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Function Spaces, Linear Operators, and Green’s Functions

1.1
Function Spaces

Consider the set of all complex-valued functions of the real variable x, denoted by
f (x), g(x), . . ., and defined on the interval (a, b). We shall restrict ourselves to those
functions which are square-integrable. Define the inner product of any two of the
latter functions by

(f , g) ≡
∫ b

a
f ∗ (x) g (x) dx, (1.1.1)

in which f ∗(x) is the complex conjugate of f (x). The following properties of the
inner product follow from definition (1.1.1):


(f , g)∗ = (g, f ),

( f , g + h) = ( f , g) + ( f , h),
( f , αg) = α( f , g),
(αf , g) = α∗( f , g),

(1.1.2)

with α a complex scalar.
While the inner product of any two functions is in general a complex number,

the inner product of a function with itself is a real number and is nonnegative.
This prompts us to define the norm of a function by

∥∥f
∥∥ ≡

√
( f , f ) =

[∫ b

a
f ∗(x) f (x)dx

] 1
2

, (1.1.3)

provided that f is square-integrable , i.e., ‖f ‖ < ∞. Equation (1.1.3) constitutes a
proper definition for a norm since it satisfies the following conditions:



(i)
scalar
multiplication

∥∥αf
∥∥ = |α| · ∥∥f

∥∥ , for all comlex α,

(ii) positivity
∥∥f

∥∥ > 0, for all f �= 0,∥∥f
∥∥ = 0, if and only if f = 0,

(iii)
triangular
inequality

∥∥f + g
∥∥ ≤ ∥∥f

∥∥ + ∥∥g
∥∥ .

(1.1.4)
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A very important inequality satisfied by the inner product (1.1.1) is the so-called
Schwarz inequality which says

∣∣( f , g)
∣∣ ≤ ∥∥f

∥∥ · ∥∥g
∥∥ . (1.1.5)

To prove the latter, start with the trivial inequality ‖( f + αg)‖2 ≥ 0, which holds for
any f (x) and g(x) and for any complex number α. With a little algebra, the left-hand
side of this inequality may be expanded to yield

( f , f ) + α∗(g, f ) + α( f , g) + αα∗(g, g) ≥ 0. (1.1.6)

The latter inequality is true for any α, and is true for the value of α which minimizes
the left-hand side. This value can be found by writing α as a + ib and minimizing
the left-hand side of Eq. (1.1.6) with respect to the real variables a and b. A quicker
way would be to treat α and α∗ as independent variables and requiring ∂/∂α

and ∂/∂α∗ of the left-hand side of Eq. (1.1.6) to vanish. This immediately yields
α = −(g, f )�(g, g) as the value of α at which the minimum occurs. Evaluating the
left-hand side of Eq. (1.1.6) at this minimum then yields

∥∥f
∥∥2 ≥ ∣∣( f , g)

∣∣2
�

∥∥g
∥∥2

, (1.1.7)

which proves the Schwarz inequality (1.1.5).
Once the Schwarz inequality has been established, it is relatively easy to prove

the triangular inequality (1.1.4.iii). To do this, we simply begin from the definition

∥∥f + g
∥∥2 = ( f + g, f + g) = ( f , f ) + ( f , g) + (g, f ) + (g, g). (1.1.8)

Now the right-hand side of Eq. (1.1.8) is a sum of complex numbers. Applying
the usual triangular inequality for complex numbers to the right-hand side of
Eq. (1.1.8) yields

∣∣Right-hand side of Eq. (1.1.8)
∣∣ ≤ ∥∥f

∥∥2 + ∣∣( f , g)
∣∣ + ∣∣(g, f )

∣∣ + ∥∥g
∥∥2

= (∥∥f
∥∥ + ∥∥g

∥∥)2
. (1.1.9)

Combining Eqs. (1.1.8) and (1.1.9) finally proves the triangular inequality (1.1.4.iii).
We finally remark that the set of functions f (x), g(x), . . ., is an example of a

linear vector space, equipped with an inner product and a norm based on that
inner product. A similar set of properties, including the Schwarz and triangular
inequalities, can be established for other linear vector spaces. For instance, consider
the set of all complex column vectors �u, �v, �w, . . ., of finite dimension n. If we define
the inner product

(�u, �v) ≡ (�u∗)T�v =
n∑

k=1

u∗
kvk, (1.1.10)
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and the related norm

∥∥�u∥∥ ≡
√

(�u, �u), (1.1.11)

then the corresponding Schwarz and triangular inequalities can be proven in an
identical manner yielding

∣∣(�u, �v)
∣∣ ≤ ∥∥�u∥∥ ‖�v‖ , (1.1.12)

and

∥∥�u + �v∥∥ ≤ ∥∥�u∥∥ + ‖�v‖ . (1.1.13)

1.2
Orthonormal System of Functions

Two functions f (x) and g(x) are said to be orthogonal if their inner product vanishes,
i.e.,

( f , g) =
∫ b

a
f ∗(x)g(x)dx = 0. (1.2.1)

A function is said to be normalized if its norm is equal to unity, i.e.,

∥∥f
∥∥ =

√
( f , f ) = 1. (1.2.2)

Consider a set of normalized functions {φ1(x), φ2(x), φ3(x), . . .} which are mutually
orthogonal. This type of set is called an orthonormal set of functions, satisfying the
orthonormality condition

(φi, φj) = δij =
{

1, if i = j,
0, otherwise,

(1.2.3)

where δij is the Kronecker delta symbol itself defined by Eq. (1.2.3).
An orthonormal set of functions {φn(x)} is said to form a basis for a function space,

or to be complete, if any function f (x) in that space can be expanded in a series of
the form

f (x) =
∞∑

n=1

anφn(x). (1.2.4)

(This is not the exact definition of a complete set but it will do for our purposes.)
To find the coefficients of the expansion in Eq. (1.2.4), we take the inner product
of both sides with φm(x) from the left to obtain
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(
φm, f

) =
∞∑

n=1

(φm, anφn)

=
∞∑

n=1

an (φm, φn)

=
∞∑

n=1

anδmn = am. (1.2.5)

In other words, for any n,

an = (
φn, f

) =
∫ b

a
φ∗

n (x) f (x) dx. (1.2.6)

An example of an orthonormal system of functions on the interval
(−l, l

)
is the

infinite set

φn (x) = 1√
2l

exp[inπx�l], n = 0, ±1, ±2, . . . , (1.2.7)

with which the expansion of a square-integrable function f (x) on (−l, l) takes the
form

f (x) =
∞∑

n=−∞
cn exp[inπx�l], (1.2.8a)

with

cn = 1

2l

∫ +l

−l
f (x) exp[−inπx�l], (1.2.8b)

which is the familiar complex form of the Fourier series of f (x).
Finally, the Dirac delta function δ(x − x′), defined with x and x′ in (a, b), can be

expanded in terms of a complete set of orthonormal functions φn(x) in the form

δ
(
x − x′) =

∑
n

anφn(x)

with

an =
∫ b

a
φ∗

n(x)δ(x − x′)dx = φ∗
n

(
x′) .

