Contents

Foreword to the First Edition XVII Preface to the First Edition XIX Preface to the Second Edition XXIII Acknowledgements XXV

- **1** Introduction 1
- 1.1 Classification of Rotor Systems 1
- 1.2 Historical Perspective 3 References 8
- 2 Vibrations of Massless Shafts with Rigid Disks 11
- 2.1 General Considerations 11
- 2.2 Rotor Unbalance 11
- 2.3 Lateral Vibrations of an Elastic Shaft with a Disk at Its Center 13
- 2.3.1 Derivation of Equations of Motion 13
- 2.3.2 Free Vibrations of an Undamped System and Whirling Modes 14
- 2.3.3 Synchronous Whirl of an Undamped System 16
- 2.3.4 Synchronous Whirl of a Damped System 20
- 2.3.5 Energy Balance 22
- 2.4 Inclination Vibrations of an Elastic Shaft with a Disk at Its Center 23
- 2.4.1 Rotational Equations of Motion for Single Axis Rotation 23
- 2.4.2 Equations of Motion 23
- 2.4.3 Free Vibrations and Natural Angular Frequency 27
- 2.4.4 Gyroscopic Moment 29
- 2.4.5 Synchronous Whirl 33
- 2.5 Vibrations of a 4 DOF System 34
- 2.5.1 Equations of Motion 34
- 2.5.1.1 Derivation by Using the Results of 2 DOF System 35
- 2.5.1.2 Derivation by Lagrange's Equations 37
- 2.5.2 Free Vibrations and a Natural Frequency Diagram 40
- 2.5.3 Synchronous Whirling Response 42
- 2.6 Vibrations of a Rigid Rotor 43
- 2.6.1 Equations of Motion 43

VII

VIII Contents

2.6.2 2.7	Free Whirling Motion and Whirling Modes 45 Approximate Formulas for Critical Speeds of a Shaft with Several
	Disks 46
2.7.1	Rayleigh's Method 47
2.7.2	Dunkerley's Formula 48
	References 48
3	Vibrations of a Continuous Rotor 49
3.1	General Considerations 49
3.2	Equations of Motion 50
3.3	Free Whirling Motions and Critical Speeds 55
3.3.1	Analysis Considering Only Transverse Motion 56
3.3.2	Analysis Considering the Gyroscopic Moment and Rotary Inertia 58
3.3.3	Major Critical Speeds 59
3.4	Synchronous Whirl 60
	References 65
4	Balancing 67
4.1	Introduction 67
4.2	Classification of Rotors 67
4.3	Balancing of a Rigid Rotor 69
4.3.1	Principle of Balancing 69
4.3.1.1	Two-Plane Balancing 69
4.3.1.2	Single-Plane Balancing 70
4.3.2	Balancing Machine 71
4.3.2.1	Static Balancing Machine 71
4.3.2.2	Dynamic Balancing Machine 71
4.3.3	Field Balancing 75
4.3.4	Various Expressions of Unbalance 77
4.3.4.1	Resultant Unbalance U and Resultant Unbalance Moment V 77
4.3.4.2	Dynamic Unbalance (U_1, U_2) 79
4.3.4.3	Static Unbalance U and Couple Unbalance $[U_c, -U_c]$ 80
4.3.5	Balance Quality Grade of a Rigid Rotor 82
4.3.5.1	Balance Quality Grade 82
4.3.5.2	How to Use the Standards 84
4.4	Balancing of a Flexible Rotor 86
4.4.1	Effect of the Elastic Deformation of a Rotor 86
4.4.2	Modal Balancing Method 87
4.4.2.1	N-Plane Modal Balancing 88
4.4.2.2	(N + 2)-Plane Modal Balancing 90
4.4.3	Influence Coefficient Method 90
	References 92
5	Vibrations of an Asymmetrical Shaft and an Asymmetrical Rotor 93
-	

