered in 1925 by de Broglie [1]. He was honored with the award of the Nobel
Prize for Physics in 1929 for this discovery. We begin our study of neutron optics
with his proof of the matter wave following his Nobel lecture [2].

De Broglie was of the opinion that to solve the new serious question in physics
that arose around 1900, the unification of matter and radiation was necessary, and
more practically said that it should be possible to establish the equality of corpus-
cular motion and wave propagation. As the simplest case, he assumed a system
consisting of a corpuscle at rest and completely free from all outside influence, and
expressed the system as ıx0 y0z0. In the sense of Einstein’s relativity principle, we
can consider this system being the “intrinsic” system of the corpuscle. Since the
corpuscle is steady and at rest, the phase of the wave we are now considering must
be the same at every point; that is, it can be expressed in the form sin[2πν0(t0�τ0)],
where t0 is the intrinsic time for the corpuscle and τ0 is a constant.

As the next step, according to the principle of inertia, in every Galilean system we
can make the corpuscle have linear motion and constant velocity. Let us consider
such a Galilean system where the corpuscle has velocity v D �c. We will not lose
generality by taking the x-axis as the direction of motion. According to the Lorentz
transformation, the time t elapsing for the observer in this new system will be
related to the intrinsic time t0 defined above through the equation

t0 D
t � �x

cp
1� �2

, (1.1)

and therefore the phase of the wave for the present observer will be given by

sin

"
2π

ν0p
1� �2

�
t � �x

c
� τ0

�#
. (1.2)

Therefore, for the observer the wave will now have frequency

ν D ν0p
1� �2

, (1.3)
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2 1 Wave–Particle Duality of the Neutron

and will then propagate in the direction of the x-axis with phase velocity

V D c
�
D c2

v
. (1.4)

On the other hand, we can define the group velocity U for the wave as the velocity
corresponding to the resultant amplitude from a group with very similar frequen-
cies, and according to Rayleigh’s definition for this velocity, U D @ω/@k, where the
wave number k D 2πν/V , it satisfies the equation

1
U
D @

� ν
V

�
@ν

D 1
v

. (1.5)

In this way, we obtain the very important relation for the development of the
present theory that the group velocity for the waves in the system x y z t is equal to
the velocity of the corpuscle.

To achieve our purpose to establish the equality of the corpuscle and the wave,
we must combine the energy and the quantity of the motion. In the same way as
in the previous Galilean transformation,

Energy D h � frequency , or W D hν , (1.6)

where h is Planck’s constant. This relation reduces further according to the Einstein
relation to its internal energy m0c2 in the intrinsic system as

hν0 D m0c2 , (1.7)

where m0 is the rest mass. Since the quantity of movement, that is, the momen-
tum, p , has magnitude equal to m0v/

p
1 � �2, then

p D jp j D m0vp
1 � �2

D W v
c2
D hν

V
D h

λ
, (1.8)

where the quantity λ is defined as the distance between two consecutive peaks of
the wave (which corresponds to the phase velocity divided by the frequency), that
is, the wavelength. In this way, we obtain the very important relation

λ D h
p

. (1.9)

This is de Broglie’s fundamental formula.
De Broglie’s matter wave was experimentally verified in the first place by Davis-

son and Thomson with the discovery of the diffraction of electrons [3, 4], and they
were also awarded the Nobel Prize for Physics, in 1937. A few months after their
experiment, Kikuchi reported the characteristic pattern of electron diffraction ow-
ing to the effects of thermal diffuse scattering from crystals (the so-called Kikuchi
pattern) [5], and made an important contribution to the establishment of quantum
mechanics developed by Heisenberg [6].
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1.2 Proof of the Wave Nature of the Neutron 3

Pauli’s textbook of quantum mechanics [A] starts with the following description:
The last decisive turning point of quantum theory came with de Broglie’s hypothesis of
matter waves, Heisenberg’s discovery of matrix mechanics, and Schrödinger’s wave equa-
tion, the last establishing the relationship between the first two sets of ideas.1)

1.2
Proof of the Wave Nature of the Neutron

1.2.1
Bragg Reflection

Chadwick’s discovery of the neutron in 1932 [7, 8] soon motivated the experimental
verification of its wave nature. The approach is the same as that for the first proof
on the matter wave of the electron, where Bragg scattering was observed [3, 4], but
for the neutron, with a much larger mass and essentially no electric charge, it has
significant advantages in view of the energy condition and of the electromagnetic
effects in crystals. Actually, the wavelength calculated with Eq. (1.9) for neutrons
with energy corresponding to room temperature (so-called thermal neutrons) is of
the same order as the lattice spacing in most simple crystals, about 0.2 nm (1 nm D
10�9 m D 10 Å), and those neutrons that easily penetrate inside a crystal can be
scattered directly by nuclei in the crystal, resulting in obvious Bragg reflections. As
an example of such experiments, Mitchell and Powers [9] irradiated a single crystal
of MgO with the neutron beam extracted from a paraffin moderator in which a
Rn–Be neutron source was embedded, and they considered the contribution to
the counting rate due to Bragg scattering as proof of the existence of a coherent
component in nuclear scattering by the crystal nuclei.

However, the epoch-making event to initiate drastic developments of various
kinds of neutron experiments was the realization of the first nuclear chain reaction
in the reactor CP-1 conducted by Fermi in 1942. Furthermore, the first heavy water
reactor, CP-3 in 1944, opened the door to precise neutron experiments by using a
high-intensity neutron beam. Zinn [10] used the experimental devise shown in Fig-
ure 1.1a and reported for the first time a very clear distribution of Bragg-scattered
neutrons, as shown in Figure 1.1b.

Thermal neutrons extracted from a reentrant hole in the graphite thermal col-
umn of the heavy water reactor are well collimated through an iron collimater in
the reactor shielding and a couple of thick cadmium slits outside the shielding, and
illuminate the single crystal on a rotating sample table. The neutrons scattered by
the sample are registered by the BF3 proportional counter at the end of the precise-
ly rotating arm of a large mechanical device. The sample table and the counter arm
are driven exactly with a 1 W 2 angular ratio. The results obtained on the sample of

1) Schrödinger followed de Broglie’s idea of
matter waves in setting up his equation. Later
he proved the equivalence of his approach
and that of Heisenberg.
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4 1 Wave–Particle Duality of the Neutron

Figure 1.1 The first obvious measurement of Bragg-scattered
neutrons. (a) Experimental setup; (b) a typical rocking curve of
reflected neutrons measured on the (1,0,0) plane of a LiF crystal
(Zinn [10]).

a LiF single crystal are given in Figure 1.1b. The distribution indicated is shown
before the corrections for the detector efficiency and the energy resolution of the
setup, and therefore a slight asymmetry is noticed. The apparatus was also used for
measuring the energy distribution of incident thermal neutrons by replacing the
sample with a larger single crystal of calcite, as shown in Figure 1.1a.

Furthermore, the whole apparatus was moved to a beam hole inserted directly in
the reactor core, and was used for nuclear cross section measurements in a wider
energy range, including epithermal neutrons.2)

Such neutron experiments, a typical setup for which is shown in Figure 1.1,
proved that the diffraction experiment is possible using a device and setup quite
similar to those for X-rays. However, in contrast to X-rays scattered mainly by atom-
ic electrons, neutrons are mainly scattered or absorbed by the nucleus, and there-
fore quite different materials are utilized for radiation shielding for neutrons.

After these initial developments, neutron spectroscopy experiments made great
progress, and nowadays various kinds of neutron spectrometers are used in ex-
periments applied to a wide variety of samples, including crystalline solids, alloys,

2) Those neutrons with energy higher than the
room temperature Maxwellian distribution
but lower than the resonance region for
nuclear reactions; that is, the energy region
of about 0.1–1 eV.
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1.2 Proof of the Wave Nature of the Neutron 5

complicated compounds, polymers, and biological material. Typical cases of these
applications will be given in the last two chapters.