That is,

δ(x − x′) =
∑

n

φ∗
n(x′)φn(x). (1.2.9)

Expression (1.2.9) is sometimes taken as the statement which implies the complete-
ness of an orthonormal system of functions.
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1.3
Linear Operators

An operator can be thought of as a mapping or a transformation which acts on
a member of the function space (a function) to produce another member of that
space (another function). The operator, typically denoted by a symbol like L, is said
to be linear if it satisfies

L(αf + βg) = αLf + βLg, (1.3.1)

where α and β are complex numbers, and f and g are members of that function
space. Some trivial examples of linear operators L are
(i) multiplication by a constant scalar,

Lφ = aφ,

(ii) taking the third derivative of a function, which is a differential operator

Lφ = d3

dx3
φ or L = d3

dx3
,

(iii) multiplying a function by the kernel, K(x, x′), and integrating over (a, b) with
respect to x′, which is an integral operator,

Lφ(x) =
∫ b

a
K(x, x′)φ(x′)dx′.

An important concept in the theory of linear operators is that of adjoint of the
operator which is defined as follows. Given the operator L, together with an inner
product defined on a vector space, the adjoint Ladj of the operator L is that operator
for which

(ψ , Lφ) = (Ladjψ , φ) (1.3.2)

is an identity for any two members φ and ψ of the vector space. Actually, as we
shall see later, in the case of the differential operators, we frequently need to worry
to some extent about the boundary conditions associated with the original and
the adjoint problems. Indeed, there often arise additional terms on the right-hand
side of Eq. (1.3.2) which involve the boundary points, and a prudent choice of the
adjoint boundary conditions will need to be made in order to avoid unnecessary
difficulties. These issues will be raised in connection with Green’s functions for
differential equations.

As our first example of the adjoint operator, consider the liner vector space of
n-dimensional complex column vectors �u, �v,. . ., with their inner product (1.1.10). In
this space, n× n square matrices A, B, . . ., with complex entries are linear operators
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when multiplied with the n-dimensional complex column vectors according to the
usual rules of matrix multiplication. We now consider the problem of finding the
adjoint matrix Aadj of the matrix A. According to definition (1.3.2) of the adjoint
operator, we search for the matrix Aadj satisfying

(�u, A�v) = (Aadj�u, �v). (1.3.3)

Now, from the definition of the inner product (1.1.10), we must have

�u∗T(Aadj)∗T�v = �u∗TA�v,

i.e.,

(Aadj)∗T = A or Aadj = A∗T. (1.3.4)

That is, the adjoint Aadj of a matrix A is equal to the complex conjugate of its
transpose, which is also known as its Hermitian transpose,

Aadj = A∗T ≡ AH. (1.3.5)

As a second example, consider the problem of finding the adjoint of the linear
integral operator

L =
∫ b

a
dx′K(x, x′), (1.3.6)

on our function space. By definition, the adjoint Ladj of L is the operator which
satisfies Eq. (1.3.2). Upon expressing the left-hand side of Eq. (1.3.2) explicitly with
the operator L given by Eq. (1.3.6), we find

(ψ , Lφ) =
∫ b

a
dxψ∗(x)Lφ(x)

=
∫ b

a
dx′

[∫ b

a
dxK(x, x′)ψ∗(x)

]
φ(x′). (1.3.7)

Requiring Eq. (1.3.7) to be equal to

(Ladjψ , φ) =
∫ b

a
dx(Ladjψ(x))∗φ(x)

necessitates defining

Ladjψ(x) =
∫ b

a
dξK∗(ξ , x)ψ(ξ ).
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Hence the adjoint of integral operator (1.3.6) is found to be

Ladj =
∫ b

a
dx′K∗(x′, x). (1.3.8)

Note that aside from the complex conjugation of the kernel K(x, x′), the integration
in Eq. (1.3.6) is carried out with respect to the second argument of K(x, x′) while
that in Eq. (1.3.8) is carried out with respect to the first argument of K∗(x′, x). Also
be careful of which of the variables throughout the above is the dummy variable of
integration.

Before we end this section, let us define what is meant by a self-adjoint operator.
An operator L is said to be self-adjoint (or Hermitian) if it is equal to its own
adjoint Ladj. Hermitian operators have very nice properties which will be discussed
in Section 1.6. Not the least of these is that their eigenvalues are real. (Eigenvalue
problems are discussed in the next section.)

Examples of self-adjoint operators are Hermitian matrices, i.e., matrices which
satisfy

A = AH,

and linear integral operators of the type (1.3.6) whose kernel satisfies

K(x, x′) = K∗(x′, x),

each of them on their respective linear spaces and with their respective inner
products.

1.4
Eigenvalues and Eigenfunctions

Given a linear operator L on a linear vector space, we can set up the following
eigenvalue problem:

Lφn = λnφn (n = 1, 2, 3, . . .). (1.4.1)

Obviously the trivial solution φ(x) = 0 always satisfies this equation, but it also turns
out that for some particular values of λ (called the eigenvalues and denoted by λn),
nontrivial solutions to Eq. (1.4.1) also exist. Note that for the case of the differential
operators on bounded domains, we must also specify an appropriate homogeneous
boundary condition (such that φ = 0 satisfies those boundary conditions) for
the eigenfunctions φn (x). We have affixed the subscript n to the eigenvalues and
the eigenfunctions under the assumption that the eigenvalues are discrete and
they can be counted (i.e., with n = 1, 2, 3, . . .). This is not always the case. The
conditions which guarantee the existence of a discrete (and complete) set of
eigenfunctions are beyond the scope of this introductory chapter and will not
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be discussed. So, for the moment, let us tacitly assume that the eigenvalues
λn of Eq. (1.4.1) are discrete and their eigenfunctions φn form a basis for their
space.