5.1 General Considerations 93

- 5.2 Asymmetrical Shaft with a Disk at Midspan 94
- 5.2.1 Equations of Motion 94
- 5.2.2 Free Vibrations and Natural Frequency Diagrams 95
- 5.2.2.1 Solutions in the Ranges $\omega > \omega_{c1}$ and $\omega < \omega_{c2}$ 98
- 5.2.2.2 Solutions in the Range $\omega_{c1} > \omega > \omega_{c2}$ 99
- 5.2.3 Synchronous Whirl in the Vicinity of the Major Critical Speed 100
- 5.3 Inclination Motion of an Asymmetrical Rotor Mounted on a Symmetrical Shaft 102
- 5.3.1 Equations of Motion 103
- 5.3.2 Free Vibrations and a Natural Frequency Diagram 108
- 5.3.3 Synchronous Whirl in the Vicinity of the Major Critical Speed 109
- 5.4 Double-Frequency Vibrations of an Asymmetrical Horizontal Shaft 110 References 113
- 6 Nonlinear Vibrations 115
- 6.1 General Considerations *115*
- 6.2 Causes and Expressions of Nonlinear Spring Characteristics: Weak Nonlinearity *115*
- 6.3 Expressions of Equations of Motion Using Physical and Normal Coordinates 121
- 6.4 Various Types of Nonlinear Resonances 123
- 6.4.1 Harmonic Resonance 124
- 6.4.1.1 Solution by the Harmonic Balance Method 124
- 6.4.1.2 Solution Using Normal Coordinates 128
- 6.4.2 Subharmonic Resonance of Order 1/2 of a Forward Whirling Mode 130
- 6.4.3 Subharmonic Resonance of Order 1/3 of a Forward Whirling Mode 132
- 6.4.4 Combination Resonance 133
- 6.4.5 Summary of Nonlinear Resonances 136
- 6.5 Nonlinear Resonances in a System with Radial Clearance: Strong Nonlinearity 139
- 6.5.1 Equations of Motion 141
- 6.5.2 Harmonic Resonance and Subharmonic Resonances 142
- 6.5.3 Chaotic Vibrations 144
- 6.6 Nonlinear Resonances of a Continuous Rotor 145
- 6.6.1 Representations of Nonlinear Spring Characteristics and Equations of Motion 146
- 6.6.2 Transformation to Ordinary Differential Equations 149
- 6.6.3 Harmonic Resonance 150
- 6.6.4 Summary of Nonlinear Resonances 151
- 6.7 Internal Resonance Phenomenon 152
- 6.7.1 Examples of the Internal Resonance Phenomenon 152
- 6.7.2 Subharmonic Resonance of Order 1/2 153

X Contents

6.7.3	Chaotic Vibrations in the Vicinity of the Major Critical Speed 156 References 158
7	Self-Excited Vibrations due to Internal Damping 161
7.1	General Considerations 161
7.2	Friction in Rotor Systems and Its Expressions 161
7.2.1	External Damping 162
7.2.2	Hysteretic Internal Damping 162
7.2.3	Structural Internal Damping 167
7.3	Self-Excited Vibrations due to Hysteretic Damping 168
7.3.1	System with Linear Internal Damping Force 169
7.3.2	System with Nonlinear Internal Damping Force 171
7.4	Self-Excited Vibrations due to Structural Damping173References176
8	Nonstationary Vibrations during Passage through Critical Speeds 177
8.1	General Considerations 177
8.2	Equations of Motion for Lateral Motion 178
8.3	Transition with Constant Acceleration 179
8.4	Transition with Limited Driving Torque 183
8.4.1	Characteristics of Power Sources 183
8.4.2	Steady-State Vibration 184
8.4.3	Stability Analysis 187
8.4.4	Nonstationary Vibration 188
8.5	Analysis by the Asymptotic Method (Nonlinear System, Constant Acceleration) 189
8.5.1	Equations of Motion and Their Transformation to a Normal
01011	Coordinate Expression 190
8.5.2	Steady-State Solution 192
8.5.3	Nonstationary Vibration 194
	References 196
9	Vibrations due to Mechanical Elements 199
9.1	General Considerations 199
9.2	Ball Bearings 199
9.2.1	Vibration and Noise in Rolling-Element Bearings 199
9.2.1.1	Vibrations due to the Passage of Rolling Elements 200
9.2.1.2	Natural Vibrations of Outer Rings 202
9.2.1.3	Geometrical Imperfection 204
9.2.1.4	Other Noises 205
9.2.2	Resonances of a Rotor Supported by Rolling-Element Bearings 205
9.2.2.1	Resonances due to Shaft Eccentricity 205
9.2.2.2	Resonances due to the Directional Difference in Stiffness 206
9.2.2.3	Vibrations of a Horizontal Rotor due to the Passage of Rolling Elements 208

