
�

�

Yun Wang: Dark Energy — Chap. wang9419c01 — 2009/12/3 — 9:30 — page 1 — le-tex

�

�

�

�

�

�

1

1
The Dark Energy Problem

The discovery that the expansion of the universe is accelerating was first made
by Riess et al. (1998) and Perlmutter et al. (1999), with supporting evidence for this
observation strengthening over time.

The cause for the observed acceleration is unknown, and is usually referred to
as “the dark energy problem”. It could be due to an unknown energy component
in the universe (i.e., “dark energy”), or the modification of gravity as described by
Einstein’s general relativity (i.e., “modified gravity”). Solving the mystery of the
observed cosmic acceleration is one of the most exciting challenges in cosmology
today.

1.1
Evidence for Cosmic Acceleration

To understand the evidence for cosmic acceleration, we need to first introduce the
basis of standard cosmology. We will then discuss the first and current evidence for
cosmic acceleration.

1.1.1
The Basic Cosmological Picture

We live in an expanding universe, a fact first discovered by Hubble in 1929. Our
physical universe can be described by the Robertson–Walker metric, the simplest
metric that describes a homogeneous, isotropic, and expanding universe:

ds2 D �c2dt2 C a2(t)
�

dr2

1 � Qk r2
C r2dθ 2 C r2 sin2 θ dφ2

�
(1.1)

where c is the speed of light, t is cosmic time, a(t) is the cosmic scale factor, and
Qk is the curvature constant. The universe is flat for Qk D 0, open for Qk < 0 and
closed for Qk > 0. The spatial location of an object is given by (r, θ , φ) in spherical
coordinates.
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2 1 The Dark Energy Problem

The physical wavelength of light emitted at time t is given by

λphys D a(t)λ , (1.2)

where λ is the comoving wavelength. As the universe expands, a(t) increases with
time. Comoving quantities do not change with the expansion of the universe. The
expansion of the universe leads to an increase in the observed wavelength (i.e., a
redshift) of light from a distant source. The cosmological redshift is defined as

z � 1
a(t)

� 1 . (1.3)

The redshift z is usually used as the indicator for cosmic time, because it can be
measured for a given astrophysical object. If the light emitted by a distant object is
stretched by a factor of (1C z) in wavelength upon arrival at the observer, the object
is said to be at a distance corresponding to redshift z.

The coordinate distance r(z) from Eq. (1.1) gives the observer’s comoving distance
to an object located at redshift z. Our physical distance to the object is the angular
diameter distance given by

dA(z) � a(t)r D r(z)
1 C z

. (1.4)

If we know the intrinsic luminosity of an object, then measuring its apparent
brightness allows us to infer our luminosity distance to the object

�
dL(z)
10 pc

�2

D Fint

F
, (1.5)

where F is the observed flux from the object, and Fint is its “intrinsic flux”, defined
to be the flux from the object received by an observer located at a distance of 10 pc
away from the object. In astronomical observations, magnitude is used as the unit
for the observed flux. The magnitude difference between two objects with observed
fluxes F1 and F2 is defined as

m1 � m2 � 2.5 log
�

F2

F1

�
. (1.6)

Thus, Eq. (1.5) becomes

m � M D 2.5 log
�

Fint

F

�
D 5 log

�
dL(z)
Mpc

�
C 25 , (1.7)

where m and M are the apparent and absolute magnitudes of the object respectively,
and m�M is known as the distance modulus. Due to the redshifting of the light from
the object, and the time dilation effect, the luminosity distance and the comoving
distance to the object are related by

dL(z) D (1 C z)r(z) . (1.8)
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1.1 Evidence for Cosmic Acceleration 3

The expansion rate of the universe at time t is known as the Hubble parameter
H(t), defined as

H(t) � Pa
a

. (1.9)

The Hubble parameter H(t) and the cosmic scale factor a(t) are functions of time
(i.e., redshift) that depend on the composition of the universe, as well as the global
spatial curvature of the universe. Setting d2 s D 0 and considering radial depen-
dence only (i.e., considering the radial propagation of photons), Eq. (1.1) gives a re-
lation between distance and redshift that depends on the Hubble parameter, which
in turn depends on the composition and spatial curvature of the universe. For a flat
universe, we have

dL(z) D c(1 C z)

zZ
0

dz0 1
H(z0)

, (flat universe) . (1.10)

In the standard cosmological model, the universe began in a very hot and very
dense state, known as the Big Bang. It is likely that the universe went through a
period of extremely rapid expansion (known as inflation) in the first tiny fraction of
a second in the history of the universe. The universe was radiation dominated after
the end of inflation, then became matter dominated at z � 3000.