Similarly the adjoint Ladj of the operator L possesses a set of eigenvalues and
eigenfunctions satisfying

Ladjψm = µmψm (m = 1, 2, 3, . . .). (1.4.2)

It can be shown that the eigenvalues µm of the adjoint problem are equal to complex
conjugates of the eigenvalues λn of the original problem. If λn is an eigenvalue of
L, λ∗

n is an eigenvalue of Ladj. We rewrite Eq. (1.4.2) as

Ladjψm = λ∗
mψm (m = 1, 2, 3, . . .). (1.4.3)

It is then a trivial matter to show that the eigenfunctions of the adjoint and original
operators are all orthogonal, except those corresponding to the same index (n = m).
To do this, take the inner product of Eq. (1.4.1) with ψm from the left, and the inner
product of Eq. (1.4.3) with φn from the right to find

(ψm, Lφn) = (ψm, λnφn) = λn(ψm, φn) (1.4.4)

and

(Ladjψm, φn) = (λ∗
mψm, φn) = λm(ψm, φn). (1.4.5)

Subtract the latter two equations and get

0 = (λn − λm)(ψm, φn). (1.4.6)

This implies

(ψm, φn) = 0 if λn �= λm, (1.4.7)

which proves the desired result. Also, since each of φn and ψm is determined to
within a multiplicative constant (e.g., if φn satisfies Eq. (1.4.1) so does αφn), the
normalization for the latter can be chosen such that

(ψm, φn) = δmn =
{

1, for n = m,
0, otherwise

(1.4.8)

Now, if the set of eigenfunctions φn (n = 1, 2, . . .) forms a complete set, any
arbitrary function f (x) in the space may be expanded as

f (x) =
∑

n

anφn(x), (1.4.9)
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and to find the coefficients an, we simply take the inner product of both sides with
ψk to get

(ψk, f ) =
∑

n

(ψk, anφn) =
∑

n

an(ψk, φn) =
∑

n

anδkn = ak,

i.e.,

an = (ψn, f ) (n = 1, 2, 3, . . .). (1.4.10)

Note the difference between Eqs. (1.4.9) and (1.4.10) and Eqs. (1.2.4) and (1.2.6)
for an orthonormal system of functions. In the present case, neither {φn} nor {ψn}
form an orthonormal system, but they are orthogonal to one another.

Above we claimed that the eigenvalues of the adjoint of an operator are complex
conjugates of those of the original operator. Here we show this for the matrix case.
The eigenvalues of a matrix A are given by det(A − λI) = 0. The eigenvalues of Aadj

are determined by setting det(Aadj − µI) = 0. Since the determinant of a matrix is
equal to that of its transpose, we easily conclude that the eigenvalues of Aadj are the
complex conjugates of λn.

1.5
The Fredholm Alternative

The Fredholm Alternative, which is alternatively called the Fredholm solvability
condition, is concerned with the existence of the solution y(x) of the inhomogeneous
problem

Ly(x) = f (x), (1.5.1)

where L is a given linear operator and f (x) a known forcing term. As usual, if L
is a differential operator, additional boundary or initial conditions are also to be
specified.

The Fredholm Alternative states that the unknown function y(x) can be deter-
mined uniquely if the corresponding homogeneous problem

LφH(x) = 0 (1.5.2)

with homogeneous boundary conditions has no nontrivial solutions. On the other
hand, if the homogeneous problem (1.5.2) does possess a nontrivial solution,
then the inhomogeneous problem (1.5.1) has either no solution or infinitely many
solutions. What determines the latter is the homogeneous solution ψH to the
adjoint problem

LadjψH = 0. (1.5.3)
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Taking the inner product of Eq. (1.5.1) with ψH from the left,

(ψH , Ly) = (ψH , f ).

Then, by the definition of the adjoint operator (excluding the case wherein L is a
differential operator to be discussed in Section 1.7), we have

(LadjψH , y) = (ψH , f ).

The left-hand side of the above equation is zero by the definition of ψH, Eq. (1.5.3).
Thus the criteria for the solvability of the inhomogeneous problem (1.5.1) are
given by

(ψH , f ) = 0.

If these criteria are satisfied, there will be an infinity of solutions to Eq.(1.5.1); otherwise
Eq.(1.5.1) will have no solution.

To understand the above claims, let us suppose that L and Ladj possess complete
sets of eigenfunctions satisfying

Lφn = λnφn (n = 0, 1, 2, . . .), (1.5.4a)

Ladjψn = λ∗
nψn (n = 0, 1, 2, . . .), (1.5.4b)

(ψm, φn) = δmn. (1.5.4c)

The existence of a nontrivial homogeneous solution φH(x) to Eq. (1.5.2), as well
as ψH(x) to Eq. (1.5.3), is the same as having one of the eigenvalues λn in
Eqs. (1.5.4a) and (1.5.4b) be zero. If this is the case, i.e., if zero is an eigenvalue
of Eq. (1.5.4a) and hence Eq. (1.5.4b), we shall choose the subscript n = 0 to
signify that eigenvalue (λ0 = 0), and in that case φ0 and ψ0 are the same as
φH and ψH. The two circumstances in the Fredholm Alternative correspond
to cases where zero is an eigenvalue of Eqs. (1.5.4a) and (1.5.4b) and where it
is not.

Let us proceed with the problem of solving the inhomogeneous problem (1.5.1).
Since the set of eigenfunctions φn of Eq. (1.5.4a) is assumed to be complete,
both the known function f (x) and the unknown function y(x) in Eq. (1.5.1) can
presumably be expanded in terms of φn(x):

f (x) =
∞∑

n=0

αnφn(x), (1.5.5)

y(x) =
∞∑

n=0

βnφn(x), (1.5.6)
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where the αn’s are known (since f (x) is known), i.e., according to Eq. (1.4.10)

αn = (ψn, f ), (1.5.7)

while the βn’s are unknown. Thus, if all the βn’s can be determined, then the
solution y(x) to Eq. (1.5.1) is regarded as having been found.

