
Reviews of Nonlinear Dynamics and Complexity. Edited by Heinz Georg Schuster
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40945-7

1

1
The Chaos Computing Paradigm
William L. Ditto, Abraham Miliotis, K. Murali, and Sudeshna Sinha

1.1
Brief History of Computers

The timeline of the history of computing machines can probably be
traced back to early calculation aids, varying in sophistication from
pebbles or notches carved in sticks to the abacus, which was used as
early as 500 B.C.! Throughout the centuries computing machines be-
came more powerful, progressing from Napier’s Bones and the slide
rule, to mechanical adding machines and on to the modern day com-
puter revolution.

The ‘first generation’ of modern computers, were based on wired cir-
cuits containing vacuum valves and used punched cards as the main
storage medium. The next major step in the history of computing was
the invention of the transistor, which replaced the inefficient valves
with a much smaller and more reliable component. Transistorized (still
bulky) computers, normally referred to as ‘Second Generation’, domi-
nated the late 1950s and early 1960s.

The explosion in the use of computers began with ‘Third Genera-
tion’ computers. These relied on the integrated circuit or microchip.
Large-scale integration of circuits led to the development of very small
processing units. Fourth generation computers were developed, using
a microprocessor to locate much of the computer’s processing abilities
on a single (small) chip, allowing the computers to be smaller and faster
than ever before. Although processing power and storage capacities
have increased beyond all recognition since the 1970s the underlying
technology of LSI (large-scale integration) or VLSI (very-large-scale in-
tegration) microchips has remained basically the same, so it is widely
regarded that most of today’s computers still belong to the fourth gen-
eration.

2 1 The Chaos Computing Paradigm

One common thread in the history of computers, be it the abacus or
Charles Babbage’s mechanical ‘anlytical engine’ or modern micropro-
cessors, is this: computing machines reflect the physics of the time and are
driven by progress in the understanding of the physical world.

1.2
The Conceptualization, Foundations, Design and Implementation of
Current Computer Architectures

Computation can be actually defined as finding a solution to a problem
from given inputs by means of an algorithm. This is what the theory
of computation, a subfield of computer science and mathematics, deals
with. For thousands of years computing was done with pen and paper,
or chalk and slate, or mentally, sometimes with the aid of tables.

The theory of computation began early in the twentieth century, be-
fore modern electronic computers had been invented. One of the far-
reaching ideas in the theory is the concept of a Turing machine, which
stores characters on an infinitely long tape, with one square at any
given time being scanned by a read/write head. Basically, a Turing
machine is a device that can read input strings, write output strings
and execute a set of stored instructions at a time. The Turing machine
demonstrated both the theoretical limits and potential of computing
systems and is a cornerstone of modern day digital computers.

The first computers were hardware-programmable. To change the
function computed, one had to reconnect the wires or even build a new
computer. John von Neumann suggested using Turing’s Universal Al-
gorithm. The function computed can then be specified by just giving
its description (program) as part of the input rather than by changing
the hardware. This was a radical idea which changed the course of
computing.

Modern day computers still largely implement binary digital com-
puting which is based on Boolean algebra; the logic of the true and
false. Boolean algebra shows how you can calculate anything (within
some epistemological limits) with a system of two discrete values.
Boolean logic became a fundamental component of modern computer
architecture, and is remarkable for its sheer conceptual simplicity. For
instance, it can be rigorously shown that any logic gate can be obtained
by adequate connection of NOR or NAND gates (i.e. any boolean cir-
cuit can be built using NOR/NAND gates alone). This implies that the

1.3 Limits of Binary Computers and Alternative Approaches to Computation 3

capacity for universal computing can simply be demonstrated by the
implementation of the fundamental NOR or NAND gates [1].

1.3
Limits of Binary Computers and Alternative Approaches to
Computation: What Lies Beyond Moore’s Law?

The operation of any computing machine is necessarily a physical pro-
cess, and this crucially determines the possibilities and limitations of
the computing device. For the past 20 years, the throughput of digital
computers has increased at an exponential rate. Fuelled by (seemingly
endless) improvements in integrated-circuit technology, the exponen-
tial growth predicted by Moore’s law has held true. But Moore’s Law
will come to an end as chipmakers will hit a wall when it comes to
shrinking the size of transistors, one of the chief methods of making
chips that are smaller, more powerful and cheaper than their predeces-
sors.

As conventional chip manufacturing technology runs into physical
limits in the density of circuitry and signal speed, which sets limits to
binary logic switch scaling, alternatives to semiconductor-based binary
digital computers are emerging. Apart from analogue VLSI, these in-
clude bio-chips, which are based on materials found in living creatures;
optical computers that live on pure light; and quantum computers that
depend on the laws of quantum mechanics in order to perform, in the-
ory, tasks that ordinary computers cannot.

