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1
Introduction

1.1
Second-Quantized Representation for Electrons

The use of a Schrödinger equation to describe one or more electrons already treats
the electron quantum mechanically and is sometimes referred to as first quanti-
zation. As long as electrons are neither created nor destroyed, such a description
is complete. However, an electron that is transferred from state n to state m is of-
ten described as the destruction of an electron in state n and creation in state m
by an operator obeying an algebra of the form c†

m cn . It is convenient therefore to
further refine the algebra of such operators analogous to the operators b†

q and bq

that create and destroy phonons of wave-vector q. However, electrons are fermions
rather than bosons and the state occupancy number c†

n cn should only be permit-
ted to take the values zero or one. This aim is achieved by using anti-commutation
rules fdescribed by bracesg or by square brackets with aC subscript, that is, [� � � ]C,
instead of commutation rules described by brackets or square brackets with a �
subscript, that is, [� � � ]�.

In this book, we will be primarily concerned with low-dimensional systems such
as quantum wells, dots and wires. A typical band structure of the valence and con-
duction bands for a heterostructure like GaAs/AlGaAs is shown in Figure 1.1. How-
ever, the formulation in this chapter and in some of the others is independent of
dimensionality.

The phrase “second quantization” is descriptive of the notion that the Schrödin-
ger wave function Ψ (r) is to be quantized, that is, treated as an operator. In terms
of any complete set of states φk (r), we can write:

Ψ (r) D
X

k

ck φk (r) ,
Z

d3rφ�
k (r) φk 0 (r) D δk k 0 , (1.1)

where the anti-commutation rules are given byh
ck , c†

k 0
i

C
D δk k 0 , (1.2)

and

[ck , ck 0 ]C D
h

c†
k , c†

k 0
i

C
D 0 . (1.3)
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Figure 1.1 Valence (lower curve) and conduction (upper curve) bands of electrons in a semi-
conductor heterostructure.

For a single state, we can omit the subscripts and examine the consequences. Equa-
tion (1.3) implies that

c2 D 0 ,
�
c†�2 D 0 . (1.4)

Let N D c†c, then

N 2 D �c†c
�2 D c†cc† c D c† �1 � c†c

�
c

D c†c � �c†�2
c2 D c†c � 0 D N . (1.5)

Thus, N D 1 or 0.
Consider the two eigenstates of N:

N Ψ0 D 0Ψ0 , and N Ψ1 D 1Ψ1 . (1.6)

Then, is c†Ψ0 also an eigenstate of N?�
c†c
�

c†Ψ0 D c† �1 � c†c
�

Ψ0

D c† Ψ0 �
�
c†�2

cΨ0 D c† Ψ0 . (1.7)

Therefore,

N
�
c†Ψ0

� D 1
�
c† Ψ0

�
, (1.8)

that is, c†Ψ0 is proportional to Ψ1. Evaluate the normalization:Z
d3r

�
c†Ψ0

�� �
c†Ψ0

� D Z d3r Ψ �
0 cc†Ψ0

D
Z

d3r Ψ �
0

�
1 � c†cΨ0

� D 1 . (1.9)
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1.1 Second-Quantized Representation for Electrons 5

Therefore, c† Ψ0 is normalized and we can simply choose

c†Ψ0 D Ψ1 . (1.10)

Similarly,

cc† (cΨ1) D c
�
1 � cc†�Ψ1 D cΨ1 . (1.11)

Therefore, cΨ1 is an eigenvector of cc† D 1�c† c with eigenvalue 1 or eigenvector
of c† c with eigenvector 0. By a similar procedure to Eq. (1.9), cΨ1 is normalized and
we can write

cΨ1 D Ψ0 . (1.12)

Note that

cΨ0 D c2Ψ1 D 0 , (1.13)

c†Ψ1 D
�
c†�2

Ψ0 D 0 . (1.14)

We begin by rewriting the Schrödinger equation in second quantized form. In
most cases, the Hamiltonian has the form

H D
NX

iD1

T (xi )C 1
2

NX
i¤ j D1

V
�
xi , x j

�
, (1.15)

where T is the kinetic energy and V is the potential energy of interaction of the
particles. Here, xi D (x i , ti , s i ) is the space-time-spin point. The potential energy
term represents the interaction between every pair of particles counted once, pre-
cisely why we have the factor of 1/2. We will not give the details for reformulating
Eq. (1.15) in second quantized form since it can be found in many textbooks on
quantum mechanics and will simply quote the results along with some others. For
the Hamiltonian in Eq. (1.15), we have

OH D
Z

d3x , OΨ † (x ) T (x ) OΨ (x )

C 1
2

Z
d3x

Z
d3 x 0 OΨ † (x ) OΨ † �x 0�V

�
x , x 0� OΨ �

x 0� OΨ (x ) . (1.16)

The single-particle operator

J D
NX

iD1

J (x i ) (1.17)

in second quantized form becomes

OJ D
Z

d3x OΨ † (x ) J (x ) OΨ (x ) , (1.18)

and, in particular, the number density n(x ) DPN
iD1 δ(x � x i ) is given by

On (x ) D OΨ † (x ) OΨ (x ) , (1.19)

where OΨ †(x ) and OΨ (x ) are creation and annihilation operators, respectively.
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6 1 Introduction

1.2
Second Quantization and Fock States

For a system in which the number of particles is variable, it is essential to introduce
creation and destruction operators. However, it is also possible to do so when the
number of particles is conserved. In that case, of course, the perturbation operators
will contain an equal number of creation and destruction operators. In that case,
it is customary to describe the procedure as “second quantization”. First quantiza-
tion replaces classical mechanical equations of motion, and second quantization
replaces a Hamiltonian containing one-body forces, two-body forces, and so on by
a Hamiltonian that is bilinear in creation and destruction operators, quadratic in
creation and destruction operators, and so on. Nothing new is added, but the com-
mutation rules of the creation and destruction operators make the bookkeeping
of the states simpler than using permanents or determinants for the Schrödinger
wave functions. For Bose particles, second quantization was developed by Dirac [1],
and extended to Fermi particles by Wigner and Jordan [2]. A more detailed discus-
sion is given by Fock [3] and by Landau and Lifshitz [4].

1.3
The Boson Case

It is simplest to describe the relation between the Schrödinger description and the
second quantized description by assuming that we have a set of N non-interacting
particles that can occupy any one of a set of orthonormal states φn(xi ). Besides, if
the particles do not interact, the wave function can be a product of the φn that are
occupied. In addition, (for Boson statistics) the wave function must be symmetric
with respect to exchange of any two particles. If there are N1 particles in state φ1,
N2 in φ2 for a total N D P

i Ni of particles, the wave function can be written in
the form

Ψ (N1, N2, � � � ) D
r

N1!N2! � � �
N !