To try to determine the βn’s, substitute both Eqs. (1.5.5) and (1.5.6) into Eq. (1.5.1)
to find

∞∑
n=0

λnβnφn =
∞∑

k=0

αkφk. (1.5.8)

Here different summation indices have been used on the two sides to remind the
reader that the latter are dummy indices of summation. Next take the inner product
of both sides with ψm(with an index which has to be different from the above two)
to get

∞∑
n=0

λnβn(ψm, φn) =
∞∑

k=0

αk(ψm, φk), or
∞∑

n=0

λnβnδmn =
∞∑

k=0

αkδmk,

i.e.,

λmβm = αm. (1.5.9)

Thus, for any m = 0, 1, 2,. . ., we can solve Eq. (1.5.9) for the unknowns βm

to get

βn = αn�λn (n = 0, 1, 2, . . .), (1.5.10)

provided that λn is not equal to zero. Obviously the only possible difficulty occurs
if one of the eigenvalues (which we take to be λ0) is equal to zero. In that case, Eq.
(1.5.9) with m = 0 reads

λ0β0 = α0 (λ0 = 0). (1.5.11)

Now if α0 �= 0, then we cannot solve for β0 and thus the problem Ly = f has no
solution. On the other hand if α0 = 0, i.e., if

(ψ0, f ) = (ψH , f ) = 0, (1.5.12)

meaning that f is orthogonal to the homogeneous solution to the adjoint problem,
then Eq. (1.5.11) is satisfied by any choice of β0. All the other βn’s (n = 1, 2, . . .)
are uniquely determined but there are infinitely many solutions y(x) to Eq. (1.5.1)
corresponding to the infinitely many values possible for β0. The reader must make
certain that he or she understands the equivalence of the above with the original
statement of the Fredholm Alternative.
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1.6
Self-Adjoint Operators

Operators which are self-adjoint or Hermitian form a very useful class of operators.
They possess a number of special properties, some of which are described in this
section.

The first important property of self-adjoint operators under consideration is that
their eigenvalues are real. To prove this, begin with

{
Lφn = λnφn,

Lφm = λmφm,
(1.6.1)

and take the inner product of both sides of the former with φm from the left, and
the latter with φn from the right to obtain

{
(φm, Lφn) = λn(φm, φn),

(Lφm, φn) = λ∗
m(φm, φn).

(1.6.2)

For a self-adjoint operator L = Ladj, the two left-hand sides of Eq. (1.6.2) are equal
and hence, upon subtraction of the latter from the former, we find

0 = (λn − λ∗
m)(φm, φn). (1.6.3)

Now, if m = n, the inner product (φn, φn) = ‖φn‖2 is nonzero and Eq. (1.6.3)
implies

λn = λ∗
n, (1.6.4)

proving that all the eigenvalues are real. Thus Eq. (1.6.3) can be rewritten
as

0 = (λn − λm)(φm, φn), (1.6.5)

indicating that if λn �= λm, then the eigenfunctions φm and φn are orthogonal. Thus,
upon normalizing each φn, we verify a second important property of self-adjoint
operators that (upon normalization) the eigenfunctions of a self-adjoint operator form
an orthonormal set.

The Fredholm Alternative can also be restated for a self-adjoint operator L in
the following form: the inhomogeneous problem Ly = f (with L self-adjoint) is
solvable for y, if f is orthogonal to all eigenfunctions φ0 of L with eigenvalue zero
(if any indeed exist). If zero is not an eigenvalue of L, the solution is unique.
Otherwise, there is no solution if (φ0, f ) �= 0, and an infinite number of solutions
if (φ0, f ) = 0.
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Diagonalization of Self-Adjoint Operators: Any linear operator can be expanded
in terms of any orthonormal basis set. To elaborate on this, suppose that the
orthonormal system {ei(x)}i, with (ei, ej) = δij, forms a complete set. Any function
f (x) can be expanded as

f (x) =
∞∑
j=1

αjej(x), αj = (ej, f ). (1.6.6)

Thus the function f (x) can be thought of as an infinite-dimensional vector with
components αj. Now consider the action of an arbitrary linear operator L on the
function f (x). Obviously

Lf (x) =
∞∑

j=1

αjLej(x). (1.6.7)

But L acting on ej(x) is itself a function of x which can be expanded in the
orthonormal basis {ei(x)}i. Thus we write

Lej(x) =
∞∑

i=1

lijei(x), (1.6.8)

wherein the coefficients lij of the expansion are found to be lij = (ei, Lej). Substitution
of Eq. (1.6.8) into Eq. (1.6.7) then shows

Lf (x) =
∞∑

i=1


 ∞∑

j=1

lijαj


 ei(x). (1.6.9)

We discover that just as we can think of f (x) as the infinite-dimensional
vector with components αj, we can consider L to be equivalent to an infinite-
dimensional matrix with components lij, and we can regard Eq. (1.6.9) as a
regular multiplication of the matrix L (components lij) with the vector f (compo-
nents αj). However, this equivalence of the operator L with the matrix whose
components are lij, i.e., L ⇔ lij, depends on the choice of the orthonormal
set.

For a self-adjoint operator L = Ladj, the natural choice of the basis set is the set of
eigenfunctions of L. Denoting these by {φi(x)}i, the components of the equivalent
matrix for L take the form

lij = (φi, Lφj) = (φi, λjφj) = λj(φi, φj) = λjδij. (1.6.10)
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1.7
Green’s Functions for Differential Equations

In this section, we describe the conceptual basis of the theory of Green’s functions.
We do this by first outlining the abstract themes involved and then by presenting a
simple example. More complicated examples will appear in later chapters.

Prior to discussing Green’s functions, recall some of elementary properties of
the so-called Dirac delta function δ(x − x′). In particular, remember that if x′ is
inside the domain of integration (a, b), for any well-behaved function f (x), we have

∫ b

a
δ(x − x′) f (x)dx = f (x′), (1.7.1)

which can be written as

(δ(x − x′), f (x)) = f (x′), (1.7.2)

with the inner product taken with respect to x. Also remember that δ(x − x′) is
equal to zero for any x �= x′.

Suppose now that we wish to solve a differential equation

Lu(x) = f (x), (1.7.3)

on the domain x ∈ (a, b) and subject to given boundary conditions, with L a
differential operator. Consider what happens when a function g(x, x′) (which is as
yet unknown but will end up being Green’s function) is multiplied on both sides
of Eq. (1.7.3) followed by integration of both sides with respect to x from a to b.
That is, consider taking the inner product of both sides of Eq. (1.7.3) with g(x, x′)
with respect to x. (We suppose everything is real in this section so that no complex
conjugation is necessary.) This yields

(g(x, x′), Lu(x)) = (g(x, x′), f (x)). (1.7.4)

Now by definition of the adjoint Ladj of L, the left-hand side of Eq. (1.7.4) can be
written as

(g(x, x′), Lu(x)) = (Ladjg(x, x′), u(x)) + boundary terms. (1.7.5)

In this expression, we explicitly recognize the terms involving the boundary points
which arise when L is a differential operator. The boundary terms on the right-hand
side of Eq. (1.7.5) emerge when we integrate by parts. It is difficult to be more
specific than this when we work in the abstract, but our example should clarify
what we mean shortly. If Eq. (1.7.5) is substituted back into Eq. (1.7.4), it provides