For a universe consisting of matter, radiation, and a cosmological constant, the
Hubble parameter H(z) is

H2(z) �
� Pa

a

�2

D H2
0

�
Ωm(1 C z)3 C Ωr(1 C z)4 C Ωk(1 C z)2 C ΩΛ

�
,

(1.11)

where the Hubble constant H0 is defined as the value of the Hubble parameter today.
The density fractions Ωm, Ωr, ΩΛ , and Ωk are defined by

Ωm � �m(t0)
�0

c
, Ωr � �rad(t0)

�0
c

, ΩΛ � �Λ

�0
c

, Ωk � �
Qk

H2
0

, (1.12)

where �m(t0) and �rad(t0) are the matter and radiation densities today, and �Λ is the
energy density due to a cosmological constant (also known as vacuum energy). The
critical density �0

c is defined as

�0
c � 3H2

0

8πG
. (1.13)

Requiring the consistency of Eq. (1.11) at z D 0, that is, H(z D 0) D H0, gives

Ωm C Ωr C Ωk C ΩΛ D 1 . (1.14)

Note that Ωr � Ωm, thus the Ωr term is usually omitted at z � 3000.
The matter-energy content of the universe is parametrized as an ideal fluid with

density � and pressure p. Each component of the universe can be described by its
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4 1 The Dark Energy Problem

equation of state w, defined as

w � p
�

. (1.15)

Matter has w D 0. Radiation has w D 1/3. A cosmological constant corresponds to
w D �1.

1.1.2
First Direct Observational Evidence for Cosmic Acceleration

Until about a decade ago, observational data favored a universe that is dominated
by matter today. If we allow the universe to have an arbitrary spatial curvature (see
Eq. (1.1)), and a possibly nonzero cosmological constant Λ (see Eq. (1.11)), then we
can define a “deceleration parameter” of the cosmic expansion:

q0 � � Ra(t0)/a(t0)
H2

0
D Ωm

2
� ΩΛ , (1.16)

where a(t0) is the cosmic scale factor today, and we have used Eq. (1.11). Equa-
tion (1.16) shows clearly that a matter-dominated universe (with Ωm > 2ΩΛ )
should be decelerating today.

For decades, astronomers tried to measure the cosmic “deceleration parameter”
using Type Ia supernovae (SNe Ia) as cosmological distance indicators. SNe Ia can
be calibrated to be good standard candles, with very small scatter in their intrin-
sic peak luminosity. Thus the measured apparent peak brightness of SNe Ia can
be used to infer the distances to the SNe Ia. The observed spectra of the SNe Ia
can be used to measure their redshifts. This yields an observed distance-redshift
relation of SNe Ia that can be shown in a Hubble diagram. In a Hubble diagram,
the distance modulus m � M of a SN Ia, the difference between the observed ap-
parent peak brightness of a SN Ia and its absolute peak brightness, is plotted as
a function of redshift of the SN Ia. The measured distance modulus of a SN Ia
gives a measurement of the luminosity distance dL(z) to the SN Ia at redshift z,
see Eq. (1.7). This measured dL(z) can then be compared with the theoretical pre-
diction (e.g., Eqs. (1.10) and (1.11)) to infer the values of cosmological parameters,
and constrain q0.

Unexpectedly, the quest to measure the cosmic “deceleration parameter” led to
the discovery that the universe is accelerating today. This means that the universe
is dominated by something that is not matter-like today, or general relativity does
not give a complete description of the present universe. This discovery was made
using the observed peak brightness of SNe Ia as cosmological distance indicators,
independently by two teams of astronomers, Riess et al. (1998) and Perlmutter et al.
(1999). Figure 1.1 shows the joint confidence contour for Ωm and ΩΛ from Riess
et al. (1998) and Perlmutter et al. (1999). The discovery of cosmic acceleration was
made at high statistical significance.