X
φ p1 (x1) φ p2 (x2) � � � φ pN (xN ) , (1.20)

where p1, p2, . . . , pN is any set of occupied states (such as p1 D 1, p2 D 3, p3 D 4,
etc.). These indices must not all be different since some states can be multiply
occupied. However, where they are distinct, the sum must be taken over all permu-
tations of the distinct indices. Since the number of ways of placing N1 particles (out
of N) in one box, N2 in a second and so on is given by N !/(N1!N2! � � � ). The prefac-
tor in Eq. (1.20) is added to preserve normalization. We can refer to Ψ (N1, N2, � � � )
as a Fock state with N1 particles in φ1(x ), N2 in φ2(x ), and so on.

We then introduce creation and destruction operators B†
i and B j defined by

B†
i Ψ (N1, � � � , Ni , � � � ) D

p
Ni C 1Ψ (N1, � � � , Ni C 1, � � � ) , (1.21)

and

B j Ψ
�
N1, � � � , N j , � � �

� D pN j Ψ
�
N1, � � � , N j � 1, � � � � . (1.22)
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1.3 The Boson Case 7

The principal simplification of second quantization is that a one-body operator

V D
X

a

V (r a) , (1.23)

which can take Ψ (Ni � 1, Nk ) into Ψ (Ni , Nk � 1) by “destroying” a particle in state
k and creating one in state i in the Schrödinger permanent wave functions can be
much more easily calculated when the operator

OV D Vi k B†
i Bk (1.24)

acts on the Fock states. In particular, the matrix elementZ
d3r Ψ � (Ni , Nk � 1) OV Ψ (Ni � 1, Nk )

D
Z

d3r Ψ � (Ni , Nk � 1) Vi k B†
i Bk Ψ (Ni � 1, Nk )

D
p

Ni Nk Vi k , (1.25)

where the first integral is over the Schrödinger space dxl dx2 � � � dxN . The second
one is thought of in terms of creation and destruction operators in a space de-
scribed by the number set fN j g, and the matrix element

Vi k D
Z

d3rφ�
i (r) V (r) φk (r) (1.26)

is the usual one-body matrix element in the Schrödinger representation.
Landau and Lifshitz [4] do not derive this result. They merely state that “The

calculation of these matrix elements is, in principle, very simple, it is easier to do it
oneself than to follow an account of it.” It would be unfair to leave the matter there:
Landau knows how to do it; let it be an exercise for the reader.

We can make the answer plausible by showing that the right-hand side of
Eq. (1.25) is a product of four factors:

P �
�

(Ni � 1)!Nk !
(Ni C Nk � 1)!

�1/2 � Ni ! (Nk � 1)!
(Ni C Nk � 1)!

�1/2

Vi k M . (1.27)

The first factor comes from the normalization factor of the initial state, and the
second from the normalization of the final state. Factors involving N j for j ¤ i or
k are ignored since they merely contribute to the normalization of the remaining
states. A single product of φs for the initial state, a product for the final state and
one V(r a) give rise to a term Vi k or zero. The factor M is simply the number of
such non-vanishing terms. Since each V(r a) for a D 1, 2, . . . , N makes the same
contribution, M contains a factor N D (Ni � 1) C Nk D Ni C (Nk � 1), the total
number of particles in these two states (in either the final or the initial states). For
a given V(ra ), the factor

R
d3r a φ�

i (r a)V(ra )φk (ra ) appears and one particle is used
up. The remaining N � 1 D Ni C Nk � 2 particles must now be distributed with
Ni � 1 in the ith state and Nk � 1 in the kth state. Thus,

M D N
(N � 1)!

(Ni � 1)! (Nk � 1)!
, (1.28)
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8 1 Introduction

where the first factor, N D NiCNk�1, is the number of terms in the sum
P

a V(ra )
and the second factor is the number of ways of distributing N � 1 particles in two
states with Ni � 1 in the first state and Nk � 1 in the second state. Finally,

P D
p

Ni Nk
(Ni � 1)! (Nk � 1)!

(Ni C Nk � 1)!
Vi k

(Ni C Nk � 1)!
(Ni � 1)! (Nk � 1)!

D
p

Ni Nk Vi k . (1.29)

The matrix elements in Eqs. (1.21) and (1.22) are such as to insure the commu-
tations rules

[Bi , B j ]� D [B†
i , B†

j ]� D 0 , [Bi , B†
j ]� D δ i j . (1.30)

A natural generalization of Eq. (1.25) to two-body operators implies the replace-
ment: X

a>b

W (ra , r b)!
X

W i k
l m B†

i B†
k Bl Bm . (1.31)

A compact statement of these commutation rules in Eq. (1.30) can be obtained by
introducing an operator ψ(r) in the form

ψ (r) D
X

i

Bi φ i (r) , ψ† (r) D
X

i

B†
i φ�

i (r) . (1.32)

Then, the “Schrödinger operators”, ψ(r) and ψ†(r0), obey the commutation rules�
ψ (r) , ψ

�
r 0��

� D
�
ψ† (r) , ψ† �r0��

� D 0 , (1.33)

�
ψ (r) , ψ† �r 0��

� D
X
i, j

φ i (r) φ�
j

�
r 0� δ i j D δ

�
r � r 0� , (1.34)

where the δ i j arises from Eq. (1.30) and the Dirac delta function follows from the
completeness.

The second quantized Hamiltonian of a boson system with one and two-body
forces can be written in the form

OH D
Z

d3r
� „2

2m
rψ† (r) � rψ (r)C V (r) ψ† (r) ψ (r)

�

C 1
2

Z
d3r

Z
d3r 0ψ† (r) ψ† �r0� W

�
r , r 0� ψ

�
r 0� ψ (r) . (1.35)

In addition to the correspondenceX
a

V (r a)!
X
i,k

Vi k B†
i Bk (1.36)

for one-body forces, we have a similar correspondence for two-body forces:X
a>b

W (ra , r b)!
X

i,kIl,m

W i k
l m B†

i B†
k Bl Bm , (1.37)
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1.4 The Fermion Case 9

where

W i k
l m D

Z
d3r

Z
d3r 0φ�

i (r)φ�
k (r0)W(r, r 0)φ l(r)φm(r0) . (1.38)

We note that the commutation rules, Eqs. (1.30), (1.33), and (1.34) for bosons are
the same as the ones we are familiar with for harmonic oscillators and phonons,
which are of course bosons.

1.4
The Fermion Case

In the fermion case, the Pauli principle requires that the wave function be antisym-
metric. The simplest example of a set of independent fermions is then described
by a determinant

Ψ (N1, N2, � � � ) D

ˇ̌̌
ˇ̌̌
ˇ̌
φ p1 (r1) φ p1 (r2) � � � φ p1 (r N )
φ p2 (r1) φ p2 (r2) � � � φ p2 (r N )
� � � � � � � � � � � �

φ pN (r1) φ pN (r2) � � � φ pN (r N )

ˇ̌̌
ˇ̌̌
ˇ̌ (1.39)

in terms of the set of functions φ i (r). The latter are usually taken as members of a
complete set of eigen-functions of the one-body Hamiltonian. Here, N is the total
number of eigen-functions appearing in the determinant, that is, the total number
of occupied states. The set of numbers p1, p2, � � � , pN are some chosen ordering
of the set fig. To make the sign of the determinant unique, a fixed order must be
chosen. It is conventional to choose the ordering

p1 < p2 < p3 < � � � < pN . (1.40)

This is not necessary, but a fixed choice must be maintained in the ensuing discus-
sion.