(Ladjg(x, x′), u(x)) = (g(x, x′), f (x)) + boundary terms. (1.7.6)
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So far we have not discussed what function g(x, x′) to choose. Suppose we choose
that g(x, x′) which satisfies

Ladjg(x, x′) = δ(x − x′), (1.7.7)

subject to appropriately selected boundary conditions which eliminate all the
unknown terms within the boundary terms. This function g(x, x′) is known as
Green’s function. Substituting Eq. (1.7.7) into Eq. (1.7.6) and using property (1.7.2)
then yields

u(x′) = (g(x, x′), f (x)) + known boundary terms, (1.7.8)

which is the solution to the differential equation since everything on the right-hand
side is known once g(x, x′) has been found. More properly, if we change x′ to x in
the above and use a different dummy variable ξ of integration in the inner product,
we have

u(x) =
∫ b

a
g(ξ , x)f (ξ )dξ + known boundary terms. (1.7.9)

In summary, to solve the linear inhomogeneous differential equation

Lu(x) = f (x)

using Green’s function, we first solve the equation

Ladjg(x, x′) = δ(x − x′)

for Green’s function g(x, x′), subject to the appropriately selected boundary condi-
tions, and immediately obtain the solution given by Eq. (1.7.9) to our differential
equation.

The above we hope will become more clear in the context of the following simple
example.

� Example 1.1. Consider the problem of finding the displacement u(x) of a taut
string under the distributed load f (x) as in Figure 1.1.

x = 0 x = 1

f (x)

u(x)

Fig. 1.1 Displacement u(x) of a taut string under the distributed load f (x) with x ∈ (0, 1).
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Solution. The governing ordinary differential equation for the vertical displacement
u(x) has the form

d2u

dx2
= f (x) for x ∈ (0, 1) (1.7.10)

subject to boundary conditions

u(0) = 0 and u(1) = 0. (1.7.11)

To proceed formally, we multiply both sides of Eq. (1.7.10) by g(x, x′) and integrate
from 0 to 1 with respect to x to find

∫ 1

0
g(x, x′)

d2u

dx2
dx =

∫ 1

0
g(x, x′) f (x)dx.

Integrate the left-hand side by parts twice to obtain

∫ 1

0

d2

dx2
g(x, x′)u(x)dx

+
[

g(1, x′)
du

dx
|x=1 −g(0, x′)

du

dx
|x=0 −u(1)

dg(1, x′)
dx

+ u(0)
dg(0, x′)

dx

]

=
∫ 1

0
g(x, x′) f (x)dx. (1.7.12)

The terms contained within the square brackets on the left-hand side of (1.7.12)
are the boundary terms. Because of the boundary conditions (1.7.11), the last two
terms vanish. Hence a prudent choice of boundary conditions for g(x, x′) would be
to set

g(0, x′) = 0 and g(1, x′) = 0. (1.7.13)

With that choice, all the boundary terms vanish (this does not necessarily happen
for other problems). Now suppose that g(x, x′) satisfies

d2g(x, x′)
dx2

= δ(x − x′), (1.7.14)

subject to the boundary conditions (1.7.13). Use of Eqs. (1.7.14) and (1.7.13) in
Eq. (1.7.12) yields

u(x′) =
∫ 1

0
g(x, x′) f (x)dx, (1.7.15)

as our solution, once g(x, x′) has been obtained. Remark that if the original
differential operator d2�dx2 is denoted by L, its adjoint Ladj is also d2�dx2 as found
by twice integrating by parts. Hence the latter operator is indeed self-adjoint.
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The last step involves the actual solution of (1.7.14) subject to (1.7.13). The
variable x′ plays the role of a parameter throughout. With x′ somewhere between 0
and 1, Eq. (1.7.14) can actually be solved separately in each domain 0 < x < x′ and
x′ < x < 1. For each of these, we have

d2g(x, x′)
dx2

= 0 for 0 < x < x′, (1.7.16a)

d2g(x, x′)
dx2

= 0 for x′ < x < 1. (1.7.16b)

The general solution in each subdomain is easily written down as

g(x, x′) = Ax + B for 0 < x < x′, (1.7.17a)

g(x, x′) = Cx + D for x′ < x < 1. (1.7.17b)

The general solution involves the four unknown constants A, B, C, and D. Two
relations for the constants are found using the two boundary conditions (1.7.13).
In particular, we have

g(0, x′) = 0 → B = 0; g(1, x′) = 0 → C + D = 0. (1.7.18)

To provide two more relations which are needed to permit all four of the constants
to be determined, we return to the governing equation (1.7.14). Integrate both sides
of the latter with respect to x from x′ − ε to x′ + ε and take the limit as ε → 0 to
find

lim
ε→0

∫ x′+ε

x′−ε

d2g(x, x′)
dx2

dx = lim
ε→0

∫ x′+ε

x′−ε

δ(x − x′)dx,

from which, we obtain

dg(x, x′)
dx

|x=x′+ −dg(x, x′)
dx

|x=x′−= 1. (1.7.19)

Thus the first derivative of g(x, x′) undergoes a jump discontinuity as x passes
through x′. But we can expect g(x, x′) itself to be continuous across x′, i.e.,

g(x, x′) |x=x′+= g(x, x′) |x=x′− . (1.7.20)

In the above, x′+ and x′− denote points infinitesimally to the right and the left of x′,
respectively. Using solutions (1.7.17a) and (1.7.17b) for g(x, x′) in each subdomain,
we find that Eqs. (1.7.19) and (1.7.20), respectively, imply

C − A = 1, Cx′ + D = Ax′ + B. (1.7.21)
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x = 1x = 0

G (x, x ′ )

x = x ′

d (x − x ′ )

Fig. 1.2 Displacement u(x) of a taut string under the concentrated load δ(x − x′) at x = x′.

Equations (1.7.18) and (1.7.21) can be used to solve for the four constants A, B, C,
and D to yield

A = x′ − 1, B = 0, C = x′, D = −x′,

from whence our solution (1.7.17) takes the form

g(x, x′) =
{

(x′ − 1)x for x < x′,
x′(x − 1) for x > x′,

(1.7.22a)

= x<(x> − 1) for

{
x< = ((x + x′)�2) − ∣∣x − x′∣∣ �2,
x> = ((x + x′)�2) + ∣∣x − x′∣∣ �2.