Contents XI

- Vibrations due to the Coexistence of the Passage of Rolling Elements 9.2.2.4 and a Shaft Initial Bend 208
- 9.3 Bearing Pedestals with Directional Difference in Stiffness 209
- 9.4 Universal Joint 211
- 9.5 Rubbing 215
- Equations of Motion 217 9.5.1
- Numerical Simulation 218 9.5.2
- 9.5.3 Theoretical Analysis 220
- 9.5.3.1 Forward Rubbing 220
- 9.5.3.2 Backward Rubbing 221
- Self-Excited Oscillation in a System with a Clearance between Bearing 9.6 and Housing 222
- 9.6.1 Experimental Setup and Experimental Results 223
- 9.6.2 Analytical Model and Reduction of Equations of Motion 224
- 9.6.3 Numerical Simulation 226
- 9.6.4 Self-Excited Oscillations 227
- 9.6.4.1 Analytical Model and Equations of Motion 227
- Stability of a Synchronous Whirl 228 9.6.4.2
- 9.6.4.3 Mechanism of a Self-Excited Oscillation 229 References 232

Flow-Induced Vibrations 10 235

- 10.1 General Considerations 235
- 10.2 Oil Whip and Oil Whirl 235
- Journal Bearings and Self-Excited Vibrations 236 10.2.1
- Reynolds Equation 239 10.2.2
- 10.2.3 Oil Film Force 240
- 10.2.3.1 Short Bearing Approximation 241
- 10.2.3.2 Long Bearing Approximation 243
- 10.2.4 Stability Analysis of an Elastic Rotor 243
- 10.2.5 Oil Whip Prevention 246
- 10.3 Seals 248
- Plain Annular Seal 248 10.3.1
- 10.3.2 Labyrinth Seal 251
- 10.4 Tip Clearance Excitation 251
- Hollow Rotor Partially Filled with Liquid 252 10.5
- Equations Governing Fluid Motion and Fluid Force 254 10.5.1
- 10.5.2 Asynchronous Self-Excited Whirling Motion 256
- 10.5.3 Resonance Curves at the Major Critical Speed (Synchronous Oscillation) 257 References 261