Among these spectroscopies, the method based on Bragg scattering with crystals
called crystal spectrometry is one of the most popular and important approaches.
The relation for the spectroscopic resolution can be derived from the well-known
Bragg law on the neutron wavelength λ of Bragg scattering for lattice spacing d and
neutron incident angle θ of the crystal:

nλ D 2d sin θ , or τ D 2k sin θ , (1.10)

where τ D 2πn/d, k D 2π/λ, and n is an integer. Differentiation of both sides of
the logarithm of Eq. (1.10) and the expression for the neutron energy E,

E D „
2

2m
k2 D „

2

2m

�
2π
λ

�2

, (1.11)

lead to

ΔE/E Š 2Δ k/ k Š 2[(Δτ/τ)hk l C cot θ Δθ ] , (1.12)

where τhk l is the magnitude of the reciprocal lattice vector with Miller indices hk l for
a three-dimensional crystal, and Δθ is the beam divergence.

This equation indicates that the highest energy resolution can be obtained by
employing a Bragg angle of θ D π/2. A novel technique based on the present
principle was developed as backscattering spectrometry [11] for neutron scattering
experiments with very fine energy resolution.

1.2.2
Refractive Index and Total Reflection

At the same time as these experimental developments, construction of an optical
theory for neutrons was also carried out by taking into account the nuclear scat-
tering, which has very different characteristics from scattering of X-rays. For the
analysis of neutron optics, we must first describe the matter waves with the wave-
length and the frequency given by de Broglie’s fundamental formula (Eq. (1.9)) as a
function of variables for practical situations. The wave function required to describe
the matter wave and the related general fundamental equation in wave mechanics
had already been by Schrödinger in 1926. Furthermore, in 1936 Fermi presented
the simplest and most effective expression for the nuclear scattering potential to
be inserted in the Schrödinger equation to obtain a solution [12, 13], the so-called
Fermi pseudopotential, written in the form

V(r) D 4π
X

j

b j δ(r � r j ) , (1.13)

where b j and r j denote the scattering amplitude3) and the position, respectively, of
the jth nucleus.

3) In many textbooks it is called the scattering
length, but here we denote it the scattering
amplitude.
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6 1 Wave–Particle Duality of the Neutron

Starting from these fundamental arrangements, Foldy [14], Goldberger and
Seits [15], and Lax [16] analyzed the interference phenomenon for neutrons under
multiple scattering in media, then the preliminary theory of neutron optics was
established. The details of the theory will not be discussed here since many stan-
dard textbooks on neutron scattering (e.g., [D]–[E]) have already been published,
and here only one of the useful formulas will be given for the index of neutron
refraction n, and derived by Goldberger and Seits [15] in the case of sufficiently
weak absorption and without the effects of neutron spin:

1 � n2 D ˙N(4πσ s)
1
2

k2 . (1.14)

In Eq. (1.14), N is the atomic density, σ s the coherent scattering cross section,
k the wave number of neutrons without the medium. To determine whether the
right side should be positive or negative, information about the scattering nucle-
us, that is, the definition of the sign of the coherent scattering amplitude (coherent
scattering length) becomes necessary. Foldy [14] carried out general analyses includ-
ing randomly distributed scatterers, and Lax [16] discussed the effects of incoherent
scattering and of possible anisotropy in the scattering amplitude.

According to Eq. (1.14), total reflection of neutrons will happen if we select the
grazing angle θ between the incident neutrons and the surface of the medium with
the positive sign on the right side such as to satisfy the condition

sin2 θ � sin2 θc D 1 � n2 . (1.15)

In other words, whether total reflection from any material happens or does not
happen for incident neutrons in a vacuum (or in atmospheric air) and, further,
what the critical angle for total reflection θc is should give us information about the
sign to be selected and the magnitude of the scattering amplitude jbj D (σ s/4π)1/2

on the right side of Eq. (1.14) for the element in the material.
Fermi and Marshall [17] modified the experimental setup shown in Figure 1.1 to

the arrangement shown in Figure 1.2, where a monochromatic neutron beam with
a wavelength of 0.1873 nm Bragg-reflected by the first crystal was incident on the
front surface of a solid sample on the second turntable with a very small grazing
angle.

The second turntable was provided with a detector arm, and the detector count
rates were registered with precise alteration of the detector angle. Such a set of
measurements was repeated for fine stepwise increments of the incidence angle
to the sample, and clearly indicated the ending of total reflection with a sudden
decrease of the reflected intensity. Thus, they obtained the values of the critical
angle for total reflection on specimens of beryllium, graphite, iron, nickel, zinc,
and others in the angular range of 7–12 minutes with the accuracy of about a tenth
of a minute.

According to the present definition, the refractive index formula (1.14) and the
total reflection formula (1.15) are reduced, respectively, to

n2 D 1 � N bcohλ2

π
(1.16)
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1.2 Proof of the Wave Nature of the Neutron 7

Figure 1.2 Arrangement of the total reflection experiment with a
monochromatic neutron beam (Fermi and Marshall [17]).

and

sin2 θ � sin2 θc D N bcohλ2

π
. (1.17)

Furthermore, the refractive index can be expressed in a more generalized form
as

n2 D 1� U
E

, (1.18)

where U is the optical potential for the medium, given by

U D „
2

2m
4πN bcoh . (1.19)

Lax [16], who extended the approach of Foldy [14] to the case of an anisotropic
scattering amplitude, showed that the coherent scattering amplitude appearing in
the total reflection formula (1.17) corresponds to the amplitude for forward scatter-
ing, that is, bcoh(a  a). Since this is a recoilless process, the value of the ampli-
tude should not depend on the states of chemical binding. Nevertheless, it should
take the value for the bound atom scattering amplitude (scattering length), that is, the
magnitude bcoh D acoh(AC 1)/A, where the reduced mass factor (AC 1)/A is a mul-
tiplication factor for an atom with mass number A bound to an infinite mass and
acoh is the amplitude of an isolated free atom.

Hughes, Burgy, and Ringo [18] proved the applicability of the total reflection for-
mula (1.17) also for liquids; the details of their experiment are given in Section 2.1.

Furthermore, McReynolds [19] examined experimentally the applicability of the
formula to samples in the gaseous state where atoms or molecules are distribute
far apart from each other and are independently in free motion. The experiments
were carried out at Oak Ridge and Brookhaven research reactors making use of the
setup shown in Figure 1.3a. The observed total reflection intensity from the gas–
liquid interface could be related to the criticality condition given by the difference
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8 1 Wave–Particle Duality of the Neutron

Figure 1.3 Neutron total reflection from a high-pressure gas
and liquid interface: (a) experimental apparatus and (b) inten-
sity of the neutron beam reflected from a surface of ethylene
glycol at an angle of 3 minutes as a function of the surrounding
gas pressure (McReynolds [19]).

between the right sides of Eq. (1.17) for the gas and the liquid, respectively. In
the present experimental condition with the energy spectrum proportional to the
neutron energy E, the square root of the reflected intensity I is expected to show a
pressure dependence as

�
I
I0

� 1
2

D Ec12(P )
Ec1

D N1bcoh1 � N2bcoh2

N1bcoh1
D 1� P

P0
, (1.20)

where the subscripts 1 and 2 denote liquid and gaseous samples, respectively. Fur-
ther, Ec12(P ) and Ec1 represent the neutron energies satisfying the critical condition
for the total reflection from the gas–liquid interface at sample pressures P and 0, re-
spectively, whereas at pressure P0 the refractive index for the gas becomes same as
that for the liquid, and then the reflected intensity disappears. The experimental
results shown in Figure 1.3b indicate the variation just as expected from Eq. (1.20).

1.2.3
Fraunhofer Diffraction

In addition to the diffraction experiments on crystal lattices and the total reflection
experiments mentioned above, typical verification of the wave nature of neutrons
is also possible with interference experiments using a Fresnel biprism or Young’s
double slit applied to neutrons. The former type of experiment was proposed and
performed by Maier-Leibnitz and Springer at the FRM reactor, Technical Univer-
sity of Munich [20]. Their experimental results indicated an obvious interference
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1.2 Proof of the Wave Nature of the Neutron 9

pattern, which corresponded as a whole with their theoretical curves, but there re-
mained locally some delicate disagreements which could be considered to indicate
the difficulty of using a biprism interferometer for neutrons [21, 22].

