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Preliminaries

We begin with a brief sampler of some mathematical topics that are useful for read-
ing the later chapters. The description does not aim at being rigorous nor compre-
hensive. Rather, the purpose is to allow the reader to quickly update his and her
knowledge and also it serves the purpose of establishing the notation used in this
book.

1.1
Complex Numbers

For the mathematical description of oscillations and waves, the use of complex
exponential functions is very practical. For example, a plane wave traveling in x-
direction can be represented mathematically by

u(x , t) D u0ei(k x�ω t ) . (1.1)

This is the notation we will use in this book. Here, i denotes the imaginary unit
defined by i2 D �1. In engineering, quite often, the letter j is often used instead of i
to avoid confusion with the symbol for the electric current. It is also common to
write u(x , t) D u0ej(ω t�k x ). This has no physical consequence, of course. However,
it does make a difference in the mathematical formalism, when the first derivative
(or, more general, uneven-order derivatives) occur, as it is the case, for example, in
the paraxial wave equation.

A complex number z has a real part, denoted as R(z), and an imaginary part,
I (z),

z D a C ib D R(z) C i I (z) . (1.2)

Here, a D R(z) and b D I (z) are real-valued numbers. Using them like Carte-
sian coordinates, z is represented graphically by its position in the complex plane
(Figure 1.1).

For the description of a wave that is a harmonic oscillation in space and time,
the use of complex exponential functions using polar coordinates is convenient
as in (1.1). The exponential form of a complex number is introduced by Euler’s
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2 1 Preliminaries
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Figure 1.1 Graphical representation of a complex number in the complex plane.
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Figure 1.2 Graphical representation of a complex number z using polar coordinates. z� is the
conjugate of z.

equation

z D jzj eiφ D jzj(cos φ C i sin φ) . (1.3)

Here, jzj is the modulus of z with jzj2 D a2 C b2. φ is called the argument or
the phase of z (Figure 1.2). It is φ D arg(z) D arctan(b/a). In turn, one ob-
tains the Cartesian coordinates from the polar coordinates by a D jzj cos φ and
b D jzj sin φ. By varying φ, z moves on a circle in the complex plane with a peri-
odicity of 2π. Hence, there is an ambiguity in the polar representation: for a specific
point in the complex plane described by the pair of coordinates (a, b), all polar co-
ordinates of the form (r, φ C m2π) with m D 0, ˙1, ˙2, . . . also represent the same
point. This 2π-phase ambiguity is an important aspect of all wave phenomena.

Finally, we introduce the conjugate of a complex number. Two numbers z1 and
z2 are conjugate to each other if their real parts are the same and their imaginary
parts differ by a minus sign. The complex conjugate number is denoted either by a
bar, z, or by a star, z�. Here, we use the latter notation. Thus, we can write

z1 D a1 C ib1 and z2 D a1 � ib1 D z�
1 . (1.4)

Obviously, two conjugate complex numbers z and z� have the same magnitude.
Their geometrical positions are symmetric about the real axis. In exponential nota-
tion, the complex conjugate of z is z� D jzje�iφ . In optics, the so-called intensity of
a wave is of importance, given by the magnitude square of the complex amplitude.
The magnitude square of a complex number is given as jzj2 D zz�. Note that, in
general, jzj2 ¤ z2 for a complex number.
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1.2 Fourier Transformation 3

1.2
Fourier Transformation

The Fourier transformation is probably the most important mathematical signal
transformation. It is widely used for signal analysis, processing, and coding. The
most prominent modern application is the encoding of streaming audio and video
signals using the MPEG format as well as static images according to the JPEG
standard. These formats are based on the discrete cosine transformation, a variation
of the Fourier transformation suitable for discretized real-valued signals.