The result of second quantization for fermions will look similar to that for bosons
in the sense that Eq. (1.32) is replaced by

ψ (r) D
X

i

Fi φ i (r) , ψ† (r) D
X

i

F†
i φ�

i (r) , (1.41)

where the boson operators Bi have been replaced by the fermion operators Fi .
With this change, Eqs. (1.35)–(1.38) remain valid. However, fermion states can have
occupancies only of Ni D 0 or Ni D 1. This is accomplished by the use of anti-
commutation rulesh

Fi , F†
j

i
C
D δ i j ,

�
Fi , F j

�
C D 0 ,

h
F†

i , F†
j

i
C
D 0 (1.42)

rather than the commutation rules used in the boson case. In particular, Eqs. (1.33)
and (1.34) are replaced by

[ψ(r), ψ(r 0)]C D [ψ†(r), ψ†(r0)]C D 0 , (1.43)
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10 1 Introduction

[ψ(r), ψ†(r 0)]C D δ(r � r 0) , (1.44)

which follows directly from Eq. (1.42).
To see that the anti-commutation rules, Eq. (1.42), accomplish the desired objec-

tives, we first consider a single state φ i(r) with operators Fi and F†
i , and omit the

index i.

F 2 D 0 ,
�
F†�2 D 0 . (1.45)

Let N D F†F . Then,

N 2 D �F†F
�2 D F† F F†F D F† �1� F†F

�
F

D F† F � �F†�2
F 2 D F†F � 0 D N (1.46)

so that

N D 1 or N D 0 . (1.47)

Consider the eigenstates of N:

N Ψ0 D 0Ψ0 or N Ψ1 D Ψ1 . (1.48)

Then, is F†Ψ0 also an eigenstate of N?�
F†F

�
F† Ψ0 D F† �1 � F†F

�
Ψ0

D F† Ψ0 �
�
F†�2

F Ψ0 . (1.49)

Therefore,

N F†Ψ0 D 1
�
F† Ψ0

�
, (1.50)

that is, F†Ψ0 is proportional to Ψ1. Evaluate the normalization:Z
d3r

�
F†Ψ0

�� �
F†Ψ0

� D Z d3r , Ψ �
0 F F†Ψ0

D
Z

d3r Ψ �
0

�
1� F†F

�
Ψ0 D 1 . (1.51)

Therefore, F† Ψ0 is normalized and we can choose

F†Ψ0 D Ψ1 . (1.52)

Similarly,

F F† (F Ψ1) D F
�
1 � F F†�Ψ1 D F Ψ1 . (1.53)

Therefore, F Ψ1 is an eigenvector of F F † D 1� F†F with eigenvalue one or eigen-
vector of F†F with eigenvector zero. By a similar procedure to Eq. (1.28), F Ψ1 is
normalized and we choose

F Ψ1 D Ψ0 . (1.54)
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1.4 The Fermion Case 11

Note that

F Ψ0 D F 2Ψ1 D 0 , (1.55)

F†Ψ1 D
�
F†�2

Ψ0 D 0 . (1.56)

The above discussion has established that the anti-commutation rules generate a
set of states with occupancies zero and one. The full correspondence between first
and second quantization requires that we establish the analogue of Eq. (1.36):

V D
X

a

V (r a)!
X

i k

Vi,k F†
i Fk . (1.57)

This involves the matrix element of the one-body operator V between two determi-
nantal states. In effect, a transition in which a fermion in state k is destroyed and
one in state i is created was found to have the matrix elementZ

d3r Ψ � (Ni , Nk � 1) V Ψ (Ni � 1, Nk ) D Vi k (1.58)

between determinantal states.
[4, Eq. (61.3)] allege (without proof) that the result in Eq. (1.58) should instead beZ

d3r Ψ � (Ni , Nk � 1) V Ψ (Ni � 1, Nk ) D Vi k (�1)Σ , (1.59)

where the symbol

Σ D
k�1X

j DiC1

N j . (1.60)

This discrepancy can be resolved as follows. In our calculation, we obtained the fi-
nal wave function (before anti-symmetrization) from the initial wave function sim-
ply by replacing φk (r a) with φ i (r b). However, this procedure does not preserve the
chosen ordering, Eq. (1.40). To restore the chosen ordering, one must interchange
row i and k in the final determinant. These gain a factor (�1)Σ where Σ is the
number of occupied states between i and k.

To maintain the validity of Eq. (1.57), the operator Fk takes the state Nk D 1 into
Nk D 0 with an extra factor

Fk Ψ (Nk D 1) D ηk Ψ (Nk D 0) , (1.61)

and

F†
k Ψ (Nk D 0) D η�

k Ψ (Nk D 1) . (1.62)

The anti-commutator [Fk , F†
k ]C is unchanged as long as jηk j2 D 1. If we define

ηk D
k�1Y
j D1

(�1)N j , (1.63)
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12 1 Introduction

then F†
i Fk acquires just the extra factor (�1)

P
(iC1,k�1) demanded by Eq. (1.59).

Moreover, it is easy to see why

Fm Fn D �Fn Fm (1.64)

because one of m , n (say m) is higher in the sequence of states. Then, the matrix
for Fm in Fm Fn is reversed in sign because Fn has acted and eliminated the state n
below m. In the reverse order, Fn Fm , Fn is unaffected by the elimination of state
m above it. Hence, the two orders differ by a factor �1 to yield the desired anti-
commutation rule. These remarks are stated clearly in [5].

1.5
The Hamiltonian of Electrons

We first consider the case of a single electron, or of a set of non-interacting elec-
trons. The Hamiltonian can be written in the form:

H D
Z

d3r ψ† (r) U (r) ψ (r) . (1.65)

Here, ψ(r) and ψ†(r) are regarded as operators that can be expanded in an arbitrary
orthonormal set φn(r):

ψ (r) D
X

n

cn φn (r) , (1.66)

ψ† (r) D
X

m

c†
m φ�

m (r) . (1.67)

The Hamiltonian then takes the form

H D
X
m ,n

c†
m

Z
d3r φ�

m (r) U (r) φn (r) cn

D
X
m ,n

c†
mhmjUjnicn , (1.68)

where hmjUjni represents the matrix for destruction of electrons in n and its cre-
ation in m. If the original Schrödinger equation is�

� „
2

2m�r2 C V (r)
�

φ D E φ , (1.69)

where m� represents the mass of an electron, then U is the operator defined by

U D � „
2

2m
r2 C V (r) , (1.70)

whose matrix element is

hmjUjni D
Z

d3r φ�
m (r)

�
� „

2

2m�r2 C V (r)
�

φn (r) D Umn . (1.71)



�

�
Godfrey Gumbs and

Danhong Huang: Properties of Interacting
Low-Dimensional Systems — Chap. gumbs8948c01 — 2011/3/31 — page 13 — le-tex