Figure 1.2 shows Hubble diagrams of SNe Ia from both teams. These show the
observed distance-redshift relations, that is, the distance modulus m � M versus
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1.1 Evidence for Cosmic Acceleration 5

0.0 0.5 1.0 1.5 2.0 2.5

ΩM

-1

0

1

2

3
Ω

Λ

 

 

 

 

 

 

 

 

 

No 
Big 

Ban
g

Expands to Infinity

Recollapses

Open

Closed

Accelerating

Decelerating

 

 

 

 

 

 

 

 

 

99.7%

95.4%

68.3%
Riess et al. 1998

Perlmutter et al. 1999

Figure 1.1 The discovery of cosmic acceleration by Riess et al. (1998) and Perlmutter et al.
(1999)(Riess, 2000).

redshift z, compared to several theoretical models. It is difficult to see which cos-
mological model is favored. Figure 1.3 shows Hubble diagrams of flux-averaged
data from Wang (2000a) using SNe Ia from both teams (Riess et al., 1998; Perlmut-
ter et al., 1999). Flux averaging removes the weak gravitational lensing systematic
effect of demagnification or magnification of SNe Ia due to the distribution of mat-
ter in the universe, since the total number of photons is unchanged by gravitational
lensing (Wang, 2000a; Wang and Mukherjee, 2004). Flux averaging also makes data
more transparent. It is interesting to note that flux averaging leads to slightly larg-
er error ellipses that are shifted toward smaller ΩΛ , making the first evidence for
cosmic acceleration less strong than that suggested by Figure 1.1 (Wang, 2000a).

Another thing to note is that there were systematic differences in the data from
the two teams, although both teams found cosmic acceleration using their own data
and that of low-redshift measurements by Hamuy et al. (1996). Wang (2000a) com-
pared the data of 18 SNe Ia published by both teams, see Figure 1.4. The error bars
are the combined errors in the apparent B magnitude meff

B measured by Perlmutter
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6 1 The Dark Energy Problem

(a)

(b)

Figure 1.2 Supernova data from two independent teams, Riess et al. (1998), and Perlmutter
et al. (1999) (from Wang, 2000a). Panel (b) is the same as panel (a), but with an open universe
model (Ωm D 0.2, ΩΛ D 0) subtracted.

et al. (1999), and the distance modulus μMLCS
0 measured by Riess et al. (1998). The

difference of meff
B and μMLCS

0 should be a constant (the SN Ia peak absolute magni-
tude) with zero scatter, if there were no differences in analysis techniques, and no
internal dispersion in the SN Ia peak brightness. Wang (2000a) found a mean SN
Ia peak absolute magnitude of MB D �19.33 ˙ 0.25. This scatter of 0.25 mag can
be accounted for by the internal dispersion of each data set of about 0.20 mag in the
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1.1 Evidence for Cosmic Acceleration 7

(a)

(b)

Figure 1.3 The data from Figure 1.2 flux-averaged (Wang, 2000a). Panel (b) is the same as panel
(a), but with an open universe model (Ωm D 0.2, ΩΛ D 0) subtracted.

calibrated SN Ia peak absolute magnitudes, and an additional uncertainty of about
0.15 mag that is introduced by the difference in analysis techniques (Wang, 2000a).
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8 1 The Dark Energy Problem

Figure 1.4 The difference between the apparent B magnitude meff
B measured by Perlmutter et al.

(1999), and the distance modulus μMLCS
0 measured by Riess et al. (1998) for the same 18 SNe Ia

(from Wang, 2000a). The error bars are the combined errors in meff
B and μMLCS

0 .

1.1.3
Current Observational Evidence for Cosmic Acceleration

The direct evidence for cosmic acceleration has strengthened over time, as a result
of the observations of more SNe Ia, and an improvement in the analysis technique.
The analysis by Wang (2000a) demonstrated the importance of analyzing all the
SNe Ia using the same analysis technique. This was first done by Riess et al. (2004),
who compiled a “gold” set of 157 SNe Ia. Most recently, Kowalski et al. (2008) com-
piled a “union” set of 307 SNe Ia in 2008, using data from Hamuy et al. (1996);
Riess et al. (1998, 1999); Perlmutter et al. (1999); Tonry et al. (2003); Knop (2003);
Krisciunas et al. (2004a,b); Barris et al. (2004); Jha et al. (2006); Astier et al. (2006);
Riess et al. (2007), and Miknaitis et al. (2007).