(1.7.22b)

Physically Green’s function (1.7.22) represents the displacement of the string
subject to a concentrated load δ(x − x′) at x = x′ as in Figure 1.2. For this reason, it
is also called the influence function.

Since we have the influence function above for a concentrated load, the solution
with any given distributed load f (x) is given by Eq. (1.7.15) as

u(x) =
∫ 1

0
g(ξ , x)f (ξ )dξ

=
∫ x

0
(x − 1)ξ f (ξ )dξ +

∫ 1

x
x(ξ − 1)f (ξ )dξ

= (x − 1)
∫ x

0
ξ f (ξ )dξ + x

∫ 1

x
(ξ − 1)f (ξ )dξ. (1.7.23)

Although this example has been rather elementary, we hope that it has provided
the reader with a basic understanding of what Green’s function is. More complex
and hence more interesting examples are encountered in later chapters.

1.8
Review of Complex Analysis

Let us review some important results from complex analysis.

Cauchy Integral Formula: Let f (z) be analytic on and inside the closed, positively
oriented contour C. Then we have
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f (z) = 1

2π i

∮
C

f (ζ )

ζ − z
dζ. (1.8.1)

Differentiate this formula with respect to z to obtain

d

dz
f (z) = 1

2π i

∮
C

f (ζ )

(ζ − z)2
dζ and

(
d

dz

)n

f (z) = n!

2π i

∮
C

f (ζ )

(ζ − z)n+1
dζ.

(1.8.2)

Liouville’s theorem: The only entire functions which are bounded (at infinity) are
constants.

Proof : Suppose that f (z) is entire. Then it can be represented by the Taylor series,

f (z) = f (0) + f (1)(0)z + 1

2!
f (2)(0)z2 + · · · .

Now consider f (n)(0). By the Cauchy Integral Formula, we have

f (n)(0) = n!

2π i

∮
C

f (ζ )

ζ n+1
dζ.

Since f (ζ ) is bounded, we have

∣∣f (ζ )
∣∣ ≤ M.

Consider C to be a circle of radius R, centered at the origin. Then we have

∣∣f (n)(0)
∣∣ ≤ n!

2π
· 2πRM

Rn+1
= n! · M

Rn
→ 0 as R → ∞.

Thus

f (n)(0) = 0 for n = 1, 2, 3, . . . .

Hence

f (z) = constant,

�
More generally,

(i) Suppose that f (z) is entire and we know |f (z)| ≤ |z|a as R → ∞, with
0 < a < 1. We still find f (z) = constant.

(ii) Suppose that f (z) is entire and we know |f (z)| ≤ |z|a as R → ∞, with
n − 1 ≤ a < n. Then f (z) is at most a polynomial of degree n − 1.

Discontinuity theorem: Suppose that f (z) has a branch cut on the real axis from a to
b. It has no other singularities and it vanishes at infinity. If we know the difference
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CR

Γ1

Γ2

Γ3

Γ4

Fig. 1.3 The contours of the integration for f (z). CR is the
circle of radius R centered at the origin.

between the value of f (z) above and below the cut,

D(x) ≡ f (x + iε) − f (x − iε) (a ≤ x ≤ b), (1.8.3)

with ε positive infinitesimal, then

f (z) = 1

2π i

∫ b

a
(D(x)�(x − z))dx. (1.8.4)

Proof : By the Cauchy Integral Formula, we know

f (z) = 1

2π i

∮
�

f (ζ )

ζ − z
dζ ,

where � consists of the following pieces (see Figure 1.3), � = �1 + �2 + �3 + �4 +
CR.

The contribution from CR vanishes since |f (z)| → 0 as R → ∞, while the
contributions from �3 and �4 cancel each other. Hence we have

f (z) = 1

2π i

(∫
�1

+
∫

�2

)
f (ζ )

ζ − z
dζ.

On �1, we have

ζ = x + iε with x : a → b, f (ζ ) = f (x + iε),

∫
�1

f (ζ )

ζ − z
dζ =

∫ b

a

f (x + iε)

x − z + iε
dx →

∫ b

a

f (x + iε)

x − z
dx as ε → 0+.
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On �2, we have

ζ = x − iε with x : b → a, f (ζ ) = f (x − iε),

∫
�2

f (ζ )

ζ − z
dζ =

∫ a

b

f (x − iε)

x − z − iε
dx → −

∫ b

a

f (x − iε)

x − z
dx as ε → 0+.

Thus we obtain

f (z) = 1

2π i

∫ b

a

f (x + iε) − f (x − iε)

x − z
dx = 1

2π i

∫ b

a
(D(x)�(x − z))dx.

�
If, in addition, f (z) is known to have other singularities elsewhere, or may possibly
be nonzero as |z| → ∞, then it is of the form

f (z) = 1

2π i

∫ b

a
(D(x)�(x − z))dx + g(z), (1.8.5)

with g(z) free of cut on [a, b]. This is a very important result. Memorizing it will
give a better understanding of the subsequent sections. �

Behavior near the end points: Consider the case when z is in the vicinity of the
end point a. The behavior of f (z) as z → a is related to the form of D(x) as x → a.
Suppose that D(x) is finite at x = a, say D(a). Then we have

f (z) = 1

2π i

∫ b

a

D(a) + D(x) − D(a)

x − z
dx

= D(a)

2π i
ln

(
b − z

a − z

)
+ 1

2π i

∫ b

a

D(x) − D(a)

x − z
dx. (1.8.6)

The second integral above converges as z → a as long as D(x) satisfies a Holder
condition (which is implicitly assumed) requiring

∣∣D(x) − D(a)
∣∣ < A |x − a|µ , A, µ > 0. (1.8.7)

Thus the end point behavior of f (z) as z → a is of the form

f (z) = O
(
ln(a − z)

)
as z → a, (1.8.8)

if

D(x) finite as x → a. (1.8.9)
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CR

a

Z
Γ1

Γ2

Fig. 1.4 The contour � of the integration for 1�(z − a)α .

Another possibility is for D(x) to be of the form

D(x) → 1�(x − a)α with α < 1 as x → a, (1.8.10)

since even with such a singularity in D(x), the integral defining f (z) is well defined.
We claim that in that case, f (z) also behaves like

f (z) = O
(
1�(z − a)α

)
as z → a, with α < 1, (1.8.11)

that is, f (z) is less singular than a simple pole.

Proof of the claim: Using the Cauchy Integral Formula, we have

1� (z − a)α = 1

2π i

∫
�

dζ

(ζ − a)α (ζ − z)
,

where � consists of the following paths (see Figure 1.4) � = �1 + �2 + CR. The
contribution from CR vanishes as R → ∞.