Neurobiologically inspired computing, quantum computing and
DNA computing differ in many respects, but they are similar in that
their aim, unlike conventional digital computers, is to utilize at the
basic level some of the computational capabilities inherent in the ba-
sic, analogue, laws of physics. Further, understanding of biological
systems, has triggered the question: what lessons do the workings of
the human mind offer for computationally hard problems? Thus the
attempt is to create machines that benefit from the basic laws of physics
and which are not just constrained by them.

Here we review another emerging computing paradigm: one which
exploits the richness and complexity inherent in nonlinear dynamics.
This endeavour also falls into the above class, as it seeks to extend the
possibilities of computing machines by utilizing the physics of the de-
vice.

4 1 The Chaos Computing Paradigm

1.4
Exploiting Nonlinear Dynamics for Computations

We would now like to paraphrase the classic question ‘What limits do
the laws of classical physics place on computation’ to read ‘What op-
portunities do the laws of physics offer computation’.

It was proposed in 1998 that chaotic systems might be utilized to de-
sign computing devices [2]. In the early years the focus was on proof-
of-principle schemes that demonstrated the capability of chaotic ele-
ments to do universal computing. The distinctive feature of this alter-
native computing paradigm was that it exploited the sensitivity and
pattern formation features of chaotic systems.

In subsequent years there has been much research activity to develop
this paradigm [3–17]. It was realized that one of the most promising
directions of this computing paradigm was its ability to exploit a sin-
gle chaotic element to reconfigure into different logic gates through a
threshold-based morphing mechanism [3, 4]. In contrast to a conven-
tional field programmable gate array element [18], where reconfigura-
tion is achieved through switching between multiple single-purpose
gates, reconfigurable chaotic logic gates (RCLGs) are comprised of
chaotic elements that morph (or reconfigure) logic gates through the
control of the pattern inherent in their nonlinear element. Two in-
put RCLGs have recently been realized and shown to be capable of
reconfiguring between all logic gates in discrete circuits [5–7]. Ad-
ditionally, such RCLGs have been realized in prototype VLSI circuits
(0.13 µm CMOS, 30 MHz clock cycles). Further, reconfigurable chaotic
logic gates arrays (RCGA) which morph between higher-order func-
tions such as those found in a typical arithmetic logic unit (ALU), have
also been designed [17].

In this review we first recall the theoretical concept underlying the
reconfigurable implementation of all fundamental logical operations
utilizing nonlinear dynamics [3]. We also describe specific realizations
of the theory in chaotic electrical circuits. Then we present recent re-
sults of a method for obtaining logic output from a nonlinear system
using the time evolution of the state of the system. Finally we discuss
a method for storing and processing information by exploiting nonlin-
ear dynamics. We conclude with a brief discussion of some ongoing
technological implementations of these ideas.

1.5 General Concept 5

1.5
General Concept

We outline below a theoretical method for obtaining all basic logic
gates with a single nonlinear system. The broad aim here is to use
the rich temporal patterns embedded in a nonlinear time series in a
controlled manner to obtain a computing device that is flexible and re-
configurable.

Consider a chaotic element (our chaotic chip or chaotic processor) whose
state is represented by a value x. In our scheme all the basic logic gate
operations (NAND, NOR, XOR, AND, OR, XNOR and NOT) involve
the following steps:

1) Inputs:

x → x0 + X1 + X2 for 2-input logic operations, such as the NAND,
NOR, XOR, AND, OR and XNOR operations,

and

x → x0 + X for 1-input operations, such as the NOT operation.

Here x0 is the initial state of the system, and

X = 0 when I = 0

and

X = Vin when I = 1

where Vin is a positive constant.

2) Dynamical update, i.e. x → f (x)

where f (x) is a nonlinear function.

3) Threshold mechanism to obtain output Z:

Z = 0 if f (x) ≤ E, and

Z = f (x)− E if f (x) > E

where E is a monitoring threshold.

6 1 The Chaos Computing Paradigm

This is interpreted as logic output 0 if Z = 0 and logic ouput 1 if
Z > 0 (with Z ∼ Vin).

Since the system is strongly nonlinear, in order to specify the inital x0
accurately one needs a controlling mechanism. Here we will employ a
threshold controller [19, 20] to set the inital x0. Namely, we will use the
clipping action of the threshold controller to achieve the initialization
and subsequently to obtain the output as well.