The Fourier transformation represents a function f (x ) (which we assume to be
continuous here) as a linear superposition of sine- and cosine-functions. Using the
complex notation of (1.3), in the one-dimensional case, we write

f (x ) D 1p
2π

1Z
�1

Qf (k)eik xdk D F�1
k [ Qf (k)] . (1.5)

Qf (k) is called the Fourier transform (also the Fourier spectrum) of f (x ), that is,

Qf (k) D 1p
2π

1Z
�1

f (x )e�ik x dx D Fx [ f (x )] . (1.6)

Here, 1/
p

2π is a normalization factor which warrants that

F�1
k Fx [ f (x )] D f (x ) . (1.7)

At this point, let us make a few remarks about the terminology: the term Fourier
transformation refers to the mathematical operation, whereas the Fourier transform
denotes the mathematical function. The operator Fx represents the forward Fourier
transformation with respect to the x-coordinate, F�1

k the inverse Fourier transfor-
mation. We will use the tilde to denote the Fourier transform: Fx [ f (x )] D Qf (k). k is
the Fourier-conjugate variable to x. It is called the angular frequency coordinate and
relates to the oscillation frequency νx by k D 2πνx . If we assume that x is a spatial
coordinate, as for a spatial optical wave field, then νx has the physical meaning of
a spatial frequency, that is, its physical unit is an inverse length measured in m�1 or
μm�1, for example. For an optical wave field, the physical meaning of the spatial
frequency relates to the angle of propagation relative to a specific coordinate-axis,
hence the Fourier transform Qf (k) is often called the angular spectrum of f (x ).

As mentioned earlier, it is a matter of definition whether the exponent in (1.5)
and (1.6), respectively, is written with a positive or with a negative sign. To be in
agreement with the notation as in (1.1) for a single plane wave, the positive sign is
used in (1.5). In contrast, when we express the Fourier transformation of a temporal
signal g(t) with respect to the time coordinate t, we use the negative sign in the
Fourier expansion

g(t) D 1p
2π

1Z
�1

Qg(ω)e�iω tdω D Fω [ Qg(ω)] . (1.8)
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4 1 Preliminaries

In this case, the inverse operation is

Qg(ω) D 1p
2π

1Z
�1

g(t)eiω tdt D F�1
t [g(t)] . (1.9)

Sometimes, it is convenient to express the Fourier expansion in terms of the os-
cillation frequency ν t and the spatial frequency νx , respectively, rather than the
angular frequencies ω and k. In this case, the Fourier expansion of a spatial func-
tion f (x ) is

f (x ) D
1Z

�1

Qf (νx )eCi2πνx x dνx (1.10)

and

Qf (νx ) D
1Z

�1
f (x )e�i2πνx x dx , (1.11)

and accordingly for g(t). When compared with (1.5) and (1.6), we note that here
the normalization factor is one. This leads to the significant difference in the “DC
value” of the signal given by

Qf (νx D 0) D
1Z

�1
f (x )dx . (1.12)

In comparison, when we use (1.6), we see that Qf (k D 0) yields a different (one
might say: “wrong”) DC value due to the normalization factor 1/

p
2π, that is,

Qf (k D 0) D 1p
2π

1Z
�1

f (x )dx . (1.13)

For further reference, Table 1.1 shows several functions relevant to this text and
their Fourier transforms. First, some definitions for

� the rect-function rect(x ):

rect(x ) D
(

1 if jx j � 1/2

0 else
(1.14)

� the sinc-function sinc(x ):

sinc(x ) D sin(πx )
πx

(1.15)
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1.2 Fourier Transformation 5

Table 1.1 Fourier transformation of rect- and tri-function, exponential, Gaussian and Delta-
function.

Function f (x ) Fourier transform Qf (k) (1.6) Fourier transform Qf (ν) (1.11)

rect(x ) 1p
2π

sinc
�

k
2π

�
sinc(ν)

1

x
–1/2 1/2

k
2π

1/√2π

ν
1

1

tri(x ) 1p
2π

sinc2
�

k
2π

�
sinc2(ν)

1–1
x

1

k
2π

1/√2π

ν

1

1

exp(�jx j)
q

2
π

1
1Ck2

2
1C(2πν)2

1

1/e

x
1 k

√2/π

1/√2π

1
k

1/2π

1

2

exp(�x2) 1p
2

exp
�
�
�

k
2

�2
� p

π exp[�(πν)2]

x

1

1/e

1
k

2

1/√2

(1/e)1/√2

ν
1/π

√π

(1/e)√π

δ(x ) 1p
2π

1

x k

1/√2π

ν

1

� the triangle function tri(x ):

tri(x ) D
(

1 � jx j if jx j � 1

0 else
. (1.16)
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6 1 Preliminaries

J Remark

Alternative definition of the sinc-function: In the literature, the sinc-function is
often defined as

sinc(x ) D sin(x )
x

, (1.17)

that is, without the factor π. Here, however, we will use the definition according
to (1.15) since it has the convenient property that the zeros occur at integer values
of x. The reader should be aware of the two different definitions.