On �1, we set

ζ − a = r and (ζ − a)α = rα ,

1
2π i

∫
�1

dζ

(ζ − a)α(ζ − z)
= 1

2π i

∫ +∞

0

dr

rα(r + a − z)
.

On �2, we set

ζ − a = re2π i and (ζ − a)α = rαe2π iα ,

1

2π i

∫
�2

dζ

(ζ − a)α(ζ − z)
= e−2π iα

2π i

∫ 0

+∞

dr

rα(r + a − z)
.
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Thus we obtain

1�(z − a)α = 1 − e−2π iα

2π i

∫ +∞

a

dx

(x − a)α(x − z)
,

which may be written as

1�(z − a)α = 1 − e−2π iα

2π i

[∫ b

a

dx

(x − a)α(x − z)
+

∫ +∞

b

dx

(x − a)α(x − z)

]
.

The second integral above is convergent for z close to a. Obviously then, we have

1

2π i

∫ b

a

dx

(x − a)α(x − z)
= O

(
1

(z − a)α

)
as z → a.

A similar analysis can be done as z → b. �

Summary of behavior near the end points

f (z) = 1

2π i

∫ b

a

D(x)dx

x − z
,

{
if D(x → a) = D(a), then f (z) = O(ln(a − z)),
if D(x → a) = 1�(x − a)α (0 < α < 1), then f (z) = O(1�(z − a)α),

(1.8.12a){
if D(x → b) = D(b), then f (z) = O(ln(b − z)),
if D(x → b) = 1�(x − b)β (0 < β < 1), then f (z) = O(1�(z − b)β ).

(1.8.12b)

Principal Value Integrals: We define the principal value integral by

P
∫ b

a

f (x)

x − y
dx ≡ lim

ε→0+

[∫ y−ε

a

f (x)

x − y
dx +

∫ b

y+ε

f (x)

x − y
dx

]
. (1.8.13)

Graphically expressed, the principal value integral contour is as in Figure 1.5. As
such, to evaluate a principal value integral by doing complex integration, we usually
make use of either of the two contours as in Figure 1.6.

Now, the contour integrals on the right of Figure 1.6 usually can be done and
hence the principal value integral can be evaluated. Also, the contributions from
the lower semicircle C− and the upper semicircle C+ take the forms

∫
C−

f (z)

z − y
dz = iπ f (y),

∫
C+

f (z)

z − y
dz = −iπ f (y),

as ε → 0+, as long as f (z) is not singular at y.
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a

y −e y

y +e b

Fig. 1.5 The principal value integral contour.

a y − e y + e b

Fig. 1.6 Two contours for the principal value integral (1.8.13).

Mathematically expressed, the principal value integral is given by either of the
following formulas, known as the Plemelj formula:

1

2π i
P

∫ b

a

f (x)

x − y
dx = lim

ε→0+
1

2π i

∫ b

a

f (x)

x − y ∓ iε
dx ∓ 1

2
f (y), (1.8.14)

This is customarily written as

lim
ε→0+ 1�

(
x − y ∓ iε

) = P(1�(x − y)) ± iπδ(x − y), (1.8.15a)

or equivalently written as

P(1�(x − y)) = lim
ε→0+ 1�

(
x − y ∓ iε

) ∓ iπδ(x − y). (1.8.15b)

Then we interchange the order of the limit ε → 0+ and the integration over x. The
principal value integrand seems to diverge at x = y, but it is actually finite at x = y
as long as f (x) is not singular at x = y. This comes about as follows:

1

x − y ∓ iε
= (x − y) ± iε

(x − y)2 + ε2
= (x − y)

(x − y)2 + ε2
± iπ · 1

π

ε

(x − y)2 + ε2

= (x − y)

(x − y)2 + ε2
± iπδε(x − y), (1.8.16)
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where δε(x − y) is defined by

δε(x − y) ≡ 1

π

ε

(x − y)2 + ε2
, (1.8.17)

with the following properties:

δε(x �= y) → 0+ as ε → 0+; δε(x = y) = 1

π

1

ε
→ +∞ as ε → 0+,

∫ +∞

−∞
δε(x − y)dx = 1.

The first term on the right-hand side of Eq. (1.8.16) vanishes at x = y before we
take the limit ε → 0+, while the second term δε(x − y) approaches the Dirac delta
function, δ(x − y), as ε → 0+. This is the content of Eq. (1.8.15a).

1.9
Review of Fourier Transform

The Fourier transform of a function f (x), where −∞ < x < ∞, is defined as

f̃ (k) =
∫ ∞

−∞
dx exp[−ikx] f (x). (1.9.1)

There are two distinct theories of the Fourier transforms.

(I) Fourier transform of square-integrable functions.
It is assumed that

∫ ∞

−∞
dx

∣∣ f (x)
∣∣2

< ∞. (1.9.2)

The inverse Fourier transform is given by

f (x) =
∫ ∞

−∞

dk

2π
exp[ikx] f̃ (k). (1.9.3)

We note that in this case f̃ (k) is defined for real k. Accordingly, the inver-
sion path in Eq. (1.9.3) coincides with the entire real axis. It should be borne
in mind that Eq. (1.9.1) is meaningful in the sense of the convergence in
the mean, namely, Eq. (1.9.1) means that there exists f̃ (k) for all real k such
that

lim
R→∞

∫ ∞

−∞
dk

∣∣∣∣ f̃ (k) −
∫ R

−R
dx exp[−ikx] f (x)

∣∣∣∣
2

= 0. (1.9.4)



26 1 Function Spaces, Linear Operators, and Green’s Functions

Symbolically we write

f̃ (k) = lim
R→∞

∫ R

−R
dx exp[−ikx] f (x). (1.9.5)

Similarly in Eq. (1.9.3), we mean that, given f̃ (k), there exists an f (x) such that

lim
R→∞

∫ ∞

−∞
dx

∣∣∣∣ f ( f ) −
∫ R

−R

dk

2π
exp[ikx] f̃ (k)

∣∣∣∣
2

= 0. (1.9.6)

We can then prove that

∫ ∞

−∞
dk

∣∣∣ f̃ (k)
∣∣∣2 = 2π

∫ ∞

−∞
dx

∣∣ f (x)
∣∣2

. (1.9.7)

This is Parseval’s identity for the square-integrable functions. We see that the pair
( f (x), f̃ (k)) defined this way consists of two functions with very similar properties.
We shall find that this situation may change drastically if condition (1.9.2) is
relaxed.