Note that in our implementation we demand that the input and out-
put have equivalent definitions (i.e. one unit is the same quantity for input
and output), as well as among various logical operations. This requires
that constant Vin assumes the same value throughout a network, and
this will allow the output of one gate element to couple easily to an-
other gate element as input, so that gates can be wired directly into
gate arrays implementing compounded logic operations.

In order to obtain all the desired input-output responses of the dif-
ferent gates, we need to satisfy the conditions enumerated in Table 1.1
simultaneously. So given a dynamics f (x) corresponding to the physi-
cal device in actual implementation, one must find values of the thresh-
old and initial state which satisfy the conditions derived from the Truth
Tables to be implemented (see Table 1.2).

Table 1.1 Truth table of the basic logic operations for a pair of inputs: I1, I2 [1]. The
1-input NOT gate is given by: NOT(0) is 1; NOT(1) is 0.

I1 I2 NAND NOR XOR AND OR XNOR

0 0 1 1 0 0 0 1

0 1 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 1 0 0 0 1 1 1

A representative example is given in Table 1.3, which shows the exact
solutions of the initial x0 and threshold E which satisfy the conditions in
Table 1.2 when the dynamical evolution is governed by the prototypical
logistic equation:

f (x) = 4x(1 − x)

The constant Vin = 1
4 is common to both input and output and to all

logical gates.

1.5 General Concept 7

Table 1.2 Necessary and sufficient conditions, derived from the logic truth tables, to
be satisfied simultaneously by the nonlinear dynamical element, in order to have the
capacity to implement the logical operations AND, OR, XOR, NAND, NOR and NOT
(cf. Table 1.1) with the same computing module.

Logic Operation Input Set (I1, I2) Output Necessary and Sufficient Condition

(0,0) 0 f (x0) < E

AND (0,1)/(1,0) 0 f (x0 + Vin) < E

(1,1) 1 f (x0 + 2Vin) − E = Vin

(0,0) 0 f (x0) < E

OR (0,1)/(1,0) 1 f (x0 + Vin) − E = Vin

(1,1) 1 f (x0 + 2Vin) − E = Vin

(0,0) 0 f (x0) < E

XOR (0,1)/(1,0) 1 f (x0 + Vin) − E = Vin

(1,1) 0 f (x0 + 2Vin) < E

(0,0) 1 f (x0) − E = Vin

NOR (0,1)/(1,0) 0 f (x0 + Vin) < E

(1,1) 0 f (x0 + 2Vin) < E

(0,0) 1 f (x0) − E = Vin

NAND (0,1)/(1,0) 1 f (x0 + Vin) − E = Vin

(1,1) 0 f (x0 + 2Vin) < E

NOT
0 1 f (x0) − E = Vin

1 0 f (x0 + Vin) < E

Above, we have explicitly shown how one can select temporal re-
sponses, corresponding to different logic gate patterns, from a nonlin-
ear system, and this ability allows us to construct flexible hardware.
Contrast our use of nonlinear elements here with the possible use of
linear systems on one hand and stochastic systems on the other. It is
not possible to extract all the different logic responses from the same el-
ement in the case of linear components, as the temporal patterns are
inherently very limited. So linear elements do not offer much flexibil-
ity or versatility. Stochastic elements on the other hand have many dif-
ferent temporal sequences. However, they are not deterministic and so
one cannot use them to design components. Only nonlinear dynamics
enjoys both richness of temporal behavior as well as determinism.

8 1 The Chaos Computing Paradigm

Table 1.3 One specific set of solutions of the conditions in Table 1.2 which yield the
logical operations AND, OR, XOR, NAND and NOT, with Vin = 1

4 . Note that these
theoretical solutions have been fully verified in a discrete electrical circuit emulating
a logistic map [5].

Operation AND OR XOR NAND NOT

x0 0 1/8 1/4 3/8 1/2

E 3/4 11/16 3/4 11/16 3/4

Also note that, while nonlinearity is absolutely necessary for imple-
menting all the logic gates, chaos may not always be necessary. In the
representative example of the logistic map presented in Table 1.3, solu-
tions for all the gates exist only at the fully chaotic limit of the logistic
map but the degree of nonlinearity necessary for obtaining all the de-
sired logic responses will depend on the system at hand and on the
specific scheme employed to obtain the input-output mapping. It may
happen that certain nonlinear systems will allow a wide range of logic
responses without actually being chaotic.

1.6
Continuous-Time Nonlinear System

We now present a somewhat different method for obtaining logic re-
sponses from a continuous-time nonlinear system. Our processor is
now a continuous-time system described by the evolution equation d x
/dt = F (x, t), where x = (x1, x2, . . . xN) are the state variables and F is
a nonlinear function. In this system we choose a variable, say x1, to be
thresholded. Whenever the value of this variable exceeds a threshold E
it resets to E, i.e. when x1 > E then (and only then) x1 = E.