Vibration Suppression 263 11

- 11.1 Introduction 263
- 11.2 Vibration Absorbing Rubber 263

XII Contents

11.3	Theory of Dynamic Vibration Absorber 263
11.4	Squeeze-Film Damper Bearing 264
11.5	Ball Balancer 266
11.5.1	Fundamental Characteristics and the Problems 266
11.5.2	Countermeasures to the Problems 268
11.6	Discontinuous Spring Characteristics 271
11.6.1	Fundamental Characteristics and the Problems 271
11.6.2	Countermeasures to the Problems 273
11.6.3	Suppression of Unstable Oscillations of an Asymmetrical Shaft 274
11.7	Leaf Spring 276
11.8	Viscous Damper 277
11.9	Suppression of Rubbing 278
	References 280
12	Some Practical Rotor Systems 283
12.1	General Consideration 283
12.2	Steam Turbines 283
12.2.1	Construction of a Steam Turbine 283
12.2.2	Vibration Problems of a Steam Turbine 286
12.2.2.1	Poor Accuracy in the Manufacturing of Couplings 286
12.2.2.2	Thermal Bow 287
12.2.2.3	Vibrations of Turbine Blades 287
12.2.2.4	Oil Whip and Oil Whirl 290
12.2.2.5	Labylinth Seal 290
12.2.2.6	Steam Whirl 290
12.3	Wind Turbines 290
12.3.1	Structure of a Wind Turbine 290
12.3.2	Campbell Diagram of a Wind Turbine with Two Teetered
	Blades 292
12.3.3	Excitation Forces in Wind Turbines 294
12.3.4	Example: Steady-State Oscillations of a Teetered Two-Bladed Wind
	Turbine 295
12.3.4.1	Wind Velocity 296
12.3.4.2	Vibration of the Tower 296
12.3.4.3	Flapwise Bending Vibration of the Blade 297
12.3.4.4	Chordwise Bending Vibration of the Blade 297
12.3.4.5	Torque Variation of the Low-Speed Shaft 297
12.3.4.6	Variation of the Teeter Angle 297
12.3.4.7	Variation of the Pitch Angle 297
12.3.4.8	Gear 297
12.3.5	Balancing of a Rotor 298
12.3.6	Vibration Analysis of a Blade Rotating in a Vertical Plane 299
12.3.6.1	Derivation of Equations of Motion 299
12.3.6.2	Natural Frequencies 302
12.3.6.3	Forced Oscillation 302

12.3.6.4 Parametrically Excited Oscillation 303 References 305

13 Cracked Rotors 307

- 13.1 General Considerations 307
- 13.2 Modeling and Equations of Motion 309
- 13.2.1 Piecewise Linear Model (PWL Model) 309
- 13.2.2 Power Series Model (PS Model) 311
- 13.3 Numerical Simulation (PWL Model) 312
- 13.3.1 Horizontal Rotor 312
- 13.3.2 Vertical Rotor 313
- 13.4 Theoretical Analysis (PS Model) 313
- 13.4.1 Forward Harmonic Resonance $[+\omega]$ (Horizontal Rotor) 313
- 13.4.2 Forward Harmonic Resonance $[+\omega]$ (Vertical Rotor) 315
- 13.4.3 Forward Superharmonic Resonance $[+2\omega]$ (Horizontal Rotor) 315
- 13.4.4 Other Kinds of Resonance 317
- 13.4.4.1 Backward Harmonic Resonance $[-\omega]$ 317
- 13.4.4.2 Forward Superharmonic Resonance $[+3\omega]$ 317
- 13.4.4.3 Forward Subharmonic Resonance $[+(1/2)\omega]$ 318
- 13.4.4.4 Forward Super-Subharmonic Resonance $[+(3/2)\omega]$ 319
- 13.4.4.5 Combination Resonance 320
- 13.5 Case History in Industrial Machinery 321 References 324

14 Finite Element Method 327

- 14.1 General Considerations 327
- 14.2 Fundamental Procedure of the Finite Element Method 327
- 14.3 Discretization of a Rotor System 328
- 14.3.1 Rotor Model and Coordinate Systems 328
- 14.3.2 Equations of Motion of an Element 329
- 14.3.2.1 Rigid Disk 329
- 14.3.2.2 Finite Rotor Element 330
- 14.3.3 Equations of Motion for a Complete System 336
- 14.3.3.1 Model I: (Uniform Elastic Rotor) 336
- 14.3.3.2 Model II: Disk-Shaft System 340
- 14.3.3.3 Variation of Equations of Motion 343
- 14.4 Free Vibrations: Eigenvalue Problem 345
- 14.5 Forced Vibrations 347
- 14.6 Alternative Procedure 349 References 350

15 Transfer Matrix Method 351

- 15.1 General Considerations 351
- 15.2 Fundamental Procedure of the Transfer Matrix Method 351
- 15.2.1 Analysis of Free Vibration 351

