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The Orbital Angular Momentum of Light: An Introduction
Les Allen and Miles Padgett

1.1
Introduction

Most physicists know that polarized light is associated with the spin angular
momentum of the photon. It is almost certainly true that the idea of orbital angular
momentum is a good deal less understood. Perhaps the simplest and most obvious
display of both the spin and orbital angular momentum of light beams comes from
an examination of the ratio of their angular momentum to their energy.

For an idealized, circularly-polarized plane wave, the spin angular momentum is
given by Jz = Nh̄ and the energy by W = Nh̄ω, where N is the number of photons.
The angular momentum to energy ratio is thus,

Jz

W
= h̄

h̄ω
= 1

ω
(1.1)

In fact the ratio in Eq. (1.1) is derivable from classical electromagnetism without
any need to invoke the concept of a photon or any other quantum phenomenon [1].

A slightly more general result for elliptically polarized light, characterized
by −1 � σ � +1, (with σ = ±1 for left- and right-handed circularly polarized light
respectively and σ = 0 for linearly polarized light) is given by

Jz

W
= σ

ω
(1.2)

We can show for a light beam which has an l-dependent azimuthal phase angle
such that the field amplitude is given by u

(
x, y, z, φ

) = u0
(
x, y, z

)
e−ikze+ilφ , that

Eq. (1.2) becomes [2]

J′
z

W
= l ± σ

ω
(1.3)

Here h̄σ describes the spin angular momentum per photon, while lh̄ describes the
orbital angular momentum per photon. In the absence of the phase term exp

(
ilφ

)
,

Eq. (1.3) would be the usual plane wave ratio of spin angular momentum divided
by energy, namely, h̄σ/h̄ω or h̄σ per photon.

It transpires that this simple result is true both in the limit of the paraxial approx-
imation and for fields described by a rigorous and unapproximated application of
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Maxwell’s equations [3]. In the paraxial approximation, other than assuming that
u

(
x, y, z

)
is normalizable and leads to a finite energy in the beam, no assumption

has been made about the form of the distribution. In other words even for σ = 0,
when the light is linearly polarized, there remains an angular momentum related
to the spatial properties of the beam and dependent on l.

The fact that the simple paraxial result, Eq. (1.3), is fully justified by rigorous
theory [4] enables a number of essentially simple conclusions to be drawn. The
paraxial fields appropriate for linearly polarized light are

B = µ0H = ik

[
uŷ + i

k

∂u

∂y
ẑ
]

eikz (1.4)

and

E = ik

[
ux̂ + i

k

∂u

∂x
ẑ
]

e+ikz (1.5)

These allow evaluation of the time-averaged Poynting vector, ε0 E × B, namely,

ε0 〈E × B〉 = ε0

2

[〈
E∗ × B

〉 + 〈
E × B∗〉]

= iω
ε0

2

(
u∇u∗ − u∗∇u

) + ωkε0 |u|2 ẑ (1.6)

For a field such as u (r, φ, z) = u0 (r, z) e+ilφ the φ-component of linear momentum
density is

ε0 〈E × B〉φ = ε0ωl |u|2 /r (1.7)

while its cross product with r gives an angular momentum density of magnitude
jz = ε0ω� |u|2. The energy density of such a beam is

w = cε0 〈E × B〉z = cε0ωk |u|2 = ε0ω
2 |u|2 (1.8)

Thus,

jz
w

= l

ω

When the angular momentum density is integrated over the x–y plane, the ratio of
angular momentum to energy per unit length of the beam is simply,

Jz

W
=

∫∫
rdrdϕ (r × 〈E × B〉)z

c
∫∫

rdrdφ 〈E × B〉z

= l

ω
(1.9)

The same straightforward calculation for fields that include polarization, again
produces Eq. (1.3), but it is now for physically realizable fields and not just plane
wave fields of infinite extent.