Now the basic 2-input 1-output logic operation on a pair of inputs
I1, I2 in this method simply involves the setting of an inputs-dependent
threshold, namely the threshold is:

E = VC + I1 + I2

1.6 Continuous-Time Nonlinear System 9

where VC is the dynamic control signal determining the functionality
of the processor. By switching the value of VC one can switch the logic
operation being performed.

Again I1/I2 has the value 0 when the logic input is 0 and has the
value Vin when the logic input is 1. So the threshold E is equal to VC
when the logic inputs are (0, 0), VC + Vin when the logic inputs are (0, 1)
or (1, 0) and VC + 2Vin when the logic inputs are (1, 1).

The output is again interpreted as a logic output 0 if x1 < E, i.e. the
excess above threshold V0 = 0. The logic output is 1 if x1 > E, and the
excess above threshold V0 = (x1 − E) ∼ Vin. The schematic diagram of
this method is displayed in Figure 1.1.

Figure 1.1 Schematic diagram for implementing a morph-
ing 2 input logic cell with a continuous time dynamical sys-
tem. Here VC determines the nature of the logic response,
and the 2 inputs are I1, I2.

Now, for a NOR gate implementation (VC = VNOR) the following
must hold true (cf. truth table in Table 1.1):

• when input set is (0, 0), output is 1, which implies that for thresh-
old E = VNOR, output V0 = (x1 − E) ∼ Vin;

• when input set is (0, 1) or (1, 0), output is 0, which implies that
for threshold E = VNOR + Vin, x1 < E so that output V0 = 0;

• when input set is (1, 1), output is 0, which implies that for thresh-
old E = VNOR + 2Vin, x1 < E so that output V0 = 0.

For a NAND gate (VC = VNAND) the following must hold true (cf. truth
table in Table 1.1):

10 1 The Chaos Computing Paradigm

• when input set is (0, 0), output is 1, which implies that for thresh-
old E = VNAND, output V0 = (x1 − E) ∼ Vin;

• when input set is (0, 1) or (1, 0), output is 1, which implies that
for threshold E = Vin + VNAND, output V0 = (x1 − E) ∼ Vin;

• when input set is (1, 1), output is 0, which implies that for thresh-
old E = VNAND + 2Vin, x1 < E so that output V0 = 0.

In order to design a dynamic NOR/NAND gate one has to find val-
ues of VC that will satisfy all the above input-output associations in a
robust and consistent manner.

1.7
Proof-of-Principle Experiments

1.7.1
Discrete-Time Nonlinear System

In this section, we describe an iterated map whose nonlinearity has
a simple (i.e. minimal) electronic implementation. We then demon-
strate explicitly how all the different fundamental logic gates can be
implemented and morphed using this nonlinearity. These gates pro-
vide the full set of gates necessary to construct a general-purpose, re-
configurable computing device.

Consider an iterated map governed by the following equation:

xn+1 =
αxn

1 + xβ
n

(1.1)

where α and β are system parameters. Here we will consider α = 2 and
β = 10 where the system displays chaos.

In order to realize the chaotic map above in circuitry, one needs two
sample-and-hold circuits (S/H): the first S/H circuit holds an input sig-
nal (xn) in response to a clock signal CK1. The output from this sample-
and-hold circuit is fed as input to the nonlinear device for subsequent
mapping, f (xn). A second sample-and-hold (S/H) circuit takes the out-
put from the nonlinear device in response to a clock signal CK2. In lieu
of control, the output from the second S/H circuit (xn+1) closes the loop
as the input to first S/H circuit. The main purpose of the two sample-

1.7 Proof-of-Principle Experiments 11

and-hold circuits is to introduce discreteness into the system and, ad-
ditionally, to set the iteration speed.

To implement a control for nonlinear dynamical computing, the out-
put from the second sample-and-hold circuit is input to a threshold
controller, described by:

xn+1 = f (xn) if xn+1 < E

xn+1 = x∗ if xn+1 ≥ E (1.2)

where E is a prescribed threshold. The output from this threshold con-
troller then becomes the input to the first sample-and-hold circuit.

In the circuit, the notations xn and xn+1 denote voltages. A sim-
ple nonlinear device is produced by coupling two complementary
(n-channel and p-channel) junction field-effect transistors (JFETs) [13]
mimicking the nonlinear characteristic curve f (x) = 2x/(1 + x10). The
circuit diagram is shown in Figure 1.2. The voltage across resistor R1
is amplified by a factor of five using operational amplifier U1 in order
to scale the output voltage back into the range of the input voltage, a
necessary condition for a circuit based on a map.