The first trial of the slit interference experiments was carried out by Shull as a
single-slit interference experiment [23]. In such a single-slit interference experiment,
if the slit width is much smaller than the distance L between the beam source and
the slit, and the distance L0 between the slit and the observation point (i.e., the con-
dition a/2L C a/2L0 � λ/a is satisfied for the neutron wavelength λ used in the
experiment), then the interference pattern will reduce to the so-called Fraunhofer
diffraction in which the curvature of the wave front can be neglected, and the in-
tensity distribution I(θ ) at the diffraction angle θ should be given by the equation
I(θ ) D I0(sin �/�)2, where � D (πa/λ) sin θ . Shull employed a neutron wave-
length of 0.443 nm and a slit width of about 4–21 μm, and observed the apparent
broadening of the diffraction peak, in good agreement with the calculated result of
the Fraunhofer diffraction width. His result indicated that the wave front of neu-
trons entering the slit has coherency over a width of at least 20 μm in the direction
transverse to the propagation direction of the neutron waves.

A more distinct slit interference for neutrons could be verified in the double-
slit interference experiment corresponding to Young’s optical experiment (1801).
Zeilinger et al. [24] performed a precise double-slit interference experiment by
making use of a beam of very cold neutrons extracted from the high-flux research
reactor at the Institut Laue–Langevin, Grenoble, and with them being monochro-
matized to a wavelength of about 2 nm through a prism. The experimental result
was compared with the numerical calculation simulating exactly the experimental
procedure according to elementary wave mechanics. The width of slit S1 in Fig-
ure 1.4a used in the experiment was carefully adjusted according to the neutron
wavelength in the experiment, whereas the width of slit S2 and that of the incident
slit S3 and the scanning slit S4 were fixed at 100 and 20 μm, respectively. The object
slit S5 is a double slit consisting of two open channels with a width of about 22 μm
each separated by a shielded part of boron wire with a width of about 104 μm as
a neutron absorber, so that neutrons transmitted through slit S5 are spatially split
into two optical paths. Neutrons with a wavelength 1.845˙ 0.142 nm were used in
the experiment.

It will be instructive for understanding the neutron optics in the present exper-
iment to explain some details of their simulated calculation to obtain the double-
slit interference. It starts from the Huygens principle (1690). Considering the ver-
tical symmetry of the arrangement shown in Figure 1.4a, we can employ a two-
dimensional structure in which the wave distribution at an arbitrary point in the
object slit S5 will be constructed by the interference with the phase distribution due
to the products of the wave number and the optical path length for every point in
the incident slit. On the other hand, the possible difference in the attenuation effect
due to the optical path length difference can be neglected when considering the sta-
tistical accuracy of the experimental result because of the much smaller value for
the slit width to the path length ratio. The wave propagation from the object slit
to the detector slit can also be considered in a similar way. Therefore, the intensity
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10 1 Wave–Particle Duality of the Neutron

Figure 1.4 Double-slit neutron interference experiment. (a)
Experimental arrangement (not to scale) and (b) experimental
result compared with the theoretical calculation of the double-
slit interference pattern (Zeilinger et al. [24]).

distribution I at an observation point P in the detector can be expressed by

I /
•
jU(P )j2w (λ)w (δ#)dλd(δ#)dS4 , (1.21)

where the amplitude U(P ) at point P is given by

U(P ) /
“

f (δ#)e i k(rCs)dS3dS5 , (1.22)

k is the neutron wave number, r and s are the optical path lengths in the diffraction
plane from the incident point to a point in the object slit and from there to the
detection point, respectively, and w (λ), w (δθ ), and f (δ#) are the wavelength and
angular distributions of incident neutrons, and the factor to take into consideration
the relative phase at an incident point induced by the incident wave in the angle δ# ,
respectively.

Equation (1.22) giving the amplitude U(P ) produced at point P by an incident
plane wave is the integration as a coherent superposition, whereas Eq. (1.21), in-
tegrating over the incident wavelength and angular distributions, is simply the in-
tensity integral as an incoherent superposition. The result of the present numerical
calculation considering the slight asymmetry in two slit widths based on the actu-
ally observed result from optical microscopy shows very good agreement with the
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1.2 Proof of the Wave Nature of the Neutron 11

Figure 1.5 Split-lens interferometer configuration for neutrons:
(a) principle of an overlapping split-zone plate working as a
lens giving a constant fringe spacing; (b) split-lens geometrical
pattern as a cylindrical zone plate preferable to a pinhole source
for photomicrolithography; and (c) experimental interference
pattern for a Cu zone plate fitted to the theoretical pattern for a
zone thickness of 1.3 μm (Klein et al. [25]).

experimental result in Figure 1.4b, and the slit widths derived from the calculation
gave values near those of the microscopy results. However, from the single-slit ex-
periment carried out in a similar way with a slit width of about 95 μm, the slit width
that gave the best fit was about 5% larger in comparison with the the microscopy
result and the mechanical measurement with spacers, and this disagreement could
not be explained well [24].

1.2.4
Fresnel Diffraction

All the slit interferences mentioned above are phenomena belonging the Fraun-
hofer diffraction; therefore, at the end of this section a few examples will be given
for Fresnel diffraction, where the curvature of the wave front plays an important role
in the interference. For the diffracting elements in such an experiment, a crystal
restricts the neutron wavelength to below the Bragg cutoff, and a prism is also not
preferable to focus on a short distance in the case of neutrons with a refractive in-
dex n very near unity (jn � 1j � 10�4 for a wavelength of 2 nm). Therefore, Klein
et al. [25] employed a Fresnel zone plate and verified its applicability as an approach
for the Fresnel diffraction of cold neutrons with a wavelength of 0.5–2 nm and very
cold neutrons with a wavelength of about 2–30 nm.

In the split-lens interferometer configuration shown in Figure 1.5a, two kinds of
zone plates, the central parts of where are overlapping, diffract the waves from the
primary source S inward, and as the result is a fringe with a constant spacing in



�

� Masahiko Utsuro and Vladimir K. Ignatovich: Neutron Optics —
Chap. ignatovich8856c01 — 2009/11/26 — 15:17 — page 12 — le-tex

�

�

�

�

�

�

12 1 Wave–Particle Duality of the Neutron

the region where the wave fronts overlap. They employed refractive zone plates to
produce fringes with a phase shift due to the refractive index according to Eqs. (1.14)–
(1.17), instead of ordinary absorption zone plates, for higher luminosity and appli-
cability for neutrons with a refractive index very near unity. Further, they used the
cylindrical zone plates illustrated in Figure 1.5b, which are preferable to a pinhole
primary source as in the case of a narrow slit to be arranged in a neutron facility.
They prepared such zone plates by means of photomicrolithographic techniques
with UV light photography from the geometric patterns illustrated in Figure 1.5b,
and then photoresists masked the electrolytic deposition. The required thickness
D(λ/2) for the wavelength λ to give a phase shift of 180ı , that is, λ/2, can be esti-
mated as

D
�

λ
2

�
D λ

2(1 � n)
Š π

N bcohλ
, (1.23)

from which they used D(λ/2) D 2.4 μm for copper at a wavelength of 2 nm. One of
the experimental results of the interference experiments with such split-zone plates of
electrodeposited copper carried out at the Grenoble high-flux reactor is shown in
Figure 1.5c. The experimental fringe spacing δ agreed well with the theoretically
estimated value of 51.8 μm from the equation

δ D λ[ f� � r(� � f )]
�d

, (1.24)

where the experimental wavelength λ D 1.93 ˙ 0.05 nm, and f, �, and r are the
focal length, the distances from the lens to the source, and the distance to the
plane of detection, respectively, all being 5 m. Further detailed theoretical calcula-
tions indicated that the interference pattern corresponded to a copper thickness of
1.3 μm in the zone plates. This experiment verified the technical advantages of the
interference experiments with split-zone plates, whereas the close spacing of the
interfering beams would restrict the application of the method.