With the following definitions for the (unnormalized) Gaussian function,

f (x ) D e�x2
, (1.18)

and the (unnormalized) Lorentzian function,

f (x ) D 1
1 C x2 , (1.19)

keep in mind the following list of Fourier transform pairs shown graphically in
Table 1.1 and listed in Table 1.2.

In optics, one usually considers functions that depend on more than one coordi-
nate. The extension of the Fourier transformation to multidimensional functions
is straightforward due to its linearity. For example, the angular spectrum of a 2D
signal f (x , y ) is given as

Fx y [ f (x , y )] D Qf (νx , ν y ) D
1Z

�1

1Z
�1

f (x , y )e�i2π(νx xCν y y )dxdy . (1.20)

We note that for the special situation of a 2D function that is separable in x and y,
that is, f (x , y ) D f1(x ) f2(y ), the transform can be expressed as the product of two
1D transformations, that is,

Fx y [ f1(x ) f2(y )] D Qf1(νx ) Qf2(ν y ) . (1.21)

Sometimes, one encounters situations that exhibit radial symmetry. A specific
example would be diffraction at a circular aperture. In that case, it may be conve-
nient to carry out the calculations in circular coordinates r and φ which are given
by

x D r cos φ and y D r sin φ (1.22)

Table 1.2 Fourier transform pairs.

rect $ sinc
tri $ sinc2

exponential $ Lorentzian
Gaussian $ Gaussian
Delta-function $ const
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1.2 Fourier Transformation 7

with r2 D x2 C y 2 and tan φ D y/x . For the spatial frequency domain, one has

νx D � cos θ and ν y D � sin θ (1.23)

with �2 D ν2
x C ν2

y and tan θ D ν y /νx . With this, we can express the exponent
in (1.20) as

νx x C ν y y D r�(cos φ cos θ C sin φ sin θ ) D r� cos(φ � θ ) . (1.24)

Hence, for the object u(r, φ), the 2D Fourier transform in radial coordinates is
given as

Qu(�, θ ) D
2πZ

φD0

1Z
rD0

u(r, φ)e�i2π r� cos(φ�θ )rdrdφ

D
1Z

rD0

r

2
64

2πZ
φD0

u(r, φ)e�i2π r� cos(φ�θ )dφ

3
75dr . (1.25)

For the special case of circular symmetry, when the object function is indepen-
dent of φ, that is, u D u(r), this becomes

Qu(�) D 2π

1Z
0

u(r)r J0(2π� r)dr . (1.26)

Here, we have used the identity

2πZ
φD0

e�i2π r� cos(φ�θ )dφ D 2π J0(2π r�) . (1.27)

Here, J0(.) is the zeroth Bessel function (of the first kind). The integral transforma-
tion in (1.26) is also known as the Hankel transformation of the function u(r).

1.2.1
Basic Fourier Rules

In the following, several useful rules for the Fourier transformation are listed which
the reader may verify as an exercise. For simplicity, just the one-dimensional case
will be considered. Usually, the extension to 2D is straightforward. In order to avoid
the normalization factor, we express the Fourier transformation in terms of the
spatial frequency variable ν (dropping the index ‘x’).

Linearity For a function which can be expressed as a linear combination of other
functions, the Fourier transform is also given as the linear superposition of the
individual transforms, that is,

f (x ) D ag(x ) C bh(x ) ! Qf (ν) D a Qg(ν) C b Qh(ν) . (1.28)
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8 1 Preliminaries

Scaling If we scale a function in x-direction by a factor with a > 0, then its Fourier
transform scales with 1/a, that is,

f (x ) ! f (ax ) ) Qf (ν) D 1
a

Qf
� ν

a

�
(1.29)

because with x 0 D ax , we can write

1Z
�1

f (ax )ei2πνx dx D 1
a

1Z
�1

f (x 0)ei2π(ν/a)x 0
dx 0 . (1.30)

Example

Scaling of a rect-function We calculate the Fourier transform of f (x ) D rect(ax ) for
a > 0. We split up the Fourier integral into its real and imaginary part and make
use of the fact that the rect-function is zero for jx j > 1/2a:

1Z
�1

rect(ax )e�i2πνx x dx D
1/2aZ

�1/2a

cos(2πνx x )dx C i

1/2aZ
�1/2a

sin(2πνx x )dx .