The earliest work on the orbital angular momentum of light beams took an LG
(Laguerre–Gaussian) mode as the most easily available source of light possessing
an azimuthal phase. This amplitude distribution, up,l, has the requisite exp

(
ilφ

)
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term and is now well known. It readily follows for such a distribution that the linear
momentum density is [2]

p = ε0

(
ωkrz

z2
R + z2

r̂ + ωl

r
φ̂+ ωkẑ

) ∣∣up,l

∣∣2
(1.10)

and the cross product with r gives the angular momentum density,

j = r × p = ε0

(−ωlz

r
r̂ − ωkr

(
z2

R

z2
R + z2

)
φ̂+ ωlẑ

) ∣∣up,l

∣∣2
(1.11)

The expression for linear momentum p, (Eq. (1.10)), shows that at a constant
radius, r, the Poynting vector maps out a spiral path of well-defined pitch,

zp = 2πkr2

l
(1.12)

However, such a picture is misleading as it ignores the radial component of the
Poynting vector and, hence, the spreading of the beam upon propagation [5]. For
constant r(z)

/
w(z), the angle of rotation, θ , of the Poynting vector from the beam

waist at z = 0 is

θ = l

2

(
w (z)

r (z)

)2

arctan
(

z

zR

)
(1.13)

For a p = 0 mode, for which the intensity distribution is a single ring, the radius of
the maximum amplitude in the mode is given by

r (z)Max Int. =
√

w(z) l

2
(1.14)

and so for p = 0, � �= 0, it follows that θ = arctan
(

z
zR

)
which, surprisingly, is

independent of �. Rather than describing a multiturn spiral as one might have
presumed, the Poynting vector rotates only by π/2 either side of the beam waist as
the light propagates to the far field. Perhaps even more surprisingly, the locus of
the vector is simply a straight line at an angle to the axis of the beam [6, 7]. Note
that the arctan term is simply proportional to the Gouy phase of the Gaussian beam
and that, in free space, the Poynting vector is at all points parallel to the wavevector.

Simple though these results are, in hindsight, they were not known until the early
1990s. Their application to a number of conceptually straightforward experiments
enables simple comparisons to be made, at least in the paraxial regime, between
the behavior of spin and orbital angular momenta and enables the observation of
a number of phenomena to be elucidated. This phenomenology provides much of
the basis for the exploration and exploitation of the current understanding of the
subject outlined in later chapters of this book. Although everything may be justified
formally using a quantum approach, there is, outside of entanglement, little need
to leave this classical formulation. In the nonparaxial case, the separation of spin
and orbital angular momentum is more complicated [4, 8–10].

The use of the flow of angular momentum flux across a surface, rather than
angular momentum density, allows the separation of the spin and orbital angular
momentum parts in a gauge invariant way. This holds beyond the paraxial approach
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but confirms the simple values obtained for the ratio of angular momentum to
energy [11].

1.2
The Phenomenology of Orbital Angular Momentum

Simple comparisons of the behavior of spin and orbital angular momenta in
different situations prove to be a fruitful way to demonstrate their properties. First,
however, we need to distinguish the general structures of light emitted by a laser
and also its properties when converted to, for instance, an LG beam. Laser beams
usually have spherical wave fronts while the azimuthal phase leads to beams with l
intertwined helical wave fronts (Figure 1.1). The LG beam is not the only example
of a helical wave front; Bessel beams [12], Mathieu beams [13], and Ince–Gaussian
beams [14] can also carry orbital angular momentum. In all cases, the interference
of these helical wave fronts with a plane wave gives rise to characteristic spiral
interference fringes [15–17].