On the other hand, Steyerl et al. analyzed three-dimensional focusing with con-
structive interference of long-wavelength neutrons and designed an achromatic
concave Fresnel zone mirror for ultracold neutrons [26]. The image formation exper-
iment was carried out on such a circular zone ring mirror electrodeposited on an
aspherical concave substrate with 60–80 nm ultracold neutrons at the inclined and
highly curved guide facility PN5 of the Grenoble reactor. The experimental result
agreed with the theoretical expectation at a magnification of 5 within the statistical
error [27].

As mentioned above, the phenomenon of de Broglie matter waves of neutrons
without consideration of the spin is considered to be precisely described by the
law of scalar optics, where the amplitude and the phase of waves are exactly and
uniquely decided by the position and the time.

However, a further advanced question that will arise quite naturally is if once
split waves as considered in this section are superposed again at some position,
how great a shift in the space or in the time is allowed to maintain the coherence
of the waves. Such kinds of studies on the coherence of waves will be presented in
the next section and in later chapters.
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1.3 Coherence of Waves 13

In addition to Bragg scattering and slit interferences or zone mirrors used in the
historical experiments which verified the wave nature of neutrons, various types
of neutron interferometers, such as Mach–Zehnder, Fabry–Pérot, and Jamin types,
were also developed. These studies will also be introduced and discussed in Chap-
ter 9. In Chapters 2 and 6, neutron optical experiments in various structures and
systems will be described. As the neutron has spin, in some kinds of experiments
the spin must be taken into consideration as a new variable, and such experiments
relating to the neutron spin will be mainly discussed in Chapter 3 after a short
preliminary study in the last section of this chapter.

1.3
Coherence of Waves

1.3.1
Coherence Lengths

In the theoretical calculation (Figure 1.4b) of Zeilinger et al. described in the pre-
vious section with the exact wave mechanical simulation of the double-slit interfer-
ence [24], the integrals (1.21) and (1.22) were classified as the coherent superposition,
Eq. (1.22), and the incoherent intensity integral, Eq. (1.21), over the wave components
propagating downstream from each incident point. This classification was decided
on depending on whether a certain correlation exists or does not exist between the
phases of different partial waves, as the former belongs to the case without any ac-
companying random phase shift, whereas the latter belongs to the case with some
accompanying random phase shifts. Since there is currently no coherent primary
source for neutrons realized as there is laser light sources, superposition of waves
for a couple of free neutrons should also belong to the latter case.

Since the monochromatization of incident neutrons in the experiment of
Zeilinger et al. was performed with the combination of fine slits and a prism
at a position sufficiently far from the primary source as shown in Figure 1.4a,
the coherent superposition could be well approximated by the optical path inte-
gral, Eq. (1.22), of monochromatic plane partial waves owing to the prism having
a different refraction angle for different wavelengths. In contrast, in the case of
monochromatization with Bragg scattering, the correct relation between the wave
components with different wavelengths and their coherence could not be repre-
sented so simply, but both of the quality of the monochromator crystal and the
experimental setup must be taken into consideration.

For example, in the monochromatization setup for neutron scattering, a mosaic
crystal which consists of a number of microcrystals with slightly different orienta-
tions is often used to obtain the optimum beam intensity by reflecting a rather
wide wavelength range and over wide angular regions. Pyrolytic graphite is one
such imperfect crystal that is nearly ideal for broad-angle monochromatization [28].
A recent study on pyrolytic graphite reported, in addition to such mosaicity, a
distribution width in the lattice spacing, which induces additional broadening in



�

� Masahiko Utsuro and Vladimir K. Ignatovich: Neutron Optics —
Chap. ignatovich8856c01 — 2009/11/26 — 15:17 — page 14 — le-tex

�

�

�

�

�

�

14 1 Wave–Particle Duality of the Neutron

the Bragg-scattered wavelength width [29]. When such a component is used in
a neutron optics experiment such as interferometry, the wave phenomena can-
not simply be represented by Eqs. (1.21) and (1.22) as the coherent superposi-
tion of monochromatic plane waves and the intensity integral over the wavelength
and angular distributions, but the coherent superposition of partial waves over
the reflected wavelength width, characteristic of the mosaic crystal, must be per-
formed [30]. Further, the two Gaussian distributions of the incident neutrons ob-
served in the interferometry experiment could be reduced to being caused by the
two Gaussian distributions in the lattice spacing recently clarified for pyrolytic
graphite [31].

As explained in the previous section on the double-slit experiment of Zeilinger
et al. [24], the wave distributions were formed by the interference of partial waves
with the phase difference due to the products of the wave number and optical path
lengths from every incident point in the entrance slit. Then, it would be an interest-
ing question to ask whether the coherence of waves holds or does not hold between
the optical path lengths with a much larger difference, or in other words to ask how
big is the path length difference or the time difference when the coherence finally
disappears. Such a physical quantity expressing the maintenance of coherence in
terms of spatial length is called the coherence length.

When we consider any experimental scheme to investigate the coherence length
of a neutron, we must the first decide on whether on the incident neutrons for
our device are sufficiently well approximated by monochromatic plane waves or
whether they are have a wavelength distribution with a finite width. According to
the principle of the Fourier integral, coherent superposition of plane waves over a
finite wavelength width gives the resultant waves with a finite spatial broadening.
A quite similar relation will also hold in time. Such waves localized in space or in
time are called a wave packet. Therefore, the problem of how great is the coherence
length is considered to be tightly related to the situation of how sharply the wave-
length distribution is concentrated around the central value, or in other words how
widely the wave packet is distributed in space and time.

However, a classical problem will arise that the propagation of waves composed
of such a wavelength distribution, that is, the velocity distribution, with a finite
width should be accompanied by an obvious dispersion of waves propagating to
distant places. To get rid of such a dispersion, other concepts are possible in wave
mechanics. One of the possible starting points is the thought that the wavelength
distribution of a wave packet is the probabilistic concept of a neutron being sus-
tained during propagation in space and time, and we observe the result of such
probabilistic distributions. Experimental studies on such kinds of probabilistic con-
cepts will be reported in the first section in Chapter 9. Another possible concept is a
kind of singular wave packet inherently involving some physical structure persist-
ing against the dispersion with the wavelength distribution. Such a singular wave
packet will be studied in the last section in Chapter 9.

Therefore, here we do not go into detail on the problem of coherence and the
concepts on the wave packet for a neutron, and we will study them in detail in
Chapter 9.
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1.3 Coherence of Waves 15

1.3.2
Pendellösung Interference

Now, we introduce one of the early experiments estimating the coherence length of
neutrons. Shull [32] carried out a very high precision experiment at Brookhaven
National Laboratory with a neutron wavelength width of 0.0072 Å as shown in Fig-
ure 1.6a. This consisted of a thin silicon single crystal cut perpendicularly to the
(111) reflection planes and fine entrance and exit slits with a width of 0.13 mm on
each side of the crystal. The entrance side was illuminated with neutrons at inci-
dent angle θ very near the Bragg angle θB . This is the well-known setup of X-rays
referred to as the Pendellösung interference experiment.

In this kind of symmetry Laue diffraction (refer to Section 6.1), the momentum
component parallel to the reflecting lattice planes of incident neutrons is conserved
during the propagation, whereas the perpendicular component experiences a num-
ber of Bragg reflections. As a result of the regular lattice effect and the potential
effect of the crystal as a whole, with the refractive index given by Eqs. (1.14)–(1.17),
and in the case of the incident angle θ with a very slight deviation from the Bragg
angle θB , that is, at a very small deviation δθ D θ � θB , the waves in the crys-
tal become two split components with slightly different propagating velocities and
are transported in two symmetrical directions with a small angle ˙� to the Bragg
angle. The transportation angle � and the intensity I can be described by the equa-
tions ([32]; textbook [D] p. 431; textbook [I] Chapter 6, Section 6.3; [33] Chapter 6,
Section 6.3; [34] pp. 201–202)

γ D tan �

tan θB
D Δδθ /2dp

1C (Δδθ /2d)2
, (1.25)

I(γ ) Š (1� γ 2)�1/2 sin2
�

π
4
C π t

Δ
(1� γ 2)1/2

�
, (1.26)

where d is the lattice spacing in the crystal, t is the crystal thickness, Δ D
π cos θ /N bFhk lλ, N is the number of unit cells per unit volume, b is the scat-
tering amplitude of the nucleus, and Fhk l is the crystal structure factor per unit cell
contributing the reflection with the Miller indices hk l .