(1.31)

Due to the antisymmetry of the sine-function, the second integral on the right-
hand side is zero. Hence, we can continue with the integral over the cosine-
function

1/2aZ
�1/2a

cos(2πνx x )dx D 1
2πνx

sin(2πνx x )
ˇ̌̌
ˇ1/2a

�1/2a
. (1.32)

With

sin(2πνx x )
ˇ̌̌1/2a

�1/2a
D sin(πνx /a) � sin(�πνx /a) D 2 sin(πνx /a) (1.33)

we obtain

1/2aZ
�1/2a

cos(2πνx x )dx D sin(πνx /a)
πνx

D 1
a

sin(πνx /a)
πνx /a

, (1.34)

and thus we can finally write

1Z
�1

rect(ax )e�i2πνx x dx D 1
a

sinc(νx /a) . (1.35)

Figure 1.3 shows the situation for two different scaling factors: a D 1 and a D 2.
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1.2 Fourier Transformation 9
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1

a=1
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Figure 1.3 Scaled rect-function (a D 1, 2) and its Fourier transform (1.33).

Mirror symmetry (even functions) For a symmetric function, the Fourier transform
reduces to a cosine transform, that is,

f (x ) D f (�x ) ) Qf (ν) D
1Z

�1
f (x ) cos(2πνx )dx . (1.36)

Similarly, odd functions with the property f (x ) D � f (�x ) can be developed into
sine-functions.

Hermitian functions A more general statement is: if a function is Hermitian, then
its Fourier transform is real-valued, for example,

f (x ) D f �(�x ) ) Qf (ν) D Qf �(ν) . (1.37)

Here, f � is the complex conjugate of f.

Shift theorem A shift of the function f (x ) towards positive x-values by a distance s
leads to a phase factor with a negative sign, for example,

f (x ) ! f (x � xs ) ) Qf (ν) ! Qf (ν)e�i2πνxs . (1.38)

The shift theorem can be very useful in conjunction with the convolution theorem,
as we will see in the later example.
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10 1 Preliminaries

Translational symmetry (periodic functions) In many areas, periodic functions play
an important role, for example, in diffractive optics. We denote the period in x-
direction with the letter p in order to write f (x ) D f (x C p ). In this case, the
integral in (1.5) can be replaced by a discrete sum and f (x ) can thus be expressed
as a series of harmonic functions, namely,

f (x ) D f (x C p ) ) f (x ) D
1X

�1
anei2π nx/p , (1.39)

where the Fourier coefficients an are given as

an D 1
p

pZ
0

f (x )e�i2π nx/p dx . (1.40)

The following properties of the Fourier transformation relate to the situations
where a function f is given as the sum or the product of two other functions.

Convolution theorem If a function can be expressed as the product of two func-
tions, then its Fourier transform is given as the convolution of the two respective
Fourier transforms, that is,

f (x ) D g(x )h(x ) ) Qf (ν) D
1Z

�1
Qg(ν0) Qh(ν � ν0)dν0 D Qg(ν) � Qh(ν) . (1.41)

Here, the star � denotes the convolution operation. This theorem can also be
applied to the inverse case: if a function can be expressed as the convolution of two
functions, then its Fourier spectrum is given as the product of the two respective
Fourier transform spectra

f (x ) D g(x ) � h(x ) ) Qf (ν) D Qg(ν) Qh(ν) . (1.42)

Autocorrelation function A special case of the rule above occurs when a function f
is given when h(x ) D g�(x ). In this case, the Fourier transform is the autocorrela-
tion of a function of Qg, that is,

f (x ) D jg(x )j2 ) Qf (ν) D
1Z

�1
Qg(ν0) Qg�(ν0 � ν)dν0 . (1.43)

This rather simple statement represents an important physical theorem, the
Wiener–Khinchin theorem. However, we will not discuss its general significance
here.