The production of a pure, high-order LG mode from a laser beam was first
achieved using a mode convertor based on cylindrical lenses [18]. Although the
details are interesting, they need not concern us here, as an approach based
on simple holograms achieves a similar beam much more easily. Prior to the
generation of LG beams with lenses, similar beams containing the same azimuthal
phase term had also been produced using diffractive optical elements [19]. These
components are simple diffraction gratings, that contain an edge dislocation,

Figure 1.1 The helical wave fronts characterized by an
azimuthal phase term (l = 1) and the associated Poynting
vector, the azimuthal component of which gives rise to an
orbital angular momentum. (Please find a color version of
this figure on the color plates.)
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coincident with the axis of the illuminating beam. Such ‘‘forked-gratings’’ give
rise to a first order diffracted spot with an annular intensity cross section, which
is a natural consequence of the exp

(
ilφ

)
phase structure. Indeed, similar beams

have been widely studied as examples of optical phase singularities [20], also called
optical vortices [21, 22]. However, in none of the earlier works had their angular
momentum properties been recognized. These diffractive optical components can
be readily designed, and are frequently referred to as computer generated holograms.
Although easy to implement and producing perfect helical wave fronts, the resulting
intensity distribution only approximates to that of a pure LG mode. Most recently,
these ‘‘forked diffraction gratings’’ have been employed within the image train of
a microscope to impose a point-spread function corresponding to a helical mode,
giving an edge enhancement of the image [23, 24].

Rather than using the diffractive optical component, it is possible to form a
refractive optical equivalent. A spiral phaseplate has an optical thickness, t, given
by t = λlφ/2π , where φ is the azimuthal angle [25]. Upon transmission, a plane
wave input beam is transformed into a helically phased beam again characterized
by an azimuthal phase structure of exp

(
ilφ

)
. Such spiral phase plates are not easy to

manufacture but offer very high conversion efficiency. Interestingly, the azimuthal
refraction of the ramped surface gives a skew angle of l/kr to each transmitted ray.
For the linear momentum of the photon of h̄k, this gives an azimuthal component
lh̄/r and hence an angular momentum of lh̄ per photon [26]. Thus we see that for a
ray optical model, the orbital angular momentum of the photon is describable by
skew rays [27].

Despite the various approaches that have been developed to generate helically
phased beams, they are not a feature unique to advanced optical experiment.
Interference between two plane waves yields sinusoidal fringes. Interference
between three [28] or more [29] plane waves leads to points within the field cross
section of perfect destructive interference around which the phase advances or
retards by 2π . Nowhere is this more apparent than when examining the optical
speckle resulting from laser light being scattered from a rough surface, where each
black speck is a perfect phase singularity. Of course, the specks are dark and hence
carry neither energy nor momentum. However, the light in the immediate vicinity
of each is characterized by a helical phase front and does carry both energy and
orbital angular momentum. Over the extent of the speckle pattern, there are an
equal number of clockwise and anticlockwise singularities; and hence the overall
orbital angular momentum tends to zero. These phase singularities map out lines
of complete darkness in space, with both fractal [30] and topological [31] properties.

In order to generate pure LG modes, the cylindrical lens mode converter remains a
convenient approach. The fidelity of the mode transformation means that when light
with orbital angular momentum is passed through a cylindrical lens mode convertor
it behaves in a mathematically analogous way to polarized (spin) light through a
quarter waveplate. Indeed, the representation of states on the Poincaré sphere can
be applied for any two states of orbital angular momentum [32]. Similarly, the well-
known Jones matrices which describe the propagation of polarized light through an
optical system have equivalents for the propagation of orbital angular momentum
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through a system with astigmatic optical elements [33, 34]. There are also joint
matrices for light that is both polarized and possesses orbital angular momentum.
An alternative to the use of these joint matrices is to apply the spin (Jones) matrix
and then the orbital angular momentum matrix separately. This is equivalent to
the separation of the spin and orbital components in the hydrogen wavefunction.

That this orbital angular momentum is a true momentum was first demonstrated
in optical tweezers [35]. Optical tweezers use the gradient force associated with a
tightly focused beam of the light to trap a microscopic dielectric particle [36]. A
few milliwatts is all that is required to trap a 5 µm diameter sphere suspended in
a liquid medium. Using an LG mode as the trapping beam results in a transfer of
angular momentum to the particle causing it to spin about the beam axis.