In Eq. (1.25), we can see that at the exact Bragg incident angle, becoming˙� D 0,
the perpendicular components constitute standing waves, and therefore the waves
are transported in parallel to the Bragg reflection planes. However, in all cases two
split waves after being propagated through the crystal with slightly different veloc-
ities emerge from the exit surface of the crystal, thus a certain phase difference in
proportion to the crystal thickness results between these two components. For a
sufficiently narrow entrance slit, waves after the entrance slit extend over a wide
angle, then the phenomena mentioned above spread widely inside the crystal and
thus the Pendellösung interference due to the split-wave interference is observed.
Figure 1.6b indicates such results of the Pendellösung interference for three differ-
ent values of crystal thickness observed at the center of the exit surface of the crystal



�

� Masahiko Utsuro and Vladimir K. Ignatovich: Neutron Optics —
Chap. ignatovich8856c01 — 2009/11/26 — 15:17 — page 16 — le-tex

�

�

�

�

�

�

16 1 Wave–Particle Duality of the Neutron

Figure 1.6 Pendellösung interference for neutrons. (a) The
experimental setup; (b) fringe development at the center of
the Bragg reflection as the wavelength increase for the crystal
with the thickness; (i) 1.0000 cm,(ii) 0.5939 cm, (iii) 0.3315 cm
(Shull [32]).

on minutely varying the incident neutron wavelength. From the order number of
the interference fringes shown in Figure 1.6b, sufficiently high contrast is observed
beyond 55th order. After the correction of the finite experimental resolution, the
loss of contrast becomes of the order of 2% or even less, and thus the coherence
length of neutrons in the present experiment was estimated to be larger than 2750λ,
or 0.3 μm.

Further, interference variations induced by more effective and different kinds
of phase shifts are observed for neutron waves by making use of various kinds of
neutron interferometers, and the results will be described in Chapter 9.

1.4
Corpuscular Properties of the Neutron

1.4.1
Time-of-Flight Analysis

As early as a few years after the discovery of the neutron by Chadwick in 1932,
it was experimentally assured that this neutral particle with mass much greater
than that of the electron could be slowed down to the room temperature energy
region by scattering by nuclei. For example, Dunning et al. [35] measured the
time of flight of the neutrons emerging from the surface of a cylindrical paraf-
fin block 16 cm in diameter and 22 cm long, in the center of which a 600 mCi
Rn–Be neutron source was embedded. For the measurement they used the trans-
mission through a couple of rotating absorber discs with slits. The two discs,
each having a slit with an opening angle of 3.7ı and provided with a similar
fixed disc, were 54 cm apart and connected to each other with a lag angle of 3.5ı.
The device thus works as a mechanical velocity selector for neutrons in which neu-
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1.4 Corpuscular Properties of the Neutron 17

trons with a velocity corresponding to the rotation speed are able to pass through
the device. The count rates plotted against rotation speed agreed well with the
Maxwellian distribution, having the maximum intensity at a neutron speed of
about 2300 m/s.

The flight velocity of neutrons thus measured represents the particle motion of
the neutrons, and at the same time it corresponds to the group velocity in the
wave mechanics as mentioned in Section 1.1. The wavelength given by Eq. (1.9) for
neutrons with energy corresponding to room temperature is on the order of inter-
atomic distances, indicating possible applicability of these neutrons to spectroscopy
experiments for material physics, but the neutron intensity as well as the energy
resolution of the experimental arrangement of Dunning et al. were not sufficiently
high for such applications. The precise time-of-flight spectroscopy for neutrons was
carried out first by Alvarez, as shown in Figure 1.7a, by making use of a cyclotron
to accelerate deuterons to be injected into a beryllium target and the neutrons pro-

Figure 1.7 Time-of-flight spectroscopy experiment with time-
modulated operation of a cyclotron; (a) Plan of cyclotron room;
(b) Boron absorption variation with timing scheme, abscissa;
absorver thickness, ordinate; transmitted neutron intensity
(normalized), i: continuous measurement, ii–vi: delay time
increased by about 1/240 s per step. (Alvarez [36]).
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18 1 Wave–Particle Duality of the Neutron

duced were moderated in a paraffin block. For the velocity analysis of moderated
neutrons, he used the electrical velocity selection method with time-modulated opera-
tion for deuteron acceleration and synchronized control of the neutron measuring
system [36].

There were several severe tasks and difficulties in the controlled operation of
the cyclotron beyond 100 Hz to achieve thermal neutron spectroscopy, but final-
ly the energy selection of neutrons around 300–10 K could be well achieved with
the modulated operation at 120 Hz. From the measurements of the transmission
ratio of such velocity-selected neutrons, the 1/v law, v being the neutron veloc-
ity, on the absorption cross section of boron was confirmed, as shown in Fig-
ure 1.7b.

The performance of the 1.5 m cyclotron used in the neutron experiment at Berke-
ley, the University of California, gave a deuteron energy of 8 MeV, a deuteron cur-
rent of 50–60 μA in the steady-state operation, and 5–10 μA in the modulated oper-
ation at 60 Hz.

Later, in 1940, Baker and Bacher reported a time-of-flight experiment similar to
the Alvarez one but with a much higher repetition frequency, that is, a period of
2500 μs, a neutron burst width of 50–100 μs, and a modulation time accuracy of
5 μs [37]. In the same year, Alvarez et al. carried out a magnetic resonance ex-
periment for neutrons with the steady-state operation of the cyclotron; this will be
described in the next section.

I would like to insert a short description of the activities in Japan during similar
periods. Kikuchi et al. constructed a cyclotron with an accelerated deuteron ener-
gy of 4.2 MeV in the central Osaka campus opened in 1932, of Osaka University,
and started nuclear physics studies with it. However, the outbreak of the Second
World War unfortunately disturbed and finally interrupted the continuation of the
research in the 1940s. Independently, at the Science and Chemistry Institute in
eastern Japan, Nishina constructed a 1.5 m cyclotron in 1943 for nuclear physics
studies. At Kyoto University, the construction of a cyclotron was started. All these
experimental activities in nuclear and neutron physics in Japan were stopped at
the end of the Second World War owing to the destructions of the facilities by the
occupation forces. Thereafter, experimental neutron research in Japan recovered,
accompanied by the development of research reactors and high-intensity accelera-
tors after the 1960s.

Experimental research on neutrons after the 1950s progressed remarkably by
making use of research reactors developed in the United States and in Europe. Fur-
ther, after the 1970s, with the construction of high-flux reactors, various kinds of
advanced neutron spectroscopies were proposed and practically applied to neutron
optics and condensed matter studies. Furthermore, the successful developments
of high-intensity accelerator sources in Europe and the United States promoted
pulsed neutron experiments as a competitive approach to continuous beam experi-
ments. Nowadays, the most intense pulsed neutron sources are constructed in the
United States and in Japan and are starting their operations. Some of the wide va-
riety of neutron optics and spectroscopy developments as well as their applications
will be introduced in the following parts of this book.
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1.4 Corpuscular Properties of the Neutron 19

1.4.2
From a Particle to a Wave

One of the very interesting investigations in Munich relating to the particle motion
of neutrons reflected by a mirror will be described here. If the reader has some
difficulty in understanding well the explanations, the information given in the next
chapter will help gain a better understanding.

To understand deeply the wave–particle duality in the phenomenon of neutron
reflection on a mirror, Felber et al. undertook a comparison between the results of
the classical mechanical analysis on the reflection of a particle beam and of the quantum
mechanical analysis on the reflection of matter waves, and studied the possible transi-
tion from the former to the latter under the developments of temporal and energy
conditions in the reflection [38]. Practically, they considered the reflection of very
cold neutrons with a wavelength of 2.4 nm on a surface vibrating at high frequency,
and compared the theoretical analyses with the experimental results carried out at
the Munich and at the Geesthacht research reactors. They succeeded in indicat-
ing the transition of the time-dependent reflection phenomenon from classical to
quantum mechanical according to the developments of frequency and amplitude
parameters with the surface vibration.