Figure 1.2 Circuit diagram of the nonlinear device. Left:
Intrinsic (resistorless), complementary device made of two
(n-type and p-type) JFETs. Q1: 2N5457, Q2: 2N5460.
Right: Amplifier circuitry to scale the output voltage back
into the range of the input voltage. R1: 535 Ω, U1: AD712
op-amp, R2: 100 kΩ and R3: 450 kΩ. Here Vin = xn and
V0 = xn+1.

12 1 The Chaos Computing Paradigm

The resulting transfer characteristics of the nonlinear device are de-
picted in Figure 1.3 In Figure 1.2, the sample-and-hold circuits are re-
alized with National Semiconductor’s sample-and-hold IC LF398, trig-
gered by delayed timing clock pulses CK1 and CK2 [13]. Here a clock
rate of either 10 or 20 kHz may be used. The threshold controller circuit
as shown in Figure 1.4 is realized with an AD712 operational amplifier,
a 1N4148 diode, a 1 kΩ series resistor and the threshold control voltage.

Figure 1.3 Nonlinear device characteristics.

Figure 1.4 Circuit diagram of the threshold controller. Vin
and V0 are the input and output, D is a 1N4148 diode, R =
1 kΩ, and U2 is an AD712 op-amp. The threshold level E
is given by the controller input voltage Vcon.

1.7 Proof-of-Principle Experiments 13

Now in order to implement all the fundamental logic operations,
NOR, NAND, AND, OR and XOR with this nonlinear system we have
to find a range of parameters for which the necessary and sufficient
conditions displayed in Table 1.2 are satisfied. These inequalities have
many possible solutions depending on the size of Vin. By setting Vin =
0.3 we can easily solve the equations for the different x0 that each gate
requires. The specific x0 values for different logical operations are listed
in Table 1.4.

Table 1.4 One specific solution of the conditions in Table 1.2 which yields the logical
operations AND, OR, XOR, NAND and NOT, with Vin = 0.3 and threshold Vcon equal
to 1 (cf. Figure 1.4). These values are in complete agreement with hardware circuit
experiments.

Operation NOR NAND AND OR XOR

x0 0.9138 0.6602 0.0602 0.3602 0.45

Thus we have presented a proof-of-principle device that demon-
strates the capability of this nonlinear map to implement all the fun-
damental computing operations. It does this by exploiting the nonlin-
ear responses of the system. The main benefit is its ability to exploit a
single chaotic element to reconfigure into different logic gates through
a threshold-based morphing mechanism. Contrast this to a conven-
tional field programmable gate array element, where reconfiguration
is achieved through switching between multiple single-purpose gates.
This latter type of reconfiguration is both slow and wasteful of space
on an integrated circuit.

1.7.2
Continuous-Time Nonlinear System

A proof-of-principle experiment of the method using the continuous
time chaotic systems described in Section 1.6 was realized with the dou-

14 1 The Chaos Computing Paradigm

ble scroll chaotic Chua’s circuit given by the following set of (rescaled)
three coupled ODEs [21]

ẋ1 = α(x2 − x1 − g(x1)) (1.3)

ẋ2 = x1 − x2 + x3 (1.4)

ẋ3 = −βx2 (1.5)

where α = 10 and β = 14.87 and the piecewise linear function g(x) =
bx + 1

2 (a− b)(|x + 1| − |x − 1|) with a = −1.27 and b = −0.68. We used
the ring structure configuration of the classic Chua’s circuit [21].

In the experiment we implemented minimal thresholding on vari-
able x1 (this is the part in the ‘control’ box in the schematic figure). We
clipped x1 to E, if it exceeded E, only in (1.4). This has very easy im-
plementation, as it avoids modifying the value of x1 in the nonlinear
element g(x1), which is harder to do. So then all we need to do is to
implement ẋ2 = E − x2 + x3 instead of (1.4), when x1 > E, and there is
no controlling action if x1 ≤ E.

A representative example of a dynamic NOR/NAND gate can be
obtained in this circuit implementation with parameters: Vin = 2 V. The
NOR gate is realized around VC = 0 V (see Figure 1.6). At this value of
control signal, we have the following: for input (0,0) the threshold level
is at 0, which yields V0 ∼ 2 V; for inputs (1,0) or (0,1) the threshold level
is at 0, which yields V0 ∼ 0 V; and for input (1,1) the threshold level is
at 2 V, which yields V0 = 0 as the threshold is beyond the bounds of the
chaotic attractor.