The similarities in behavior of the two types of angular momenta in a light
beam are also shown in optical tweezers when a small, mildly absorptive particle
is trapped on-axis. When the light is purely circularly polarized, the particle may
be made to rotate clockwise or anticlockwise depending on the handedness of
the polarization where σ = ±1. When the same trapped particle sees light with
l = ±1, it can also be made to rotate in either direction. Application of light where
σ and l have the same sign leads to a faster rotation proportional to

(
σ + l

)
, while

if σ and l have opposite signs the particle slows to a halt which arises clearly
from

(
σ − l

)
. This demonstrates the mechanical equivalence of spin and orbital

angular momentum [37]. In other words, the spin angular momentum can be
added to or subtracted from the orbital component, consistent with the statement
that the optical angular momentum of a light beam is

(
l + σ

)
h̄. This statement is

in agreement with the theory of angular momentum flux. It is observed that the
center of mass in the on-axis case does not move and both the spin and orbital
angular momentum contribute to making the sphere rotate about its own axis.
Off-axis, such a particle behaves rather differently. It responds to orbital angular
momentum by orbiting the axis of the beam with an angular velocity proportional
to the local intensity of the beam. It also spins, because of σ , about its own axis.
Again the velocity depends on the local intensity but otherwise spin and orbital
manifest themselves in that case in different ways – highlighting the intrinsic
and extrinsic nature of optical angular momentum [38]. These various studies in
optical tweezers have spawned significant work, worldwide, where the induced
rotation of the particles acts as a microfluidic pump [39, 40] or other optically driven
micromachine [41–44].

It should be observed that spin, σ , is said to be intrinsic because it is independent
of the choice of axis about which it is calculated. However, orbital, l, depends upon
the choice of axis. Nevertheless, when there is a direction, z, for which the transverse
linear momentum of the beam is zero, both l and σ are invariant under a shift
of axis and the orbital component might be said to be quasi-intrinsic. For off-axis
apertures in cylindrically symmetric beams the transverse linear momentum is
nonzero and l is extrinsic.

Closely related to the use of LG beam in optical tweezers is their interaction
with cold atoms [45]. In many cases, rather than the helical wave fronts, it is
the on-axis intensity zero that enables the confinement of blue-detuned atoms
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[46]. Residual scattering can additionally lead to guiding along the length of the
singularity. Cooling the atoms further to create a Bose–Einstein condensate (BEC)
results in yet more interesting interactions between matter and the orbital angular
momentum of light. This includes an optically induced rotation of the BEC [47, 48].

The interaction of light carrying orbital angular momentum with an in resonance
atom has also been investigated [49]. It is found that the frequency shift of a resonant
transition in an atom moving with an angular velocity � through a polarized beam
with orbital angular momentum is �l while the torque on the center of mass of
the atom is h̄l� and independent of σ [50]. There appear to be no torques on the
atom’s center of mass that depend on

(
l + σ

)
.

This frequency shift is an example of an angular Doppler effect readily observed
when a light beam is rotated at angular frequency � about its own axis. This is not
to be confused with the transverse Doppler shift observed when an emitter moves
toward or away from the source. For the spinning beam, the frequency of the light
is shifted for spin by δω′ = �σ , for orbital angular momentum by δω′′ = �l [51]
and for total angular momentum by δω′′′ = �

(
σ + l

)
[52]. For combined beams

with the same polarization but different total orbital angular momenta, a spectrum
of shifted components δω1 = �

(
σ + l1

)
, δω2 = (

σ + l2
)
, and so on, is produced.

This is one of the effects found to depend upon the sum of the spin and orbital
components. The phenomenon can be understood by the realization that time
evolution of a helical phase front is indistinguishable from rotation about the beam
axis. A full rotation of the beam changes the phase of the light by l + σ cycles. Such
phase and associated frequency shifts also extend to polychromatic light, where all
spectral components are frequency shifted by the same amount [53].

Attempts have been made to see if analogs to electron spin-orbit interactions
common in atoms exists in light. The only evidence so far is that in the dissipative
force on a moving atom there is a term proportional to σ l. It is, however, small and
only comparable in size to terms which are usually ignored, of order

(
1/k2

)
[54].