Other observational data have provided strong indirect evidence for the existence
of dark energy. Cosmic microwave background anisotropy data (CMB) have indicat-
ed that the global geometry of the universe is close to being flat, that is, Ωtot � 1 (de
Bernardis et al., 2000). The observed abundance of galaxy clusters first revealed
that we live in a low matter density universe (Ωm � 0.2–0.3) (Bahcall, Fan, and
Cen, 1997). The CMB and galaxy cluster data together require the existence of dark
energy that dominates the universe today.

To see the observational evidence for cosmic acceleration without assuming a
cosmological constant, it is useful to measure the expansion history of the uni-
verse, the Hubble parameter H(z), from data. Figure 1.5 shows the Hubble pa-
rameter H(z), as well as Pa, measured from a combination of current observation-
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1.1 Evidence for Cosmic Acceleration 9

WMAP 3 yr + 182 SNe Ia + SDSS BAO

(a)

(b)

Figure 1.5 Expansion history of the uni-
verse measured from current data by Wang
and Mukherjee (2007). Data used: CMB data
from WMAP three-year observations (Spergel
et al., 2007); 182 SNe Ia (compiled by Riess
et al. (2007), including data from the Hub-
ble Space Telescope (HST) obtained by Riess
et al. (2007), the Supernova Legacy Survey

(SNLS) data obtained by Astier et al. (2006),
as well as nearby SNe Ia); SDSS baryon acous-
tic oscillation measurement (Eisenstein et al.,
2005). Note that X(z) � �X(z)/�X(0) in the
figure legends, with �X(z) denoting the dark
energy density. Panels (a) and (b) use the
same data but differ in y axis: Pa D H(z)a.

al data by Wang and Mukherjee (2007): CMB data from WMAP 3 year observa-
tions (Spergel et al., 2007); 182 SNe Ia (compiled by Riess et al. (2007), including
data from the Hubble Space Telescope (HST) obtained by Riess et al. (2007), the
Supernova Legacy Survey (SNLS) data obtained by Astier et al. (2006), as well as
nearby SNe Ia); Sloan Digital Sky Survey (SDSS) baryon acoustic oscillation scale
measurement (Eisenstein et al., 2005). Clearly, the universe transitioned from cos-
mic deceleration (matter domination) to cosmic acceleration around z � 0.5.

The observed cosmic acceleration could be due to an unknown energy compo-
nent (dark energy, e.g., Quintessence Models references; Linde (1987)), or a mod-
ification to general relativity (modified gravity, e.g., Modified Gravity Models ref-
erences; Dvali, Gabadadze, and Porrati (2000); Freese and Lewis (2002)). The fol-
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10 1 The Dark Energy Problem
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Figure 1.6 Constraints on the dark energy
equation of state wX(a) D w0 C wa (1 � a) ob-
tained by Wang and Mukherjee (2007), using
the same data as in Figure 1.5. A cosmological

constant corresponds to wX(a) D �1 (in-
dicated by the cross in the figures). Panel (b)
assumes a flat universe; panel (a) does not.

lowing references (Dark Energy Reviews; Copeland, Sami, and Tsujikawa, 2006;
Caldwell and Kamionkowski, 2009) contain reviews with more complete lists of
references of theoretical models. We discuss some of these models in Chapter 3.

The simplest explanation for the observed cosmic acceleration is that dark energy
is a cosmological constant (although it is many orders smaller than expected based
on known physics), and that gravity is not modified. Figure 1.6 shows constraints
on the dark energy equation of state wX(a) D w0 C wa(1 � a) (Chevallier and
Polarski, 2001), obtained by Wang and Mukherjee (2007) using the same data as
in Figure 1.5. Figures 1.5 and 1.6 show that a cosmological constant is consistent
with current observational data, although uncertainties are large. Wang (2008a,c)
found that this remains true from an analysis of more recent observational data.
For complementary approaches to analyzing current data, see, for example, Wang
and Tegmark (2005), and Current Data Results references.