�

�

�

�

�

�

1.6 Electron–Phonon Interaction 13

To best understand the eigenstates of the operator

H D
X
m ,n

Umn c†
m cn , (1.72)

we can choose the φn to be the eigenstates of U with eigenvalues En . Then,

Umn D Em δmn , (1.73)

H D
X

n

En c†
n cn . (1.74)

The Hilbert vector Ψ that is an eigenvector of H will then simply be described by a
set of occupancies zero or one of each N D c†

n cn , for example, j0,1,0,0,1,1,0,1,. . .i.
To solve the Schrödinger equation H Ψ D E Ψ , we can writeX

m ,n

�
c†

m cnUmn
�

Ψ D E Ψ . (1.75)

1.6
Electron–Phonon Interaction

Following Callaway [6] the Hamiltonian is written as an electron energy, plus a
phonon energy, plus an electron–phonon interaction:

H D
X
k ,σ

Ek c†
k σck σ C

X
q

„ωq a†
q aq

C
X
k ,q,σ

h
D(q)c†

kCq,σck σaq C D(�q)c†
k�q,σck σa†

q

i
. (1.76)

Quasi-momentum conservation is built into the above expression and σ is the in-
dex for electron spin. The original form for phonon absorption was

Vk 0k δk 0,kCq c†
k 0σ ck σaq . (1.77)

We assume that the potential is local so that Vk 0k D Vk 0�k . There are also screened
Coulomb electron–electron terms that we ignore here. These have the form

Z
d3r1 � � �

Z
d3r n Ψ � (r1, � � � , r n)

1
2

nX
i¤ j D1

W
�
r i � r j

�
Ψ (r1, � � � , rn) ,

(1.78)

corresponding to the many-body wave-function energy. If we insert ψ (r) DP
j c j φ j (r) which expresses the operators ψ(r) in terms of the c j operators,

we get

Htwo-body D 1
2

X
i,kIl,m

c†
i c†

khk ljW jmlic l cm , (1.79)

which is a representation of two-body interactions in second quantized form.



�

�
Godfrey Gumbs and

Danhong Huang: Properties of Interacting
Low-Dimensional Systems — Chap. gumbs8948c01 — 2011/3/31 — page 14 — le-tex

�

�

�

�

�

�

14 1 Introduction

1.7
Effective Electron–Electron Interaction

In an electromagnetic field, the charge-1 acts on the field and the field acts on
charge-2. If we can eliminate the field, we obtain a direct interaction between
charge-1 and charge-2. Here, the field is the phonon field. After we eliminate the
electron–phonon interaction, we should obtain an effective electron–electron inter-
action.

Let

H D H0 C H1 , (1.80)

where H1 is the interaction Hamiltonian. The transformed Hamiltonian

HT D e�i S H ei S

D H C i [H, S ] � 1
2

[[H, S ], S ]C � � �

D H0 C H1 C i [H0, S ]C i [H1, S ] � 1
2

[[H0, S ], S ]C � � � (1.81)

to second order of S. To dispose of H1 to lowest order, we set

H1 C i [H0, S ] D 0 , i.e., [H0, S ] D i H1 . (1.82)

Then,

HT D H0 C i [H1, S ] � i
2

[H1, S ] D H0 C i
2

[H1, S ] . (1.83)

Let jmi and jni be energy eigenstates of the complete system of electrons and
phonons. Then, we get

hmj[H0, S ]jni D ihmjH1jni , and hmjH1jmi D 0 ,

(Em � En) Smn D ihmjH1jni ,

Smn D hmjH1jni
Em � En

, for m ¤ n . (1.84)

However,

hnq � 1jaq jnqi D n1/2
q , hnq C 1ja†

q jnqi D
�
nq C 1

�1/2 . (1.85)

Writing S as operators cs (electronic part) and as a matrix in the vibrational part,
we obtain

hnq � 1jS jnqi D i
X
k ,σ

D(q)c†
kCq,σck σ n1/2

q

E (k C q)� E(k)� „ωq
. (1.86)
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1.7 Effective Electron–Electron Interaction 15

Here, a phonon of wave vector q is absorbed and an electron is scattered from k to
k C q at the same time, that is,

hnq C 1jS jnqi D i
X
k ,σ

D(�q)c†
k�q,σck σ

�
nq C 1

�1/2

E (k � q)� E(k)� „ωq
. (1.87)

In Eq. (1.87), a phonon of wave vector q is created and an electron is scattered from
k to k � q at the same time.

We are concerned with the effective second-order interaction

i
2

[H1, S ]

and by this we mean the part diagonal in the phonon numbers. (The off-diagonal
elements can be transformed away to give still higher-order interactions). We can
write

hnq j i2 [H1, S ]jnqi D i
2

X˚hnq jH1jnq ˙ 1ihnq ˙ 1jS jnqi
� hnq jS jnq ˙ 1ihnq ˙ 1jH1jnqi

�
, (1.88)

where the intermediate states jnq ˙ 1i are summed over. We write out one term
explicitly:

i
2

˝
nq jH1j nq � 1

˛ ˝
nq � 1 jS j nq

˛
D i

2

X
k 0,σ0

D(�q)n1/2
q c†

k 0�qσ0 ck 0σ0
X
k ,σ

i D(q)c†
kCq,σck σ n1/2

q

E(k C q)� E(k)� „ωq

D �1
2

X
k ,k 0Iσ,σ0

jD(q)j2c†
k 0�q,σ0 ck 0σ0 c†

kCqσck σ

E(k C q)� E(k)� „ωq
, (1.89)

where D(�q) D D�(q). Callaway’s Eq. (7.8.5) [6] states that the four terms combine
to give

H1 D
X

k ,k 0,qIσ,σ0

jD(q)j2„ωq

[E(k)� E(k � q)]2 � �„ωq
�2

� c†
k�qσ c†

k 0Cqσ0 ck 0σ0 ck σ . (1.90)

With the replacement k ! k C q, we get

H1 D
X

k ,k 0,qIσ,σ0

jD(q)j2„ωq

[E(k C q)� E(k)]2 � („ωq)2

� c†
k σ c†

k 0Cqσ0 ck 0σ0 ckCqσ . (1.91)

Note that the effective Hamiltonian is independent of temperature. For E(k)�E(k�
q) < „ωq , the interaction becomes attractive.
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16 1 Introduction

An alternate derivation of the above H1 is obtained in a semiclassical way by
Rickayzen [7, p. 117–121], by considering an electron fluid and an ion fluid and
retarded interactions between the two components.

We will be dealing with systems of many interacting particles and, as a result,
we need to include the inter-particle potential in the Schrödinger equation. This
problem is the basis of the present book. The N-particle wave function in configu-
ration space contains all the possible information. However, a direct solution of the
Schrödinger equation is not practical. We therefore need other techniques which
involve (a) second quantization, (b) quantum field theory, and (c) Green’s functions.

Second quantization describes the creation and annihilation of particles and
quantum statistics as well as simplifying the problem of many interacting parti-
cles. This approach reformulates the Schrödinger equation. The advantage it has
is that we avoid the awkward use of symmetrized and anti-symmetrized product
of single-particle wave functions. With the method of quantum field theory, we
avoid dealing with the wave functions and thus the coordinates of all the particles –
bosons and fermions.