(II) Fourier transform of integrable functions.
We relax the condition on the function f (x) as

∫ ∞

−∞
dx

∣∣ f (x)
∣∣ < ∞. (1.9.8)

Then we can still define f̃ (k) for real k. Indeed, from Eq. (1.9.1), we obtain

∣∣∣ f̃ (k: real)
∣∣∣ =

∣∣∣∣
∫ ∞

−∞
dx exp[−ikx] f (x)

∣∣∣∣
≤

∫ ∞

−∞
dx

∣∣exp[−ikx] f (x)
∣∣ =

∫ ∞

−∞
dx

∣∣ f (x)
∣∣ < ∞. (1.9.9)

We can further show that the function defined by

f̃+(k) =
∫ 0

−∞
dx exp[−ikx] f (x) (1.9.10)

is analytic in the upper half-plane of the complex k plane, and

f̃+(k) → 0 as
∣∣k∣∣ → ∞ with Im k > 0. (1.9.11)

Similarly, we can show that the function defined by

f̃−(k) =
∫ ∞

0
dx exp[−ikx] f (x) (1.9.12)
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is analytic in the lower half-plane of the complex k plane, and

f̃−(k) → 0 as
∣∣k∣∣ → ∞ with Im k < 0. (1.9.13)

Clearly we have

f̃ (k) = f̃+(k) + f̃−(k), k: real. (1.9.14)

We can show that

f̃ (k) → 0 as k → ±∞, k: real. (1.9.15)

This is a property in common with the Fourier transform of the square-integrable
functions.

� Example 1.2. Find the Fourier transform of the following function:

f (x) = sin(ax)

x
, a > 0, −∞ < x < ∞. (1.9.16)

Solution. The Fourier transform f̃ (k) is given by

f̃ (k) =
∫ ∞

−∞
dx exp[ikx]

sin(ax)

x
=

∫ ∞

−∞
dx exp[ikx]

exp[iax] − exp[−iax]

2ix

=
∫ ∞

−∞
dx

exp[i(k + a)x] − exp[i(k − a)x]

2ix
= I(k + a) − I(k − a),

where we define the integral I(b) by

I(b) ≡
∫ ∞

−∞
dx

exp[ibx]

2ix
=

∫
�

dx
exp[ibx]

2ix
.

The contour � extends from x = −∞ to x = ∞ with the infinitesimal indent below
the real x-axis at the pole x = 0. Noting that x = Re x + i Im x for the complex x,
we have

I(b) =
{

2π i · Res
[

exp[ibx]
2ix

]
x=0

= π , b > 0,

0, b < 0.

Thus we have

f̃ (k) = I(k + a) − I(k − a) =
∫ ∞

−∞
dx exp[ikx]

sin(ax)

x
=

{
π for

∣∣k∣∣ < a,
0 for

∣∣k∣∣ > a,

(1.9.17)
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while at k = ±a, we have

f̃ (k = ±a) = π

2
,

which is equal to

1

2
[f̃ (k = ±a+) + f̃ (k = ±a−)].

� Example 1.3. Find the Fourier transform of the following function:

f (x) = sin(ax)

x(x2 + b2)
, a, b > 0, −∞ < x < ∞. (1.9.18)

Solution. The Fourier transform f̃ (k) is given by

f̃ (k) =
∫

�

dz
exp[i(k + a)z]
2iz(z2 + b2)

−
∫

�

dz
exp[i(k − a)z]
2iz(z2 + b2)

= I(k + a) − I(k − a),

(1.9.19a)

where we define the integral I(c) by

I(c) ≡
∫ ∞

−∞
dz

exp[icz]
2iz(z2 + b2)

=
∫

�

dz
exp[icz]

2iz(z2 + b2)
, (1.9.19b)

where the contour � is the same as in Example 1.2. The integrand has the simple
poles at

z = 0 and z = ±ib.

Noting z = Re z + i Im z, we have

I(c) =




2π i · Res
[

exp[icz]
2iz(z2+b2)

]
z=0

+ 2π i · Res
[

exp[icz]
2iz(z2+b2)

]
z=ib

, c > 0,

−2π i · Res
[

exp[icz]
2iz(z2+b2)

]
z=−ib

, c < 0,

or

I(c) =
{

(π�2b2)(2 − exp[−bc]), c > 0,
(π�2b2) exp[bc], c < 0.

Thus we have

f̃ (k) = I(k + a) − I(k − a) =




(π�b2) sinh(ab) exp[bk], k < −a,
(π�b2){1 − exp[−ab] cosh(bk)}, ∣∣k∣∣ < a,

(π�b2) sinh(ab) exp[−bk], k > a.

(1.9.20)
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We note that f̃ (k) is step-discontinuous at k = ±a in Example 1.2. We also note that
f̃ (k) and f̃

′
(k) are continuous for real k, while f̃

′′
(k) is step-discontinuous at k = ±a in

Example 1.3.
We note that the rate with which

f (x) → 0 as |x| → +∞

affects the degree of smoothness of f̃ (k). For the square-integrable functions, we
usually have

f (x) = O

(
1
x

)
as |x| → +∞ ⇒ f̃ (k) step-discontinuous,

f (x) = O

(
1

x2

)
as |x| → +∞ ⇒

{
f̃ (k) continuous,

f̃
′
(k) step-discontinuous,

f (x) = O

(
1
x3

)
as |x| → +∞ ⇒

{
f̃ (k), f̃

′
(k) continuous,

f̃
′′
(k) step-discontinuous,

and so on.

Having learned in above the abstract notions relating to linear space, inner
product, operator and its adjoint, eigenvalue and eigenfunction, Green’s function,
and the review of Fourier transform and complex analysis, we are now ready to
embark on our study of integral equations. We encourage the reader to make an
effort to connect the concrete example that will follow with the abstract idea of linear
function space and linear operator. This will not be possible in all circumstances.

The abstract idea of function space is also useful in the discussion of the calculus
of variations where a piecewise continuous but nowhere differentiable function
and a discontinuous function show up as the solution of the problem.

We present the applications of the calculus of variations to theoretical physics,
specifically, classical mechanics, canonical transformation theory, the Hamil-
ton–Jacobi equation, classical electrodynamics, quantum mechanics, quantum
field theory and quantum statistical mechanics.

The mathematically oriented reader is referred to the monographs by R. Kress,
and I.M. Gelfand , and S.V. Fomin for details of the theories of integral equations
and calculus of variations.