The NAND gate is realized around VC = −2 V. This control signal
yields the following: for input (0,0) the threshold level is at −2 V, which
yields V0 ∼ 2 V; for inputs (1,0) or (0,1) the threshold level is at 2 V,
which yields V0 ∼ 2 V; and for input (1,1) the threshold level is at 4 V,
which yields V0 = 0 [6].

In the example above, the knowledge of the dynamics allowed us to
design a control signal that can select out the temporal patterns emu-
lating the NOR and NAND gate [7]. So as the dynamic control signal
VC switches between 0 V and −2 V, the module first yields the NOR
and then a NAND logic response. Thus one can obtain a dynamic logic
gate capable of switching between two fundamental logic responses,
namely the NOR and NAND.

1.7 Proof-of-Principle Experiments 15

Figure 1.5 Circuit diagram with the threshold control unit
in the dotted box.

Figure 1.6 Timing sequences from top to bottom: (a) First
input I1, (b) Second input I2, (c) Output VT (cf. Figure 1.5),
(d) Output V0 (cf. Figure 1.5) and (e) Recovered Out-
put (RT) obtained by thresholding, corresponding to
NOR (I1, I2).

16 1 The Chaos Computing Paradigm

1.8
Logic from Nonlinear Evolution: Dynamical Logic Outputs

Now we describe a method for obtaining logic output from a nonlinear
system using the time evolution of the state of the system. Namely,
our concept uses the nonlinear characteristics of the time dependence
of the state of the dynamical system to extract different responses from
the system. The highlight of this method is that a single system can
yield complicated logic operations, very efficiently.

As before, we have:

1) Inputs:

x → x0 + X1 + X2 for 2-input logic operations, such as NOR, NAND,
AND, OR, XOR and XNOR operations, and

x → x0 + X for 1-input logic operations such as NOT operation

Here x0 is the initial state of the system, and

X = 0 when I = 0, and

X = Vin when I = 1 (where Vin is a positive constant)

2) Nonlinear evolution over n time steps, i.e. x → fn(x)

where f (x) is a nonlinear function.

3) Threshold mechanism to obtain the Output:

If fn(x) ≤ E Logic Output is 0, and

If fn(x) > E Logic Output is 1

where E is the threshold.

So the inputs set up the initial state: x0 + I1 + I2. Then the system
evolves over n iterative time steps to updated state xn. The evolved
state is compared to a monitoring threshold E. If the state is greater

1.8 Logic from Nonlinear Evolution: Dynamical Logic Outputs 17

Table 1.5 Necessary and sufficient conditions to be satisfied by a chaotic element
in order to implement the logical operations NAND, AND, NOR, XOR and OR during
different iterations.

LOGIC NAND AND NOR XOR OR

Iteration n 1 2 3 4 5

Input (0, 0) x1 = f (x0) > E f (x1) < E f (x2) > E f (x3) < E f (x4) < E

Input (0, 1)/(1, 0) x1 = f (x0 + Vin) > E f (x1) < E f (x2) < E f (x3) > E f (x4) > E

Input (1, 1) x1 = f (x0 + 2Vin) < E f (x1) > E f (x2) < E f (x3) < E f (x4) > E

Table 1.6 Updated state of chaotic element satisfying the conditions in Table 1.5 in
order to implement the logical operations NAND, AND, NOR, XOR and OR during
different iterations with x0 = 0.325,Vin = 1

4 and E = 0.6.

Operation NAND AND NOR XOR OR

Iteration n 1 2 3 4 5

State of the system (xn) x1 x2 x3 x4 x5

Logic input(0,0)

x0 =0.325 0.88 0.43 0.98 0.08 0.28

Logic input(0,1)/(1,0)

x0 = 0.575 0.9775 0.088 0.33 0.872 0.45

Logic input(1,1)

x0 =0.825 0.58 0.98 0.1 0.34 0.9

than the threshold, a logical 1 is the output, and if the state is less than
the threshold, a logical 0 is the output. This process is repeated for
subsequent iterations. (See Figure 1.7 for a representative example.)

1.8.1
Implementation of Half- and Full-Adder Operations

Now the ubiquitous bit-by-bit arithmetic addition (half-adder) involves
two logic gate outputs: namely AND (to obtain carry) and XOR (to ob-
tain first digit of sum). Using the scheme above we can obtain this
combinational operation in consecutive iterations, with a single one-
dimensional chaotic element.

18 1 The Chaos Computing Paradigm

Figure 1.7 Template showing different logic patterns for
range of x0 (0–0.5) versus iteration n (0–10). Here E =
0.75 for 1 ≤ n ≤ 4 and E = 0.4 for n > 4. Vin is fixed as
0.25.