Green’s functions can be used to calculate many physical quantities such as
(1) the ground state energy, (2) thermodynamic functions, (3) the energy and life-
time of excited states, and (4) linear response to external perturbations. The exact
Green’s functions are also difficult to calculate which means we must use pertur-
bation theory. This is presented with the use of Feynman diagrams. This approach
allows us to calculate physical quantities to any order of perturbation theory. We
use functional derivative techniques in the perturbation expansion of the Green’s
function determined by the Dyson equation and show that only linked diagrams
contribute. Wick’s theorem which forms all possible pairs of the field operators is
not used in this approach.

1.8
Degenerate Electron Gases

We now illustrate the usefulness of the second quantization representation by ap-
plying it to obtain some qualitative results for a metal. The simple model we use is
that of an interacting electron gas with a uniform positive background so that the
total system is neutral. We ignore the motion of the ions/positive charge. We do
not consider any surface effects by restricting our attention to the bulk medium.
We insert the system into a large box of side L and apply periodic boundary condi-
tions; this ensures invariance under spatial translations of all physical quantities.
The single-particle states are plane waves

'k ,λ (x ) D 1
L3/2

e i k�x ηλ , η" D
	

1
0



, η# D

	
0
1



, (1.92)

where ki D 2πni /L, ni D 0,˙1,˙2, . . . The total Hamiltonian is

H D He C He�b C Hb , (1.93)
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1.8 Degenerate Electron Gases 17

where

He D
NX

iD1

p 2
i

2m� C
e2

2

NX
i¤ j D1

e��jx i �x j j

jx i � x j j , (1.94)

Hb D e2

2

Z
d3x

Z
d3x 0 n (x ) n (x 0)

jx � x 0j e��jx�x 0j , (1.95)

He�b D �e2
NX

iD1

Z
d3x n (x )

e��jx�x i j

jx � x i j . (1.96)

Here, � is the inverse screening length required for convergence of the integrals.
Individual integrals diverge in the thermodynamic limit N !1, V !1 but n D
N/V is a constant. The sum of the three terms must however remain meaningful
in this limit. For a uniform positive background n (x ) D N/V , we have

Hb D e2

2

	
N
V


2 Z
d3x

Z
d3x 0 e��jx�x0j

jx � x 0j

D e2

2

	
N
V


2 Z
d3x

Z
d3x 00 e��x 00

x 00

D e2

2
N 2

V
4π
�2 , (1.97)

He�b D �e2
NX

iD1

	
N
V


Z
d3x

e��jx�x i j

jx � x i j

D �e2
NX

iD1

	
N
V


Z
d3x

Z
d3x 00 e��x 00

x 00

D �e2 N 2

V
4π
�2 . (1.98)

Therefore, the total Hamiltonian is

H D � e2

2
N 2

V
4π
�2„ ƒ‚ …

a C-number

CHe . (1.99)

Forming a linear combination of the creation and destruction operators as

Oψ (x ) D
X
k,λ

'k ,λ (x ) Oak ,λ , Oψ†(x) D
X
k,λ

'�
k ,λ (x ) Oa†

k,λ , (1.100)

we rewrite He in second quantized form and the total Hamiltonian is

H D � e2

2
N 2

V
4π
�2 C

X
k,λ

„2 k2

2m� Oa
†
k ,λ Oak,λ

C e2

2V
X
k1,λ1

X
k2,λ2

X
k3,λ3

X
k4,λ4

δλ1,λ3 δλ2,λ4 δk1Ck2,k3Ck4

� 4π
jk1 � k3j2 C �2

Oa†
k1,λ1
Oa†

k2,λ2
Oak4,λ4 Oak3,λ3 . (1.101)
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18 1 Introduction

By changing variables in the potential energy term to k, p and q, where k1 D kC q,
k2 D p � q, k3 D k and k4 D p , it becomes

P.E. D e2

2V
X
k ,p ,q

X
λ1,λ2

4π
q2 C �2

Oa†
kCq,λ1

Oa†
p�q,λ2

Oa p ,λ2 Oak ,λ1

D e2

2V
X

k ,p ,q¤0

X
λ1,λ2

4π
q2 C �2 Oa

†
kCq,λ1

Oa†
p�q,λ2

Oa p ,λ2 Oak,λ1

C e2

2V
X
k ,p

X
λ1,λ2

4π
�2 Oa

†
k ,λ1
Oa†

p ,λ2
Oa p ,λ2 Oak,λ1

„ ƒ‚ …
e2
2V

4π
�2
P

k ,λ1

P
p ,λ2 Oa†

k,λ1
Oak,λ1

�
Oa†

p ,λ2
Oa p,λ2 �δk p δλ1λ2

�
, (1.102)

where we separated the potential energy term into two terms corresponding to
q D 0 and q ¤ 0. The q D 0 term can be further simplified as

e2

2V
4π
�2

� ON 2 � ON
�

, (1.103)

where ON is the number operator. The ground state expectation value of Eq. (1.103)
is

e2

2
N 2

V
4π
�2 �

e2

2
N
V

4π
�2 , (1.104)

where the first term in Eq. (1.104) cancels the first term of the Hamiltonian in
Eq. (1.99) and the second term in Eq. (1.104) gives �(e2/2)(4π/V�2) as an ener-
gy per particle. This second term vanishes when the thermodynamic limit is taken
first. Therefore, the Hamiltonian for a bulk electron gas in a uniform positive back-
ground is

H D
X
k ,λ

„2 k2

2m� Oa
†
k,λ Oak ,λ C 2πe2

V
X

k,p ,qD¤0

X
λ1,λ2

1
q2
Oa†

kCq,λ1
Oa†

p�q,λ2
Oa p ,λ2 Oak ,λ1 ,

(1.105)

where we have now safely set � D 0.

1.9
Ground-State Energy in the High Density Limit

Let us denote the Bohr radius by a0 D „2/m�e2 and the inter-particle spacing by r0

so that 4/3πr3
0 D V/N . Also, set rs D r0/a0 so that rs ! 0 in the high density limit.
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1.9 Ground-State Energy in the High Density Limit 19

Setting NV D V/r3
0 ( NV is fixed for given N) and Nk D k r0, we rewrite Eq. (1.105) as

H D e2

a0r2
s

8<
:1

2

X
k ,λ

k
2 Oa†

k ,λ
Oak ,λ

C 2πrs

NV
X

Nk,Np ,Nq¤0

X
λ1,λ2

1
Nq2 Oa

†
NkCNq,λ1

Oa†
Np�Nq,λ2

Oa Np ,λ2 Oa Nk ,λ1

9=
; . (1.106)

Therefore,
1. The potential energy is a small perturbation of the kinetic energy in the high

density limit, that is, rs ! 0, of an electron gas.
2. The leading term of the interaction energy of a high density electron gas can be

obtained using first order perturbation theory even though the potential is not
weak or short-ranged.