Second harmonic generation or up-conversion in a nonlinear crystal can produce
second harmonic generation for helically phased modes, where

ωShg = ωIn + ωIn = 2ωIn and lShg = lIn + lIn = 2lIn (1.15)

This is in contrast to the spin angular momentum which can only be unity, at most.
Here, there is another difference between orbital and spin angular momentum.
There is no potential upper bound to lShg and we see that up-conversion may be used
to change the order of the mode [55]. There is no equivalent change of polarization
mode. This conversion of lShg arises through strict phase matching and because
the wavevectors and Poynting vector of the fundamental and second-harmonic
helical beams are collinear. This implies that when the wave-number doubles then
l must also double [56]. Such a process is consistent with the conservation of orbital
angular momentum within the light fields. This work is a precursor of work on
down-conversion where one input photon creates two photons of lower energy.
This has important implications for the higher order entanglement possible with
orbital angular momentum [57]. In down-conversion, correlation of orbital angular
momentum can be achieved with a pair of holograms that determine lIdler and
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lSignal for a given lPump [58, 59]. Although spin is limited to ±1, there is a wide range
of lIdler and lSignal for a given lPump. The high-dimensionality of the Hilbert space
and information content [60] combined with techniques for sorting single photons
[61–63] creates opportunities in, for example, quantum information processing
[64]. It is the study of the down converted beams and a violation of a Bell inequality
[65] that illustrates that orbital angular momentum is a meaningful concept at the
quantum level and hence a true photon property.

For spin angular momentum and circularly polarized light, the light source need
not be either temporally or spatially coherent. For orbital angular momentum the
situation is more complicated. Orbital angular momentum is a meaningful concept
across the full electromagnetic spectrum [66] and has been considered ranging
from radio frequency [67] to X ray regimes [68]. As orbital angular momentum is
associated with the phase cross section of the beam, there is no restriction on its
temporal coherence; each spectral component can have a perfect exp

(−ilφ
)

phase
structure. Beams with such multispectral components can be generated using the
normal forked diffraction grating, but with its spectral dispersion compensated
by a prism [69] or second grating [70]. These beams have the exact anticipated
orbital angular momentum to cause microscopic objects to rotate about the axis
of the beam [71]. Perfect helical wave fronts imply a complete spatial coherence.
Degrading the spatial coherence destroys the fidelity of the on-axis phase singularity
and the on-axis intensity zero. If the beam has some degree of spatial coherence
then when transmitted through a spiral phase plate or diffracted from a forked
diffraction grating, the resulting beam can be decomposed into an incoherent sum
of different modes having a finite average value of orbital angular momentum.
These beams have been termed Rankine vortices [72]. Spiral phaseplates built into
telescopes have been shown to be useful astronomical filters, which could suppress
the light from a point-star so that an off-axis source of light from a planet might be
detected [73, 74].

Another aspect of clear distinction between spin and orbital angular momentum
is the existence of a Fourier relationship for orbital angular momentum and
angular position [75], and a related uncertainty relationship. The uncertainty
relationship was originally discussed for measurements of linear position and linear
momentum. In the case of orbital angular momentum, a similar expression can be
written for small uncertainties in angular position, �φ�l = h̄/2 [76]. No equivalent
expression exists for spin. The uncertainty associated with the measurement of
orbital angular momentum may prove to be a limitation to the evident virtues of
orbital angular momentum as a means of exploiting entanglement, and so on.

One marked difference in the literature, since light beams possessing orbital
angular momentum have been realized and understood, arises because, in order
to exploit their dependence on space, the formal way in which light interacts
with atoms has had to be developed. It is no longer sufficient to investigate the
interaction of atoms with plane waves. The traditional semiclassical approach is
still in the main appropriate, but it must now be applied to specifically structured
Gaussian beams.
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Various reviews have been written, which summarize the development of the
field of the last 15 years [3, 77–80] and many aspects of the current state of this
work is discussed in later chapters of this book.
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