Further, the typical full-adder requires two half-adder circuits and an
extra OR gate. So in total, the implementation of a full-adder requires
five different gates (two XOR gates, two AND gates and one OR gate).
However, using the dynamical evolution of a single logistic map, we
require only three iterations to implement the full-adder circuit. So this
method allows combinational logic to be obtained very efficiently.

1.9
Exploiting Nonlinear Dynamics to Store and Process Information

Information storage is a fundamental function of computing devices.
Computer memory is implemented by computer components that re-
tain data for some interval of time. Storage devices have progressed
from punch cards and paper tape to magnetic, semiconductor and op-
tical disc storage by exploiting different natural physical phenomena
to achieve information storage. For instance, the most prevalent mem-
ory element in electronics and digital circuits is the flip-flop or bistable
multivibrator which is a pulsed digital circuit capable of serving as a
one-bit memory, namely storing value 0 or 1. More meaningful infor-
mation is obtained by combining consecutive bits into larger units.

1.9 Exploiting Nonlinear Dynamics to Store and Process Information 19

Now we consider a different direction in designing information stor-
age devices. Namely, we will implement data storage schemes based
on the wide variety of controlled patterns that can be extracted from
nonlinear dynamical systems. Specifically we will demonstrate the use
of arrays of nonlinear elements to stably encode and store various items
of information (such as patterns and strings) to create a database. Fur-
ther, we will demonstrate how this storage method also allows one to
efficiently determine the number of matches (if any) to specified items
of information in the database. So the nonlinear dynamics of the array
elements will be utilized for flexible-capacity storage, as well as for pre-
processing data for exact (and inexact) pattern matching tasks. We give
below, the specific details of our method and demonstrate its efficacy
with explicit examples.

1.9.1
Encoding Information

We consider encoding N data elements (labeled as j = 1, 2, . . . , N), each
comprised of one of M distinct items (labeled as i = 1, 2, . . . , M). N
can be arbitrarily large and M is determined by the kind of data being
stored. For instance, for storing English text one can consider the letters
of the alphabet to be the natural distinct items building the database,
namely M = 26. Or, for the case of data stored in decimal representa-
tion, M = 10, and for databases in bioinformatics comprised typically
of symbols A, T, C, G, one has M = 4. One can also consider strings
and patterns as the items. For instance, for English text one can also
consider the keywords as the items, and this will necessitate larger M
as the set of keywords is large.

Now we demonstrate a method which utilizes nonlinear dynami-
cal systems, in particular chaotic systems, to store and process data
through the natural evolution of the dynamics. The abundance of dis-
tinct behaviors of a chaotic system gives it the ability to represent a
large set of items. We also demonstrate how one can process data stored
in such systems by utilizing specific dynamical patterns.

We start with a database of size N which is stored by N chaotic ele-
ments, with state Xi

n[j] (j = 1, 2, . . . , N). Each dynamical element stores
one element of the database, encoding any one of the M items compris-
ing our data. Now in order to hold information one must confine the
dynamical system to a fixed point behavior, i.e. a state that is stable
and constant throughout the dynamical evolution of the system. We

20 1 The Chaos Computing Paradigm

employ the threshold mechanism mentioned above to achieve this. It
works as follows. Whenever the value of a state variable of the system,
Xi

n[j], exceeds a prescribed threshold Ti[j] (i.e. when Xi
n[j] > Ti[j]) the

variable Xi
n[j] is reset to Ti[j]. This simple mechanism is capable of ex-

tracting a wide range of stable regular behaviors from chaotic systems
under different threshold values [19, 20].

Typically, a large window of threshold values can be found where
the system is confined on fixed points, namely, the state of the chaotic
element under thresholding is stable at Ti[j] (i.e. Xi

n[j] = Ti[j] for all
times n). So each element is capable of yielding a continuous range of
fixed points [19]. As a result it is possible to have a large set of thresh-
olds T1, T2, . . . , TM, each having a one-to-one correspondence with a
distinct item of our data. So the number of distinct items that can be
stored in a single dynamical element is typically large, with the size of
M limited only by the precision of the threshold setting.