Parseval’s theorem (also known as Plancherel’s theorem) The energy of a signal in
the x-domain is equal to the energy of its Fourier transform in the ν-domain, that
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1.3 Maxwell’s Equations 11

is,

1Z
�1

j f (x )j2dx D
1Z

�1
j Qf (ν)j2dν . (1.44)

If instead of the frequency ν the angular frequency k is used, a normalization factor
1/2π comes in and

1Z
�1

j f (x )j2dx D 1
2π

1Z
�1

j Qf (k)j2dk . (1.45)

Fourier transform of the derivative function

f (x ) D dg(x )
dx

) Qf (ν) D (i2πν) Qg(ν) (1.46)

This can be derived directly from (1.10). For a derivative in the Fourier domain,
one gets

Qf (ν) D Qg(ν)
dν

) f (x ) D (�i2πx )g(x ) . (1.47)

1.3
Maxwell’s Equations

An optical wave is an electromagnetic phenomenon and therefore its propagation
and interaction with matter are described, in general, by Maxwell’s equations. How-
ever, there are different ways of writing Maxwell’s equations and it depends on the
situation regarding which form is appropriate. In the simplest form, they may be
written as

r � E C @B
@t

D 0 , (1.48)

r � E D �

ε
, (1.49)

r � B � εμ
@E
@t

D μ j , (1.50)

r � B D 0 . (1.51)

Here, E is the electric field (or electric field strength) and B is the magnetic flux density
(or sometimes, typically in textbooks on physics, simply magnetic field). ε is the elec-
tric permittivity and μ is the magnetic permeability. σ denotes the electric conductivity,
� denotes the charge density, and j is the electric current density. The symbol r is the
nabla operator and � denotes the vector product. In the following, we will use the
notation PE for the first partial derivative with time, @E/@t, and RE D @2 E/@t2 for the
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12 1 Preliminaries

second partial derivative. Equations (1.49) and (1.50) are referred to as the inhomo-
geneous Maxwell’s equations since they contain the electric charge density and the
current density, while the other two are called the homogeneous Maxwell’s equations.

E and B are functions of three spatial coordinates (for example, the Cartesian
coordinates x, y and z) and the time coordinate t. In isotropic and homogeneous
media, the “material constants” ε, μ, � and σ are constant. For simplicity, we as-
sume at the beginning that they do not depend on the fields. In this case, Maxwell’s
equations are linear. Linearity means that if E1 and E2 are solutions as well as B1

and B2, then all linear combinations a1E1 C a2E2 and b1B1 C b2B2 represent so-
lutions, too. The assumption of linearity is not always justified, in particular, when
the fields become very large. The generally nonlinear dependency of ε and μ shows
up in describing electrooptic and magnetooptic effects.

The set of equations (1.48)–(1.51) is complemented by the equation that relates
the electric current density with the E -field, that is,

j D σE . (1.52)

The vast majority of optical media for optical propagation is dielectric, in which case
σ D 0. The influence of metallic coatings as used for mirrors and apertures, for
example, is often not considered. It does exist, but for the simplified models used
in conventional optics, it can usually be disregarded. However, there are certain
phenomena where the influence of metallic layers and structures is important and
even exploited. This is the case for certain nanooptical and plasmonic devices.

In this context, we have to consider the other material parameters, ε and μ. Clas-
sical optics mostly covers the case where ε > 0 and μ � 1 (see Figure 1.4). In the
(ε, μ)-diagram, many metals are located on the line μ � 1, but for them ε < 0. The

ε

μ

μ≈1

negative index materials

metals

SiO2 diamondAuAg

dielectrica

Figure 1.4 Diagram with the material parameters ε and μ as the coordinates.
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quadrant on the lower left with ε < 0 and μ < 0 represents the area of negative-
index materials with very unusual electromagnetic behavior. Such materials are not
known in nature (at least, so far), but they can be synthesized by subwavelength-
structuring.