1.2
Fundamental Questions about Cosmic Acceleration

Dark energy projects aim to solve the mystery of cosmic acceleration. In terms
of observables, the two fundamental questions that need to be answered by dark
energy searches are:

1. Is dark energy density constant in cosmic time?
2. Is gravity modified?
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1.2 Fundamental Questions about Cosmic Acceleration 11

These questions can be answered by the precise and accurate measurement of the
dark energy density �X(z) as a function of cosmic time (or the expansion history
of the universe H(z)), and the growth history of cosmic large scale structure fg(z)
from observational data. The answer to these questions will tell us whether cosmic
acceleration is caused by dark energy or a modification of gravity, and if gravity is
not modified, whether dark energy is a cosmological constant, or due to a dynami-
cal field.

Dark energy is often parameterized by a linear equation of state (Chevallier and
Polarski, 2001)

wX(a) D w0 C wa(1 � a) . (1.17)

Because of our ignorance of the nature of dark energy, it is important to make
model-independent constraints by measuring the dark energy density �X(z) (or the
expansion history H(z)) as a free function of cosmic time (Wang and Garnavich,
2001; Tegmark, 2002; Daly and Djorgovski, 2003). Measuring �X(z) has advantages
over measuring the dark energy equation of state wX(z) as a free function; �X(z) is
more closely related to observables, hence is more tightly constrained for the same
number of redshift bins used (Wang and Garnavich, 2001; Wang and Freese, 2006).
Note that �X(z) is related to wX(z) as follows (Wang and Garnavich, 2001):

�X(z)
�X(0)

D exp

8<
:

zZ
0

dz0 3
�
1 C wX(z0)

�
1 C z0

9=
; . (1.18)

Hence parametrizing dark energy with wX(z) implicitly assumes that �X(z) does not
change sign in cosmic time. This precludes whole classes of dark energy models
in which �X(z) becomes negative in the future (“Big Crunch” models, see Linde
(1987); Wang et al. (2004) for an example) (Wang and Tegmark, 2004).

If the present cosmic acceleration is caused by dark energy, then

E(z) � H(z)
H0

D �
Ωm(1 C z)3 C Ωk(1 C z)2 C ΩX X(z)

�1/2
, (1.19)

which generalizes Eq. (1.11) by replacing ΩΛ with ΩX X(z), with the dark energy
density function X(z) � �X(z)/�X(0). For a cosmological constant, X(z) D 1. Once
E(z) is specified, the evolution of matter density perturbations on large scales,
δ(1)

m (x , t) D D1(t)δm(x), is determined by solving the following equation (assum-
ing that dark energy perturbation δX D 0):

D 00
1 C 2E(z)D 0

1 � 3
2

Ωm(1 C z)3D1 D 0 , (1.20)

where D1 D δ(1)
m (x , t)/δm(x ), and primes denote d/d(H0 t). Or, more conveniently:

a2E 2D 00
1 (a) C

�
a2E

dE
da

C 3aE 2
�

D 0
1(a) � 3

2
Ωm

D1

a3
D 0 , (1.21)
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12 1 The Dark Energy Problem

where primes denote d/da. The usual initial condition is

D1(aja ! 0) D a . (1.22)

The linear growth rate is defined as

fg(z) � d ln D1

d ln a
. (1.23)

Note that we have assumed that dark energy and dark matter are separate (and
that dark energy perturbations are negligible on scales of interest), which is true
for the vast majority of dark energy models that have been studied in the literature.
If dark energy and dark matter are coupled (a more complicated possibility), or if
dark energy and dark matter are unified (unified dark matter models), Eq. (1.20)
would need to be modified accordingly. Sandvik et al. (2004) found strong evidence
for the separation of dark energy and dark matter by ruling out a broad class of
so-called unified dark matter models. These models produce oscillations or expo-
nential blowup of the dark matter power spectrum inconsistent with observations.