3. The ground state energy is given by

EGS D e2

a0r2
s

˚
a C brs C cr2

s ln rs C dr2
s C � � �

�
, (1.107)

where a, b and c are numerical constants. As a matter of fact, the “a” term cor-
responds to the ground state energy E (0) of a free Fermi gas, the “b” term gives
the first-order energy shift E (1).

It is fairly straightforward to obtain E (0) and E (1), though we need advanced tech-
niques to obtain the coefficients c and d. Denote the Fermi wave vector by kF D
(3π2N/V)1/3 D (9π/4)1/3r�1

s so that

E (0) D „2

2m�
X
k ,λ

k2θ (kF � k) D „2

2m� � 2 �
V

(2π)3

Z
d3 k k2θ (kF � k)

D e2

2a0

N
r2

s

3
5

	
9π
4


2/3

,

(1.108)

where θ (x ) is the unit step function. Thus, for a free Fermi gas, the ground state
energy per particle is E (0)/N D 2.21/r2

s Ry where e2/2a0 D 13.6 eV is 1 Ry. We now
calculate the first-order correction to E (0), that is,

E (1) D 2πe2

V
X

k,p ,q¤0

X
λ1,λ2

1
q2 hgj Oa

†
kCq,λ1

Oa†
p�q,λ2

Oa p ,λ2 Oak ,λ1 jgi, (1.109)

where jgi is the ground state for non-interacting electrons. The states (k, λ1) and
(p , λ2) must be occupied, and the states (k C q, λ1) and (p � q, λ2) must also be
occupied. Therefore, we must have either

either (a)



(k C q, λ1) D (k, λ1)
(p � q, λ2) D (p , λ2)

or (b)



(k C q, λ1) D (p , λ2)
(p � q, λ2) D (k, λ1)

. (1.110)
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20 1 Introduction

The choice given as (a) is forbidden since q ¤ 0 and the matrix element in
Eq. (1.109) is

hgj � � � jgi D δ p ,kCq δλ1λ2hgj Oa†
kCq,λ1

Oa†
k ,λ1
OakCq,λ1 Oak ,λ1 jgi

D �δ p,kCq δλ1λ2hgj OnkCq,λ1 Onk,λ1 jgi
D �δ p,kCq δλ1λ2 θ (kF � k) θ (kF � jk C qj) , (1.111)

so that

E (1) D �2πe2

V
X

λ

X
k,q¤0

1
q2 θ (kF � k) θ (kF � jk C qj)

D � e2

2a0

N
rs

3
2π

	
9π
4


1/3

. (1.112)

Thus, by combining the results for E (0) and E (1), we obtain the energy per particle
in the limit as rs ! 0 to be given by

lim
rs!0

EGS

N
� e2

2a0



2.21
r2

s
� 0.916

rs
C � � �

�
. (1.113)

The first term is the kinetic energy of the Fermi gas of electrons and dominates in
the high density limit. The second term is the exchange energy term. It is negative
and arises from the antisymmetry of the wave function. The direct part arises from
the q D 0 part of the Hamiltonian and cancels the Hb C He�b terms as a result of
charge neutrality.

The exchange term is not the total that arises from the electron–electron interac-
tion. All that is left out is called the correlation energy. The leading contribution to
the correlation energy of the degenerate electron gas will be obtained using Feyn-
man graph techniques. However, we note that EGS/N has a minimum at a nega-
tive value of the energy, that is, the system is bound, as shown in Figure 1.2. The
Rayleigh–Ritz variational principle tells us that the exact ground state energy of a
quantum mechanical system always has a lower energy than that evaluated using
a normalized state for the expectation value of the Hamiltonian. The exact solution
must also be that for a bound system with energy below our approximate solution
and the binding energy is that of vaporization for metals.

1.10
Wigner Solid

The energy of the Fermi gas can be lowered if the electrons crystallize into a Wign-
er solid. The range of values of rs for metals is 1.8 . rs . 6.0. At low densities,
Wigner suggested that the electrons will become localized and form a regular lat-
tice. This lattice could be a closed packed structure such as bcc, fcc or hcp. The
electrons would vibrate around their equilibrium positions and the positive charge
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1.10 Wigner Solid 21

E/N 
(In units of 
e2/2a0)

Wigner solid

Binding energy 

System is in equilibrium

rs  4.83

 – 0.100

– 0.095

0
rs

Figure 1.2 The energy per particle as a function of a dimensionless density parameter rs , where
rs ! 0 corresponds to the high density limit, while rs ! 1 corresponds to the low density
limit.

is still spread out in the system. The vibrational modes of the electrons would be at
the plasmon frequency. For large rs , the potential energy is much larger than the
kinetic energy and there could be localization. In our discussion, the unit cell is tak-
en as a sphere of radius rs a0 with the electron at the center. The total charge within
the sphere is zero. Outside each sphere, the electric field is zero and consequently
the spheres do not exert any electric fields on each other.

The potential energy between the electron and the uniform positive background
is

Ee�b D n
Z

d3r
	�e2

r



D � 3e2

r3
s a3

0

rs a0Z
0

r d r D � 3
rs

	
e2

2a0



. (1.114)

The potential energy due to the interaction of the positive charge with itself is
obtained as follows. Let V(r) be the potential energy from the positive charge at
distance r from the center. The electric field is E(r) where

eE(r) D �@V(r)
@r
D e2

r2 n
	

4
3

πr3


D
	

e2

r3
s a3

0



r . (1.115)

Integrating to obtain V(r) gives a constant of integration. This is obtained by ob-
serving that the total potential from the electron and positive charge must vanish
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22 1 Introduction

on the surface of the sphere and we obtain

V(r) D 1
rs

"
3�

	
r

rs a0


2
#

e2

2a0
. (1.116)

The interaction of the positive charge with itself is found by using

Eb�b D n
2

Z
d3rV(r) D 6

5rs

	
e2

2a0



. (1.117)

Therefore, the total potential energy for the Wigner lattice in the Wigner–Seitz ap-
proximation is

Ee�b C Eb�b D �1.8
rs

	
e2

2a0



. (1.118)

This is larger than the exchange contribution for the free particle system. This
system has gained energy by the localization of the electrons. Stroll has calculated
the actual energy for several lattices. His results, expressed as �A/rs , in unit of
(e2/2a0) are given as follows:

Lattice A

sc 1.76

fcc 1.79175

bcc 1.79186
hcp 1.79168

1.11
The Chemical Potential of an Ideal Bose Gas and Bose–Einstein Condensation

For non-interacting bosons of energy εk D „2 k2/2m�, the total number at temper-
ature T (� D 1/(kB T )) is

N
V
D g

(2π)3

1Z
0

dk4πk2 1

e�(εk �μ) � 1

D g
4π2

	
2m�

„2


3/2 1Z
0

dε
ε1/2

e�(ε�μ) � 1
, (1.119)

where g is the degeneracy and μ is the chemical potential. We must have ε� μ � 0
since the mean occupation number must be positive for all energies. However,
since we can have ε D 0, then μ � 0. If a classical limit is taken with

μ
kBT

! �1 , (1.120)
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then we get

N
V
! g

4π2

	
2m�

„2


3/2 1Z
0

dεε1/2e�(μ�ε)