The vibrating mirror surface is represented by a step potential with height Vp

under one-dimensional motion with amplitude a p and angular velocity ω p . The
collimated neutrons with energy E0 (the wave number k0, velocity v0) experiencing
such a potential can be classified according to the values for three parameters α D
2k0 a p , � D Vp /E0, and γ D a p ω p /v0.

In the framework of the classical description, the neutron trajectory should be
calculated iteratively by solving the equation of motion successively after every col-
lision, but the neutron velocity change due to the collision necessary to obtain the
neutron flux is given in an implicit form; therefore, the solution can only be found
numerically.

In the framework of the quantum description, on the other hand, it is enough to
introduce the step potential in the time-dependent Schrödinger equation, but our
case is essentially different from the usual cases given in many textbooks, since
our potential is time-dependent. Felber et al. therefore started with the expansion of
the wave function into the partial waves with the number of transferred phonons
n, and then investigated the behavior of the analytical solutions for the particle
waves in the extreme cases for the parameters (small amplitude; α � 1, or quasi-
stationary; γ � 1) and further were able to calculate the approximate solutions for
other general cases up to the order of the expansion jnmaxj D N Š 2α to satisfy
the required accuracy.

The results of these calculations are shown in Figures 1.8 and 1.9. From Fig-
ure 1.8a and b, we understand the quantum effects become significant for α < 10,
whereas for α � 10 the results approach those of classical mechanics. Further,
in Figure 1.8c, we recognize many black bars for the quantum reflections in the
region where no reflections are expected in classical mechanics, that is, no black
continuous spectrum is shown. Therefore, all of these reflections in E 0 < 0.5 in



�

� Masahiko Utsuro and Vladimir K. Ignatovich: Neutron Optics —
Chap. ignatovich8856c01 — 2009/11/26 — 15:17 — page 20 — le-tex

�

�

�

�

�

�

20 1 Wave–Particle Duality of the Neutron

Figure 1.8 Comparison between the calculat-
ed results on a particle beam and on matter
waves: (a) and (b) the case of the parameter
value for � D 10, and the value for α var-
ied (classical; gray patterns, quantum; black
bars); (c) reflected and transmitted distribu-

tions for α D 15.0, � D 0.5, γ D 0.1875
(classical; black pattern, actually no results
for this parameter value, quantum; black bars,
the gray region indicates the potential height)
(Felber et al. [38]).

Figure 1.8c indicate quantum particle reflections. The comparison with their exper-
iments are shown in Figure 1.9, where Figure 1.9a shows the experimental setup
of the reflection experiment with the vibrating mirror.

Since the neutron velocity component parallel to the mirror surface v0k is con-
served, the situation can be reduced to a one-dimensional problem in which the
previous parameter values are replaced by the corresponding relations for the per-
pendicular component vr?. Thus, the energy and the velocity changes of neutrons
reflected by the vibrating mirror described in Figure 1.8 are equal to the changes of
the perpendicular components Er? and vr?, respectively, and the resulting change
of the reflection angle θr will be observed according to the relation

tan θr D vr?
v0k
D tan θ0

s
1C ΔE?

E0?
, (1.27)

where E0? D E0 sin2 θ0 and ΔE? D Er? � E0?. Figure 1.9b shows the experi-
mental results for various values of the parameter α and compared with those of
the matter wave calculations, where 1 neV D 10�9 eV. We can conclude that both
results agree well by considering the effects of the finite resolution included in the
experimental results
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1.4 Corpuscular Properties of the Neutron 21

Figure 1.9 (a) Arrangement (incident
wavelength λ D 2.4 nm, incident angle
θ0 D 2.00ı); (b) experimental results com-
pared with calculations, Experimental re-
sults: Abscissa, energy transfer estimated
from the change of reflection angle; Ordi-
nate, reflected neutron counts; From M1 to

M5, modulation index α increases, that is,
M1–M3; α D 0.95, 1.45, 1.98 (frequency
f D 2.2206 MHz); M4, M5; α D 4.21,

5.82 (frequency f D 0.69295 MHz), (Felber
et al. [38]). (b) Reflection experiment of very
cold neutrons on a vibrating mirror.

From the transition shown in Figure 1.8 from a few discrete spectra to the con-
tinuous spectrum for increasing the value for α, that is, in the transition from
quantum mechanics to classical mechanics as shown in Figure 1.8, the analyti-
cal method appropriate for a given condition can be decided from the parameter
values.
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22 1 Wave–Particle Duality of the Neutron

1.5
Magnetic Moment of the Neutron

The neutron has spin 1/2 and the magnetic dipole moment μn D �1.91μNB, where
μNB is the nuclear magneton e„/2M c, defined for the proton mass M. The half-
integer neutron spin was predicted from the structure of a deuteron on the discov-
ery of the neutron by Chadwick. Soon after, in 1937, it was confirmed, together with
the spin dependence of the neutron–proton internucleon interaction, by the mea-
surement and the analysis on the diffusion characteristics of thermal neutrons in
liquid hydrogen samples with different ratios of two kinds of hydrogen molecules,
orthohydrogen and parahydrogen [39, 40]. On the other hand, the magnitude of
the neutron magnetic moment was determined from the measurement of neutron
spin behavior in a magnetic field, which will be described next.

1.5.1
Spin Flip in Magnetic Resonance

A spin with magnetic moment μ precesses in a magnetic field with the Larmor
precession frequency νL D 2μH/ h around the direction of the magnetic field, the
motion being called the Larmor precession. For a particle with a half-integer spin in
a magnetic field, the theoretical formula for the spin reversal probability at time t
in the situation of nonadiabatic spin flip was derived by Güttinger [41], who solved
the Schrödinger equation for a spin-1/2 particle in a magnetic field rotating with
frequency ν. His formula is given for the case where the rotational axis of the mag-
netic field makes an angle # D π/2 with the direction of the field. A more gener-
al formula was given by Rabi [42] for an extended condition of the total magnetic
field H, to be decomposed into a static magnetic field H0 and a rotating magnetic field
with magnitude H1 perpendicular to the direction of H0. His formula, Eq. (1.28),
applicable to an arbitrary value for the polar angle # between the directions of H
and H0, is written as

P( 1
2 ,� 1

2 ) D
sin2 #

1C q2 � 2q cos #
sin2

�
πν t

q
1C q2 � 2q cos #

�
, (1.28)

where P( 1
2 ,� 1

2 ) denotes the probability that the spin state initially at C1/2, that is,
polarized in the direction of the total field at time t D 0, becomes the �1/2 state at
time t, and q D νL/ν. Putting # D π/2 in Eq. (1.28) gives the same result as with
Güttinger’s formula.

Since the terms as a function of q on the right side of Eq. (1.28) can be rewritten
as 1C q2 � 2q cos # D (q � cos #)2 C sin2 # , the resonance condition for spin flip in
which P( 1

2 ,� 1
2 ) takes the maximum value is given by qres D cos # . Then, the spin

flipping probability at that condition follows the time dependence

P( 1
2 ,� 1

2 )res D sin2(πν t sin #) I (1.29)

therefore, the probability will approach unity if we optimize the residence time of
the particles inside the magnetic field. Furthermore, there being two kinds of rota-



�

� Masahiko Utsuro and Vladimir K. Ignatovich: Neutron Optics —
Chap. ignatovich8856c01 — 2009/11/26 — 15:17 — page 23 — le-tex

�

�

�

�

�

�

1.5 Magnetic Moment of the Neutron 23

Figure 1.10 Magnetic resonance experiment for the neutron:
(a) experimental apparatus; (b) count rate decrease observed
at the resonance. The abscissa represents the magnetic field
current in arbitrary units (Alvarez and Bloch [43]).

tion direction, that is, clockwise and counterclockwise, with the same magnitudes
of frequencies νL and ν, the resonance condition in Eq. (1.28) requires not only the
magnitude but also the sign of ν to match those of νL.

In other words, we can determine whether the magnetic dipole moment of the
particle is positive or negative from the magnetic resonance experiment by making
use of a rotating magnetic field, but this is not possible if we use the reciprocating
magnetic field, which is the superposition of clockwise and counterclockwise rotat-
ing fields.