In the simplest alternatives to dark energy, the present cosmic acceleration is
caused by a modification to general relativity. Such models can be tested by ob-
servational data, see for example, Modified Gravity (references with more details)
for observational signatures of some modified gravity models. The only rigorously
worked example is the DGP gravity model (Dvali, Gabadadze, and Porrati, 2000).
The validity of the DGP model has been studied by Koyama (2007) and Song, Saw-
icki, and Hu (2007).

The DGP model can be described by a modified Friedmann equation:

H2 � H
r0

D 8πG�m

3
, (1.24)

where �m(z) D �m(0)(1 C z)3. Solving the above equation gives

E(z) D 1
2

(
1

H0r0
C
s

1
(H0r0)2 C 4Ω 0

m(1 C z)3

)
, (1.25)

where Ω 0
m and �0

c are defined by Eqs. (1.12) and (1.13), respectively. The added
superscript “0” in Ω 0

m denotes that this is the matter density fraction today in the
DGP gravity model. Note that consistency at z D 0, H(0) D H0 requires that

H0r0 D 1
1 � Ω 0

m
, (1.26)

thus the DGP gravity model is parametrized by a single parameter, Ω 0
m.

For DGP gravity, the evolution of matter density perturbations are modified; this
is a hallmark of modified gravity models. The linear growth factor in the DGP
gravity model is given by Lue, Scoccimarro, and Starkman (2004), and Lue (2006):

D 00
1 C 2E(z)D 0

1 � 3
2

Ωm(1 C z)3D1

�
1 C 1

3αDGP

�
D 0 , (1.27)
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1.2 Fundamental Questions about Cosmic Acceleration 13

where primes denote d/d(H0 t), and

αDGP D 1 � 2H r0

 
1 C

PH
3H2

!
D 1 � 2H0 r0 C 2(H0r0)2

1 � 2H0r0
. (1.28)

The dark energy model equivalent of the DGP gravity model is specified by re-
quiring

8πG�eff
de

3
D H

r0
. (1.29)

Equation (1.24) and the conservation of energy and momentum equation,

P�eff
de C 3

�
�eff

de C p eff
de

	
H D 0 , (1.30)

imply that (Lue, Scoccimarro, and Starkman, 2004; Lue, 2006)

w eff
de D � 1

1 C Ωm(a)
, (1.31)

where

Ωm(a) � 8πG�m(z)
3H2 D Ω 0

m(1 C z)3

E 2(z)
. (1.32)

Note that

Ωm(aja ! 0) D 1 , w eff
de (aja ! 0) D �0.5 (1.33)

Ωm(aja ! 1) D Ω 0
m , w eff

de (aja ! 1) D � 1
1 C Ω 0

m
. (1.34)

This means that the matter transfer function (which describes how the evolution
of matter density perturbations depends on scale) for the dark energy model equiv-
alent of a viable DGP gravity model (Ω 0

m < 0.3 and w � �0.5) is very close to that
of the ΛCDM model at k & 0.001 h Mpc�1 (Ma et al., 1999).

It is easy and straightforward to integrate Eqs. (1.20) and (1.27) to obtain D1(a),
and thus fg(z), for dark energy models and DGP gravity models, with the initial
condition in Eq. (1.22), that is, D1(aja ! 0) D a (which assumes that dark energy
or modified gravity is negligible at sufficiently early times).

The measurement of H(z) or �X(z) allows us to determine whether dark ener-
gy is a cosmological constant. The measurement of fg(z) allows us to determine
whether gravity is modified. An ambitious SN Ia survey can provide measurement
of H(z) to a few percent in accuracy (Wang and Tegmark, 2005). An ambitious
galaxy redshift survey can measure both H(z) and fg(z) to better than a few percent
in accuracy (Wang, 2008b). An ambitious weak lensing survey can measure r(z)
(which gives H(z) in an integral form) to a few percent in accuracy and the growth
factor G(z) [G(z) / D1(t)] to several percent in accuracy (Knox, Song, and Tyson,
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2006). All these surveys are feasible within the next decade if appropriate resources
are made available.

We will discuss each of the major observational methods for probing dark energy
(i.e., determining the cause of the observed recent cosmic acceleration) in detail in
Chapters 4–8, the key instrumentation for dark energy experiments in Chapter 9,
and the future prospects for probing dark energy in Chapter 10.