D ge�μ
	

m�kBT
2π„2


3/2

, (1.121)

which is the result of the Boltzmann distribution, where
R1

0 dx x2e�x2 D pπ/4
is used. Solving this equation for μ, we obtain

μ
kBT

D ln

"
N
gV

	
2π„2

m�kB T


3/2
#

. (1.122)

A plot of this classical result is shown in Figure 1.3.
If T0 is the temperature where μ D 0, then Eq. (1.119) gives

N
V
D g

4π2

	
2m�

„2


3/2 1Z
0

dε
ε1/2

eε/(kBT0) � 1
. (1.123)

The question which we now answer is what is the value of μ for T < T0. If μ D 0
for T < T0, the integral in Eq. (1.119) is less than N/V in Eq. (1.123) because the
value of the denominator is increased relative to its value at T0 and the full value of
N/V will not be reproduced. This can be rectified if we treat the system as follows.
Below T0, the system consists of two components: (1) particles occupying the zero
momentum state with a mean occupation number N0, and (2) particles occupying
the excited state. This leads to

N
V
D N0

V
C g

4π2

	
2m�

„2


3/2 1Z
0C

dε
ε1/2

eε/ kBT � 1
, (1.124)

which gives N0/V D (N/V)[1 � (T/T0)3/2] for T < T0. Experimentally, it has been
found that liquid He4 has a phase transition at 2.2 K. Below that temperature, it acts

/kBT

ln[ (N/gV) (2 2/m*kBT)3/2 ]B

T

Figure 1.3 μ/(kB T ) D ln[(N/gV)(2π„2/(m�kB T ))3/2] of a Bose gas as a function of T for fixed
N/V in the classical limit.
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24 1 Introduction

like a mixture of superfluid and normal fluid. This discussion illustrates the Bose–
Einstein condensation of the ideal Bose gas and thus gives a qualitative description
of He4. Inter-particle interactions play a key role in the properties of quantum fluids
such as liquid He4.

1.12
Problems

1. Show that�
ψ(x ), ψ† �x 0� ψ

�
x 00�� D δ

�
x � x 0� ψ

�
x 00��

ψ†(x ), ψ† �x 0� ψ
�
x 00�� D �δ

�
x � x 00� ψ† �x 0� ,

where ψ(x ) is a Boson field or a fermion field.

2. Show that for a fermion field�
ψ(x ), ψ† �x 0� ψ† �x 00� ψ

�
x 000� ψ

�
x 0000��

D δ
�
x � x 0�ψ† �x 00� ψ

�
x 000� ψ

�
x 0000�

� δ
�
x � x 00� ψ† �x 0�ψ

�
x 000� ψ

�
x 0000�

and�
ψ†(x ), ψ† �x 0� ψ† �x 00� ψ

�
x 000�ψ

�
x 0000��

D δ
�
x � x 000� ψ† �x 0� ψ† �x 00� ψ

�
x 0000�

� δ
�
x � x 0000� ψ† �x 0� ψ† �x 00�ψ

�
x 000� .

3. Show that for fermions

[ak 0 ak 00 , a†
k 000 ak 0000 ]� D δ

�
k00 � k000� ak 0 ak 0000 � δ

�
k0 � k000� ak 00 ak 0000 .

4. a) Starting with the commutation relation [a, a†] D 1 for bosonic creation a†

and annihilation a operators, show that�
a† a, a

� D �a ,
�
a† a, a†� D a† .

Using this result, show that if jαi represents an eigenstate of the operator
a† a with eigenvalue α, ajαi is also an eigenstate with eigenvalue α � 1
(unless ajαi D 0).

b) If jαi represents a normalized eigenstate of the operator a† a with eigenval-
ue α for all α � 0, show that

ajαi D pαjα � 1i , a†jαi D pα C 1jα C 1i .

Defining the normalized vacuum state jΩ i as the normalized state that
is annihilated by the operator a, show that jni D (1/

p
n!) (a†)njΩ i is a

normalized eigenstate of a† a with eigenvalue n.
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1.12 Problems 25

c) Assuming the operators a and a† obey Fermionic anti-commutation rela-
tions, repeat parts (a) and (b).

5. Starting from first principles, show that the second quantized representation
of the one-body kinetic energy operator is given by

OT D
LZ

0

dx a†(x )
p 2

2m� a(x ) .

Hint: Remember that the representation is most easily obtained from the basis
in which the operator is diagonal.

6. Transforming to the Fourier basis, diagonalize the non-interacting three-
dimensional cubic lattice tight-binding Hamiltonian

OH(0) D �
X
(m ,n)

tmn,σ c†
mσ cnσ ,

where the matrix elements tmn take the positive real value t between neighbor-
ing sites and zero otherwise. Comment on how this result compares with the
spectrum of the Heisenberg ferromagnet.

7. Making use of the Pauli matrix identity σα� �σγ δ D 2δαδ δ�γ�δα�δγ δ , where
“�” denotes the scalar or dot product, prove that

OS m � OS n D �1
2

X
α,�

c†
mα c†

n� cm� cnα � 1
4
Onm Onn ,

where OS m D 1/2
P

α,� c†
mα σα� cm� denotes the spin operator and Onm DP

α c†
mα cm� represents the total number operator on site m. (Here, assume

that lattice sites m and n are distinct.)

8. Starting with the definition

OS� D (2S )1/2a†
	

1� a† a
2S


1/2

,

confirm the validity of the Holstein–Primakoff transformation by explicitly
checking the commutation relations of spin raising and lowering operators.

9. Frustration: On a bipartite lattice (i.e., one in which the neighbors of one
sublattice belong to the other sublattice), the ground state (known as a Néel
state) of a classical antiferromagnet can adopt a staggered spin configuration in
which the exchange energy is maximized. Lattices which cannot be classified
in this way are said to be frustrated – the maximal exchange energy associated
with each bond cannot be recovered. Using only symmetry arguments, spec-
ify one of the possible ground states of a classical three-site triangular lattice
antiferromagnet. (Note that the invariance of the Hamiltonian under a global
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26 1 Introduction

rotation of the spins means that there is a manifold of continuous degeneracy
in the ground state.) Using the result, construct one of the classical ground
states of the infinite triangular lattice.

10. Confirm that the bosonic commutation relations of the operators a and a† are
preserved by the Bogoliubov transformation,	

α
α†



D
	

cosh θ sinh θ
sinh θ cosh θ


	
a
a†



.

11. a) Making use of the spin commutation relation, [S α
i , S �

j ] D i δ i j εα�γ S γ
i ,

apply the identity to express the equation of motion of a spin in a nearest-
neighbor spin S one-dimensional Heisenberg ferromagnet as a difference
equation.

b) Interpreting the spins as classical vectors and taking the continuum limit,
show that the equation of motion of the hydrodynamic modes takes the form

„ PS D J a2S � @2S ,

where a denotes the lattice spacing. (Hint: Going to the continuum limit,
apply a Taylor expansion to the spins, i.e., SiC1 D Si C a@Si C a2@2Si/2C
� � � )

c) Parameterizing the spin as

S D
�

C cos(k x � ω t), C sin (k x � ω t) ,
p

S2 � C2
�

,

solve the equation. Sketch a “snapshot” configuration of the spins in a spin
chain.