An experiment using this nuclear magnetic resonance method applied to neutrons
was carried out by Alvarez and Bloch with the insertion of the resonance apparatus
shown in Figure 1.10a in the cyclotron described earlier, and the magnetic dipole
moment of the neutron was derived from their experiment [43]. In their experiment,
the cyclotron was operated in a steady-state mode, which was advantageous from
the viewpoint of the background effects in comparison with those in the modulated
operation mode.

For the polarization of the incident neutrons and also for the polarization analysis
of neutrons transmitted through the resonance apparatus, the transmission method
with magnetic scattering through several centimeter thick iron plates magnetized
by wires carrying electric currents was used. Further, they employed the method
to find the resonance condition from the maximum of P( 1

2 ,� 1
2 ) by varying the

static magnetic field H0 under a constant frequency νn D ωn/2π of the oscil-
lating magnetic field, assuming that the second term on the right side of Eq. (1.28)
should be averaged over owing to the broad distribution of the residence time in
the magnetic field of neutrons with various velocities. Furthermore, they used the
resonance spin flip formula for the initial condition polarized in the direction of
the static field, based on the small H1/H0 ratio, actually smaller than 2% for a
static magnetic field H0 of 600 G and an oscillating field strength H1 of about
10 G.
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The homogeneity of the magnetic field H0 in the experiment of Alvarez and
Bloch was 600 ˙ 1 G over the whole of the resonance region, and the voltage fluc-
tuations of the magnet power supply were maintained below 0.1% by the control
system compensating the effect due to the coil temperature variation. To determine
precisely the number Nμn which corresponds to the neutron magnetic moment μn

expressed in the unit of nuclear magneton, e„/2M c (M is the proton mass), they
employed the method to compare the resonance angular frequency ωn for the neu-
tron in a magnetic field of strength Hn with the resonance angular frequency for the
proton ω p accelerated by the cyclotron, according to the equations

ωn D 2Hn μn/„ D (2Hn Nμn/„)(e„/2M c) D (eHn/M c) Nμn , (1.30)

ω p D eHp /M c , (1.31)

Nμn D (ωn/ω p )(Hp /Hn) . (1.32)

One of their experimental results for the resonance curve is shown in Fig-
ure 1.10b for the magnetic field frequency νn D 1.843 MHz.

As the final result of these measurements repeated many times, the neutron mag-
netic dipole moment in the unit of nuclear magneton was determined as

Nμn D �1.935 ˙ 0.02 . (1.33)

Although the sign of the magnetic moment for the neutron could not be deter-
mined in the experiment, where a reciprocating field was used, it had already been
deduced to be negative from the Stern–Gerlach magnetic deflection experiment for
protons and deuterons by Stern et al. [44, 45].

The main experimental efforts to determine precisely such a physical constant
in these early neutron experiments by making use of accelerators were devoted to
the stability and reproducibility of the measurements, especially with Alvarez et
al. having had difficulty to achieve the required stable operation of the cyclotron (a
fluctuation of the magnet source voltage below 0.1%). By the way, the experiment to
determine directly the sign of the neutron magnetic moment by making use of two
mutually orthogonal magnetic fields was later carried out by Rogers and Staub [46].

The phase difference between the incident and the exit neutron spins during the
resonance will be accumulated over the period of Larmor precession and thus the
accuracy of the phase determination will be improved in proportion to the num-
ber of precessions. Ramsey’s separated oscillating magnetic field method [47] in which
the oscillating field is split into two widely separated locations along the neutron
flight path and a constant precession field is provided in the flight path between
the separated fields for the continuation of the Larmor precession gave an epoch-
making improvement in such resonance experiments for particles as mentioned
above. Corngold et al. performed the first resonance experiment with this method
applied to the neutron in the graphite reactor at Brookhaven National Laborato-
ry [48, 49]. The results of this experiment are shown in Figure 1.11, and combined
with the result of a similar measurement on a proton sample (H2O) with the same
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1.5 Magnetic Moment of the Neutron 25

Figure 1.11 Neutron magnetic resonance experiment with
separated oscillation fields method carried out by Corngold et
al.: the upper two plots are the count rates as a function of the
frequency (the resonance frequency being about 24.727 MHz)
for the conditions in phase and 180ı out of phase, respectively,
and the lower one shows their difference (Corngold et al. [49]).

apparatus; this gave a much improved accuracy for the neutron magnetic moment as

Nμn D �1.913148 ˙ 0.000066 . (1.34)

We add here one of the later results with further improved accuracy [50] also
carried out with the separated field method:

Nμn D �1.91304308 ˙ 0.00000058 . (1.35)

1.5.2
Adiabatic Spin Reversal in a Magnetic Gradient

The resonance phenomenon described above by making use of uniform fields has
a very sharp resonance frequency, being very advantageous for precise measure-
ments of a physical quantity of a particle. Therefore, besides the determination of
magnetic moments, it is also applied to search for the electric dipole moment of the
neutron as the most sensitive experimental method at present for verifying the pos-
sibility of the neutron having a finite electric dipole moment. However, from the
viewpoint of efficient reversal of spins, Eq. (1.29) indicates the difficulty of attaining
the resonance condition for neutrons with widely distributed velocities, spending
different residence times in the precession field.
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Another approach for spin reversal, named adiabatic spin flip method with magnet-
ic gradient, is used for such cases to attain efficient performance for a wide velocity
spectrum. This method of adiabatic spin reversal in a magnetic gradient consists
of a static magnetic field with a gradient and an oscillating magnetic field in the
middle of the static field, the working principle of which can be understood in the
rotating frame.

Before considering the magnetic gradient method, it will be instructive to de-
scribe the experiment of Alvarez et al. in the rotating frame with the same frequency
νn as the oscillating field around the axis in the direction of the static field. At the
resonance condition where the frame rotation frequency is exactly the same as the
Larmor precession frequency, the phenomenon of spin precession will disappear,
that is, the effect of the static field Hn is canceled. On the other hand, the oscillating
field seems to be at rest with a field strength of H1. As a result of these transforma-
tions, the neutron spin will precess very slowly at the Larmor frequency in the field
H1 around the direction of the field H1 now at rest in this rotating frame. The spin
flipping time, defined as the time required for the complete spin reversal, that is, π
spin turns, is just half of the Larmor precession period in this situation.

Now, we consider the magnetic field with a gradient as shown in Figure 1.12a,
where the static field strength H0 varies along the oscillating field region (x D
x0 � x1) on the x-axis in the direction of the neutron flight. The equality H0(x ) D
Hn required in the previous case is satisfied only midway, x D xc , in the path, and
upstream the static field strength H0(x ) becomes gradually larger than Hn , that is,
x0 � x < xc ; ΔH(x ) D H0(x ) � Hn � 0, where ΔH(x0) � H1. Downstream,
however, H0 gradually becomes smaller than Hn , that is, xc < x � x1; ΔH(x ) � 0,
where jΔH(x1)j � H1. At the entrance (x D xp ) and the exit (x D xa) positions
of the device, there is a neutron polarizer and a polarization analyzer.

With a similar transformation to the rotating frame as previously considered,
during the passage in the upstream region starting from the entrance to the mid-

xp xb xc xa
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Neutron flight path x
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Figure 1.12 Description of the adiabatic spin flip method with
a magnetic gradient: (a) setup and field distribution; (b) move-
ment of the field direction followed by a spin vector adiabatically
in a rotating frame synchronous with an oscillating magnetic
field.
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way position, where ΔH(x ) > 0, the neutron spin follows the motion of the mag-
netic field described as H eff(x , t) D ΔH(x )ez C H1ex 0 , where ex 0 denotes the
direction of H1 at time t; thus, as shown in Figure 1.12b it results that the spin
parallel (or the spin antiparallel) to H0 at the entrance moves to the direction par-
allel (or antiparallel) to H1 at the midway position, and further in the downstream
region continues to move to antiparallel (or parallel) to H0 as the sign of ΔH(x )
reverses. In this way, regardless of the initial spin direction, the spin reversal is at-
tained quite smoothly for a wide range of the neutron velocity. This is the principle
of adiabatic spin flip with a magnetic gradient.