The material parameters depend on the molecular structure of a material and/or
the geometric structure of a micro- or nanodevice. For most materials and devices,
the bulk quantities E and B are sufficient. However, certain aspects suggest that it
may sometimes be more convenient to use new field quantities that take the materi-
al properties into account. For this purpose, one introduces the electric displacement
density D

D D ε0E C P . (1.53)

P is the electric polarization (density). In a dielectric medium, an electric field causes
no current flow, but the induction of dipoles. P is the dipole moment per unit
volume. For a linear, homogeneous and isotropic medium, P and E are related by

P D ε0�E D ε0(εr � 1)E . (1.54)

Here, � is the electric susceptibility and εr is the relative permittivity. By combin-
ing (1.53) and (1.54), one obtains

D D ε0εrE D εE . (1.55)

Simplified, one may say that D is the E -field in a medium with the materials
properties taken into account. Expressed by D rather than E , Maxwell’s equation
reads as

r � D D � . (1.56)

The analogous expressions for the magnetic field (strength) H are

H D 1
μ0

B � M , (1.57)

B D μ0μrH , (1.58)

r � H � @D
@t

D j . (1.59)

M is the magnetic polarization and μr is the relative magnetic permeability.

1.4
Boundary Conditions

As mentioned, structuring of a medium, in particular, at the subwavelength scale,
allows one to “engineer” the optical parameters. We shall learn about this topic
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ε1 ε2
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E1t
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Figure 1.5 Path of integration along the boundary of two media.

in the later sections of this book. We prepare these issues by looking first at the
boundary conditions for the components of the electric and magnetic field. For this
purpose, we consider the interface between two media which differ in the values of
the electric permittivity ε (Figure 1.5).

For the derivation of the boundary conditions, one may apply the first of
Maxwell’s equations. In its integral form, it readsI

E � dr D �
“

PB � da . (1.60)

The integral on the left-hand side is a line integral along the closed path indicated
in the figure by the dotted line. The integral on the right-hand side sums up across
the hatched area which is enclosed by the path. dr is the path differential, and da
is the surface differential normal to the surface. PB is the time derivative of B. By
applying (1.60) to the situation of Figure 1.5, for the left-hand side, one obtainsI

E � dr � Δx (E1t � E2t) C Δz
2

[(E1n C E2n) � (E2n C E1n)]

D Δx (E1t � E2t) . (1.61)

Here, Ekn and Ek t are the normal and tangential components of the E -field in
both media with k D 1, 2. In (1.61), we assume that the normal and tangential
components are approximately the same at the upper and lower sections of the
integration path.

The right-hand side of (1.60) can be evaluated as“
PB � da � ΔxΔzh PBi . (1.62)

Here, h PBi is the average value of the derivative of B. Now, we assume that we
decrease Δz ! 0. For a finite value of PB, the integral in (1.62) will go to zero so
that we obtainI

E � dr � Δx (E1t � E2t) � 0 , (1.63)
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1.4 Boundary Conditions 15

and hence

E1t D E2t . (1.64)

This means that the tangential component of the electric field is continuous at a
boundary. This is not true, however, for the D-field. The tangential component Dt is
discontinuous due to the surface charge at the interface. With the same arguments
as above, one can show that for a linear, isotropic medium,

D1t

ε1
D D2t

ε2
. (1.65)

Another important result relates to the normal components. From the second of
Maxwell’s equations (r � D D �), one can derive the behavior of the normal com-
ponent of the D-field. We do not enter into a detailed discussion, but rather give
the basic arguments. In its integral form, one can express the second of Maxwell’s
equations as“

D � da D
Z

�dV D q . (1.66)

Here, the integration takes place over the surface indicated as a cross-section by
the dotted line in Figure 1.5. q is the electrical charge contained in the integra-
tion volume. For decreasing dimensions of the integration volume (and surface,
respectively), q is approximated by the surface charge σ at the interface. One can
then argue that at the interface of two dielectric media, the extension of surface
charges into the media is so small that for Δz ! 0, the amount of surface charge
between two dielectric media σ ! 0 from which

D1n D D2n . (1.67)

That is, the normal component of the D-field, Dn, is continuous at an interface if
surface charges can be neglected. The latter assumption is justified in the case of
dielectric media. This result will be used later when we discuss the optical proper-
ties of microstructured media.