12. Valence bond solid: Starting with the spin-1/2 Majumdar–Ghosh Hamiltonian

OHMG D 4j J j
3

NX
nD1

	
OS n � OS nC1 C 1

2
OS n � OS nC2



C N

2
,

where the total number of states N is even and OS NC1 D OS1, show that the
two-dimer or valence bond states

j0Ci D
N/2Y

nD1

1p
2

(j"2ni ˝ j#2n˙1i � j#2ni ˝ j"2n˙1i)

are exact eigenstates. (Hint: Try to recast the Hamiltonian in terms of the total
spin of a triad OJn D OS nC1C OS n C OS n�1 and consider what this representation
implies.) In fact, these states represent the ground states of the Hamiltonian.
Suggest what would happen if the total number of states was odd.

13. Su–Schrieffer–Heeger model of conducting polymers: Polyacetylene consists
of bonded CH groups forming an isomeric long chain polymer. According to
molecular orbital theory, the carbon atoms are expected to be s p 2 hybridized
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1.12 Problems 27

suggesting a planar configuration of the molecule. An unpaired electron is
expected to occupy a single p-orbital which points out of the plane. The weak
overlap of the p-orbitals delocalizes the electrons into a π-conduction band.
Therefore, according to the nearly-free electron theory, one might expect the
half-filled conduction band of a polyacetylene chain to be metallic. However,
the energy of a half-filled band of a one-dimensional system can always be
lowered by applying a periodic lattice distortion known as the Peierls instability.
One can think of an enhanced probability of finding the π electron on the
short bond where the orbital overlap is stronger than the “the double bond”.
The aim of this problem is to explore the instability.
a) At its simplest level, the conduction band of polyacetylene can be modeled

by a simple Hamiltonian, due to Su, Schrieffer and Heeger, in which the
hopping matrix elements of the electrons are modulated by the lattice dis-
tortion of the atoms. Taking the displacement of the atomic sites from the
equilibrium from the equilibrium separation a � 1 to be unity, and treating
their dynamics as classical, the effective Hamiltonian takes the form

OH D �t
NX

nD1

X
σ

(1C u n)
h

c†
nσ cnC1σ C h.c.

i
C

NX
nD1

ks

2
(u nC1 � u n)2 ,

where, for simplicity, the boundary conditions are taken to be periodic. The
first term describes the hopping of electrons between neighboring sites
with a matrix element modulated by the periodic distortion of the bond
length, while the last term represents the associated increase in the elastic
energy. Taking the lattice distortion to be periodic, u n D (�1)n α, and the
number of sites to be even, diagonalize the Hamiltonian. (Hint: The lattice
distortion lowers the symmetry of the lattice. The Hamiltonian is most eas-
ily diagonalized by distinguishing the two sites of the sublattice, i.e., dou-
bling the size of the elementary unit cell, and transforming to the Fourier
representation.) Show that the Peierls distortion of the lattice opens a gap
in the spectrum at the Fermi level of the half-filled system.

b) By estimating the total electronic and elastic energy of the half-filled band,
that is, an average of one electron per lattice site, show that the one-
dimensional system is always unstable towards the Peierls distortion. To
do this calculation, you will need the approximate formula for the elliptic
integral,

π/2Z
�π/2

dk
q

1� (1� α2) sin2 k � 2C �a1 � b1 ln α2� α2 ,

where a1 and b1 are unspecified numerical constants.
c) For an even number of sites, the Peierls instability has two degenerate

configurations – ABABAB� � � and BABABA� � � Comment on the qualitative
form of the ground state lattice configuration if the number of sites is odd.
Explain why such configurations give rise to mid-gap states.
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28 1 Introduction

14. In the Schwinger boson representation, the quantum mechanical spin is ex-
pressed in terms of two bosonic operators a and b in the form

OSC D a† b , OS� D
� OSC

�†
, OS z D 1

2

�
a† a � b†b

�
.

a) Show that this definition is consistent with the commutation relations for
spin: [ OSC, OS�] D 2 OS z .

b) Using the bosonic commutation relations, show that

jS, mi D
�
a†
�SCmp

(S C m)!

�
b†
�S�mp

(S � m)!
jΩ i

is compatible with the definition of an eigenstate of the total spin operator
S2 and S z . Here, jΩ i denotes the vacuum of the Schwinger bosons, and
the total spin S defines the physical subspace

fjna , nbi W na C nb D 2Sg .

15. The Jordan–Wigner transformation: So far, we have shown how the algebra
of quantum mechanical spin can be expressed using boson operators, c.f., the
Holstein–Primakoff transformation and the Schwinger representation. In this
problem, we show that a representation for spin 1/2 can be obtained in terms
of Fermion operators. Specifically, let us formally represent an up-spin as a
particle and a down-spin as the vacuum j0i, namely,

j"i � j1i D f †(0) ,

j#i � j0i D f (1) .

In this representation, the spin raising and lowering operators are expressed
in the form OSC D f † and OS� D f , while OS z D f † f � 1/2.
a) With this definition, confirm that the spins obey the algebra [ OSC, OS�] D

2 OS z . However, there is a problem, that is, spins on different sites commute
while fermion operators anticommute, for example,

OSC
i
OSC

j D OSC
j
OSC

i , but f †
i f †

j D � f †
j f †

i .

To obtain a faithful spin representation, it is necessary to cancel this un-
wanted sign. Although a general procedure is hard to formulate in one di-
mension, this can be achieved by a nonlinear transformation, that is,

OSC
l D f †

l e i π
P

j <l On j , OS�
l D e�i π

P
j <l On j f l , OS z

l D f †
l f l � 1

2
.

Operationally, this seemingly complicated transformation is straightfor-
ward; in one dimension, the particles can be ordered on the line. By count-
ing the number of particles “to the left”, we can assign an overall phase
of C1 or �1 to a given configuration and thereby transmute the particles
into fermions. (Put differently, the exchange to two fermions induces a sign
change which is compensated by the factor arising from the phase – the
“Jordan–Wigner string”.)
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b) Using the Jordan–Wigner representation, show that

OSC
m
OS�

mC1 D f †
m f mC1 .

c) For the spin 1/2 anisotropic quantum Heisenberg spin chain, the spin
Hamiltonian assumes the form

OH D �
X

n

�
Jz OS z

n
OS z

nC1 C
J?
2

� OSC
n
OS�

nC1 C OS�
n
OSC

nC1

��
.

Turning to the Jordan–Wigner representation, show that the Hamiltonian
can be cast in the form

OH D
X

n

�
J?
2

�
f †

n f nC1 C h.c.
�C Jz

	
1
4
� f †

n f n C f †
n f n f †

nC1 f nC1


�
.

d) The mapping above shows that the one-dimensional quantum spin-1/2 XY-
model, that is, Jz D 0, can be diagonalized as a non-interacting theory of
spinless fermions. In this case, show that the spectrum assumes the form

�(k) D � J? cos(ka) .
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