The velocity region of the neutrons for which the spin flipping mechanism men-
tioned above works well will be defined as follows.

First, the adiabatic spin flip condition requires the adiabatic following after the mag-
netic field, that is, the direction of the magnetic field in the device (now we consider
it in the rotating frame), moves sufficiently slowly compared with the angular veloc-
ity of the Larmor precession in the magnetic field H1. This can can be expressed as

vn max

H1

ˇ̌̌
ˇ dH(x )

dx

ˇ̌̌
ˇ� 2jμnjH1

„ ,

or vn max

ˇ̌̌
ˇ dH(x )

dx

ˇ̌̌
ˇ� 2jμnjH2

1

„ , x0 � x � x1 , (1.36)

where μn is the magnetic dipole moment of a neutron, and vn max denotes the
maximum velocity for the neutrons performing the adiabatic spin flip.

Next, in addition to the midway position, there is another point, either at the
entrance or at the exit (in the case in Figure 1.12a it is the entrance side), where
the equality H0(x ) D Hn holds at the position x D xb . For successful working
of the spin flip mechanism for the neutrons transmitted through the device, any
additional spin reversal should not occur at this point of x D xb , otherwise the spin
would return back to the initial state. Since the oscillating field produced by the coil
extending over the region x D x0 � x1 in the device should leak out somewhat
to the point xb , we have to make the field gradient around x Š xb so steep that
the turning speed of the local field direction becomes much faster than the Larmor
precession of the spin at that location. This additional condition is written as

vn min

H1

ˇ̌̌
ˇ dH(x )

dx

ˇ̌̌
ˇ

xDxb

� 2jμnjH1

„ ,

or vn min

ˇ̌̌
ˇ dH(x )

dx

ˇ̌̌
ˇ

xDxb

� 2jμnjH2
1

„ , x Š xb , (1.37)

where vn min denotes the minimum velocity for the neutron getting rid of such an
additional spin reversal.

As a result of these requirements, the adiabatic spin flip will be attained suc-
cessfully for neutrons in the rather wide velocity region defined by Eqs. (1.36) and
(1.37).

The experimental study on the spin flipping characteristics with the gradient
field adiabatic method was carried out by Egorov et al. [51], who measured the
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transmitted intensity and its static field dependence of very slow neutrons (ultra-
cold neutrons) with a velocity below about 20 m/s through the spin flip device with
a configuration similar to that shown schematically in Figure 1.12a. The ultracold
neutrons were extracted from the curved guide tube at the VVR-M reactor of the
St. Petersburg Nuclear Physics Institute. For the polarization and the polarization
analysis, the transmission method of magnetized materials was employed (the set-
up was similar to that shown in Figure 1.10a), but in the present case for ultracold
neutrons they used the polarizer and analyzer with a magnetic reflection method on a
thin film, that is, a 1 μm thick evaporated iron layer, instead of the magnetic scat-
tering method for thermal neutrons used by Alvarez. An oscillating field with a
frequency 200 kHz, and a resonance field current of about 510 mA gave the reso-
nant decrease of the neutron count rate down to about half with a resonance half
width of about 3 mA [51].

Further, Ezhov et al. performed a comparison of the gradient field adiabatic
method and Ramsey’s resonance method in the case of bottled ultracold neutrons
(refer to Section 2.2.2) experiencing Larmor precession in the bottle over a period
of about 4.6 s on average. As mentioned already, the latter method is often used for
the precise measurement of the resonance condition, such as for studying the ex-
istence of the electric dipole moment of the neutron. They carried out Monte Carlo
calculations on the spin flipping performances in both methods mentioned above.
The spin flip spectrometer had two separated oscillating fields at the entrance and
the exit sides of the precession space in a homogeneous static field. Their com-
parisons of the calculated results for both methods are shown in Figure 1.13a, in
which an about 1.8 times higher polarization ratio for the gradient field adiabatic

Figure 1.13 Comparison between the spin
flipping characteristics for ultracold neutrons
with the gradient field method and with Ram-
sey’s resonance method. (a) Results of nu-
merical calculations; the solid curves repre-
sent the gradient field method, whereas the

broken curves represent Ramsey’s method.
Curves 1 and 2 are for phase differences of
0ı and 180ı and curves 3 and 4 are those
for phase differences of 90ı and 270ı . (b)
Comparison with experimental results for the
gradient field method (Ezhov et al. [52]).
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method is indicated in comparison with Ramsey’s resonance method. The feasibil-
ity of the correctness of the calculated values for the gradient field adiabatic method
is also illustrated in Figure 1.13b as a comparison with the measured values, which
show satisfactory agreement with the calculated values.

Herdin et al. also carried out the polarization experiment with the adiabatic
spin flip method for ultracold neutrons with a velocity below about 8 m/s passing
through a guide tube, in which a high spin-flipping efficiency of about 100% with
a statistical error of 2% and a polarization efficiency of 95–98% for the neutron
velocity region of 4.15–8.2 m/s were achieved [53].

The neutron spin precession in a magnetic field studied as described above can
be applied for the development of neutron spectroscopies, and various kinds of
high-resolution neutron spectrometers have been developed by utilizing these char-
acteristics of Larmor precession. The first idea in this direction was suggested and
developed by Mezei in 1972 [55], this new principle being named neutron spin echo
spectrometry (see the schematic arrangement shown in Figure 1.14). It opened the
door to the wide field of neutron spin spectroscopy. Generally speaking, neutron
spectroscopy experiments are carried out to study the energy structures and their
characteristics in a sample from the experimental results for the transferred energy
as the difference between the incident and scattered neutron energies. Thus, for
high-resolution investigations on the energy structures, similarly high-resolution
analyses of the transferred energy are required.

The conventional spectroscopy method is based on wavelength or velocity spec-
trometry; time-of-flight spectrometry suffers from the serious intensity loss accom-
panying the severe selection of the incident neutrons needed to satisfy the require-
ment of such a high-energy resolution. In contrast, in the new principle of neutron
spin echo spectroscopy, the information on the neutron energy does not require

Figure 1.14 Schematic layout of neutron spin echo spectro-
meter. Typical lengths of the precession field regions are 2–4 m
(Mezei [54]).
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wavelength or velocity spectrometry, but is labeled on the neutrons as the number
of Larmor precessions. A practical and basic configuration of the neutron spin echo
spectrometer is shown in Figure 1.14. During their flights through the incident and
scattered flight paths with, respectively, well-defined path lengths and well-defined
magnetic field strengths, neutrons experience Larmor precessions; thus, after the
flights the number of precessions is labeled on individual neutrons. It is quite pos-
sible to reverse the sign of the precession number, that is, label a negative number
for the precession after the scattering by a sample, by reversing the direction of the
magnetic field or by reversing the neutron spin. Then the resultant number of pre-
cessions observed at the end of the flight will be given by the difference between
those of the incident and the scattered paths, ΔN Š N δv/v , where δv D v 0 � v
denotes the difference between the incident and the scattered neutron velocities.
In this way, we need not select the incident neutron velocity within a very narrow
width in proportion to the very high resolution of the velocity change δv , but we
can obtain as high a velocity resolution δv as we wish by increasing the number
of precessions N to satisfy the present relation under a given resolution ΔN in
the experimental device. The present principle of echo spectrometry and the uti-
lization of a much wider energy width than in conventional spectrometries are the
important advantages of high-resolution spectroscopy with the neutron spin echo
method.

We would like to add here a little advanced detail on another important charac-
teristic of the neutron spin echo method. In conventional spectroscopy, the scat-
tered intensity distribution I(Q, �) is usually obtained for the transferred energy �

in inelastic and quasi-elastic neutron scattering experiments, whereas in the spin
echo method the measured neutron intensity is given by the scattering function
S(Q, �) integrated over � with the weight of the polarization analysis component
Px D cos(2πN δv/v ) on the energy transfer structure in the sample. As supposed
from the principle of the Fourier integral, the latter means that we can directly ob-
tain data concerning the time-correlation function on the dynamical structure in
the sample. Further details on the developments of spin echo spectrometers will
be given in Chapter 3.