1.4.1
Method of Stationary Phase

The method of stationary phase allows one the approximate calculation of an inte-
gral given asZ

g(x )eiφ(x )dx . (1.68)

We assume that g(x ) is a slowly varying function, while φ(x ) oscillates rapidly. We
will encounter such integrals, for example, when discussing paraxial diffraction
theory. The integral can be estimated if φ(x ) is stationary at certain points, mean-
ing that dφ/dx D 0 for some coordinate x D x0. As we will see in the following
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16 1 Preliminaries

calculation, due to the rapid oscillation of φ(x ), significant contributions to the in-
tegral only come from that point. For now, let us assume that this is the case at one
coordinate. (Remark: If φ is stationary at more than one points, one subdivides
the axis into several intervals to perform the following calculation.) First, we can
evaluate φ(x ) into a Taylor series around x0, that is,

φ(x ) D φ0 C 1
2

φ00
0 (x � x0)2 C . . . (1.69)

where φ0 D φ(x0) and φ00
0 D d2 φ(x )

dx2 jx0 . With this, we may write

Z
g(x )eiφ(x )dx � g(x0)eiφ0

x0Z
xu

e(i/2)φ00
0 (x�x0)2

dx . (1.70)

We introduce the coordinate transformation � 2 D (1/2)φ00
0 (x � x0)2 to write

Z
e(i/2)φ00

0 (x�x0)2
dx D

s
2

φ00
0

Z
ei� 2

d� . (1.71)

We split up the integral on the right-hand side into its real and imaginary part,
namely,Z

ei� 2
d� D

Z
cos � 2d� C i

Z
sin � 2d� . (1.72)

These integrals are known as the Fresnel integrals. Their calculation yields the values

Z
cos � 2d� D

Z
sin � 2d� D

r
π
2

. (1.73)

From Figure 1.6, we see that the value of the integral is determined from the area
around x D x0 (shaded in the figure), while the oscillations cancel each other. We
may continue to write

Z
ei� 2

d� D
r

π
2

(1 C i) D p
πeiπ/4 . (1.74)

Thus, under the assumptions made earlier, we finally obtain

Z
g(x )eiφ(x )dx �

s
2π
φ00

0
g(x0)ei(φ0Cπ/4) . (1.75)
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x
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1
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Figure 1.6 Integration of the Fresnel integrals.

Questions

1. What is a complex number?
2. What is the complex conjugate?
3. In the complex plane, what is the location of all complex numbers of the form

eiφ?
4. Explain the Fourier transformation in physical terms (a) for a temporal signal

and (b) for a spatial signal.
5. What is a spatial frequency?
6. What is the meaning of the shift-theorem of Fourier mathematics?
7. How does the electric field behave at the boundary between two dielectric me-

dia?
8. What is the method of stationary phase?

Problems

1. Complex numbers For the two complex numbers, z1 D jz1j eiφ1 and z2 D
jz2j eiφ2 , calculate (a) the sum, (b) the product, and (c) the quotient.

2. Multiplication of complex numbers If z1 and z2 are complex numbers, prove that
jz1 z2j D jz1jjz2j.

3. Power of complex numbers Evaluate the expression
P4

nD0 in .
4. Derivative of complex expression For u(x , t) D ei(k x�ω t ), calculate @u/@x and

@u/@t.
5. Real and imaginary part For u(x ) D eiax2

(a real and a > 0), draw (or plot) R(u)
and I (u).
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6. Fourier transformation of time signal Calculate the temporal Fourier transform of
the function u(t) D eiν0 t C e�iν0 t .

7. Fourier transformation of a derivative function Derive (1.46) from (1.10).
8. Normalization factor of the Fourier transformation The normalization factor has

to warrant that successive application of forward and backward transformation
leads to the original function, that is,

F�1
k Fx [ f (x )] D f (x ) . (1.76)

Show that

1Z
�1

2
4 1Z

�1
f (x )e�ik x dx

3
5 eik x 0

dk D 2π f (x 0) (1.77)

while

1Z
�1

2
4 1Z

�1
f (x )e�i2πνx dx

3
5 ei2πνx 0

dν D f (x 0) . (1.78)

Further Reading
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University Press.