XIV Contents

15.2.2 15.3 15.3.1 15.3.2 15.3.3 15.3.3.1 15.3.3.2	Analysis of Forced Vibration 355 Free Vibrations of a Rotor 359 State Vector and Transfer Matrix 359 Frequency Equation and the Vibration Mode 364 Examples 365 Model I: Uniform Continuous Rotor 365 Model II: Disk–Shaft System 366
15.4 15.4.1	Forced Vibrations of a Rotor 367 External Force and Extended Transfer Matrix 367
15.4.2	Steady-State Solution 370
15.4.3	Example 371
	References 371
16	Manual and Circuit Processing 272
16 16.1	Measurement and Signal Processing 373 General Considerations 373
16.2	Measurement and Sampling Problem 374
16.2.1	Measurement System and Digital Signal 374
16.2.2	Problems in Signal Processing 375
16.3	Fourier Series 376
16.3.1	Real Fourier Series 376
16.3.2	Complex Fourier Series 376
16.4	Fourier Transform 378
16.5	Discrete Fourier Transform 379
16.6	Fast Fourier Transform 383
16.7	Leakage Error and Countermeasures 383
16.7.1	Leakage Error 383
16.7.2	Countermeasures for Leakage Error 384
16.7.2.1	Window Function 384
16.7.2.2	Prevention of Leakage by Coinciding Periods 385
16.8	Applications of FFT to Rotor Vibrations 386
16.8.1	Spectra of Steady-State Vibration 386
16.8.1.1	Subharmonic Resonance of Order 1/2 of a Forward Whirling Mode 386
16.8.1.2	Mode 386 Combination Resonance 388
16.8.2	Nonstationary Vibration 388
10.0.2	References 391
	Kittines 571
17	Active Magnetic Bearing 393
17.1	General Considerations 393
17.2	Magnetic Levitation and Earnshaw's Theorem 393
17.3	Active Magnetic Levitation 394
17.3.1	Levitation Model 394
17.3.2	Current Control with PD-Control 396
17.3.2.1	Physical Meanings of PD Control 397
17.3.2.2	Transfer Function and Stability Condition 397

17.3.2.2 Transfer Function and Stability Condition 397

- 17.3.2.3 Determination of Gains 398
- 17.3.2.4 Case with a Static Load 399
- 17.3.3 Current Control with PID-Control 399
- 17.3.3.1 Transfer Function and Stability Condition 399
- 17.3.3.2 Determination of Gains 400
- 17.3.3.3 Case with a Static Load 400
- 17.3.4 Practical Examples of Levitation 401
- 17.3.4.1 Identification of System Parameters 401
- 17.3.4.2 Digital PD-Control with DSP 402
- 17.3.5 Current Control with State Feedback Control 403
- 17.4 Active Magnetic Bearing 405
- 17.4.1 Principle of an Active Magnetic Bearing 405
- 17.4.2 Active Magnetic Bearings in a High-Speed Spindle System 405
- 17.4.3 Dynamics of a Rigid Rotor system 406 References 408

Appendix A Moment of Inertia and Equations of Motion 409

Appendix B Stability above the Major Critical Speed 413

Appendix C Derivation of Equations of Motion of a 4 DOF Rotor System by Using Euler Angles 415

Appendix D Asymmetrical Shaft and Asymmetrical Rotor with Four Degrees of Freedom 421

- D.1 4 DOF Asymmetrical Shaft System 421
- D.2 4 DOF Asymmetrical Rotor System 423 Reference 425

Appendix E Transformation of Equations of Motion to Normal Coordinates: 4 DOF Rotor System 427

- E.1 Transformation of Equations of Motion to Normal Coordinates 427E.2 Nonlinear Terms 428
 - References 429

Appendix F Routh-Hurwitz Criteria for Complex Expressions 431

References 432

Appendix G FFT Program 433

References 435

Index 437