In particular, consider a collection of storage elements that evolve in
discrete time n according to the tent map,

f (Xi
n[j]) = 2 min(Xi

n[j], 1 − Xi
n[j]) (1.6)

with each element storing one element of the given database (j =
1, . . . N). Each element can hold any one of the M distinct items in-
dicated by the index i. As described above, a threshold will be applied
to each dynamical element to confine it to the fixed point correspond-
ing to the item to be stored. For this map, thresholds ranging from
0 to 2/3 yield fixed points, namely Xi

n[j] = Ti[j], for all time, when
threshold 0 < Ti[j] < 2/3. This can be obtained exactly from the fact
that f (Ti[j]) > Ti[j] for all Ti[j] in the interval (0, 2/3), implying that
the subsequent iteration of a state at Ti[j] will always exceed Ti[j], and
thus get reset to Ti[j]. So Xi

n[j] will always be held at value Ti[j].
In our encoding, the thresholds are chosen from the interval (0, 1/2),

namely a subset of the fixed point window (0, 2/3). For specific illus-
tration, with no loss of generality, consider each item to be represented
by an integer i, in the range [1, M]. Defining a resolution r between each
integer as:

r =
1
2

1
M + 1

(1.7)

1.9 Exploiting Nonlinear Dynamics to Store and Process Information 21

gives a lookup map from the encoded number to the threshold, namely
relating the integers i in the range [1, M], to threshold Ti[j] in the range
[r, 1

2 − r], by:

Ti[j] = i.r (1.8)

Therefore, we obtain a direct correspondence between a set of inte-
gers ranging from 1 to M, where each integer represents an item and
a set of M threshold values. So we can store N database elements by
setting appropriate thresholds (via (1.8)) on N dynamical elements.

Clearly, from (1.7), if the threshold setting has more resolution,
namely smaller r, then a larger range of values can be encoded. Note,
however, that precision is not a restrictive issue here, as different rep-
resentations of data can always be chosen in order to suit a given
precision of the threshold mechanism.

1.9.2
Processing Information

Once we have a given database stored by setting appropriate thresh-
olds on N dynamical elements, we can query for the existence of a
specific item in the database using one global operational step. This
is achieved by globally shifting the state of all elements of the database
up by the amount that represents the item searched for. Specifically the
state Xi

n[j] of all the elements (j = 1, . . . N) is raised to Xi
n[j] + Qk, where

Qk is a search key given by:

Qk =
1
2

− Tk (1.9)

where k is the number being queried for. So the value of the search key
is simply 1

2 minus the threshold value corresponding to the item being
searched for.

This addition shifts the interval that the database elements can span,
from [r, 1

2 − r] to [r + Qk, 1
2 − r + Qk], where Qk is the globally applied

shift. See Figure 1.8, for a schematic of this process.
Notice that the information item being searched for, is coded in a

manner ‘complimentary’ to the encoding of the items in the database
(much like a key that fits a particular lock), namely Qk + Tk adds up
to 1

2 . This guarantees that only the element matching the item being
queried for will have its state shifted to 1

2 . The value of 1
2 is special

22 1 The Chaos Computing Paradigm

Figure 1.8 Schematic of the database held in an array of
dynamical systems and of the parallelized query operation.

in that it is the only state value that, on the subsequent update, will
reach the value of 1, which is the maximum state value for this sys-
tem. So only the elements holding an item matching the queried item
will reach extremal value 1 on the dynamical update following a search
query. Note that the important feature here is the nonlinear dynamics
that maps the state 1

2 to 1, while all other states (both higher and lower
than 1

2) get mapped to values lower than 1 (see Figure 1.9).
The unique characteristic of the point 1

2 that makes this work, is the
fact that it acts as ‘pivot’ point for the folding that will occur on the
interval [r + Qk, 1

2 − r + Qk] upon the next update. This provides us
with a single global monitoring operation to push the state of all the
elements matching the queried item to the unique maximal point, in
parallel.

The crucial ingredient here is the nonlinear evolution of the state,
which results in folding. Chaos is not strictly necessary here. It is evi-
dent though that, for unimodal maps, higher nonlinearities allow larger
operational ranges for the search operation, and also enhance the reso-
lution in the encoding. For the tent map, specifically, it can be shown
that the minimal nonlinearity necessary for the above search operation
to work is in the chaotic region. Another specific feature of the tent
map is that its piecewise linearity allows the encoding and search key
operation to be very simple indeed.

To complete the search we now must detect the maximal state at 1.
This can be accomplished in a variety of ways. For example, one can
simply employ a level detector to register all elements at the maximal
state. This will directly give the total number of matches, if any. So the
total search process is rendered simpler as the state with the matching
pattern is selected out and mapped to the maximal value, allowing easy

1.9 Exploiting Nonlinear Dynamics to Store and Process Information 23

(a) (b)

(c) (d)

Figure 1.9 Schematic representation
of the state of an element (i) match-
ing a queried item (ii) higher than the
queried item (iii) lower than the queried
item. The top left panel shows the state
of the system encoding a list element.
Three distinct elements are depicted.
The state of the first element is held
at 0.1; the second element is held at
0.25 and the third element is held at
0.4. These are shown as lines of pro-
portional lengths on the x-axis in (a).

(b)–(d) show each of these elements
with the search key added to their states.
Here the queried for item is encoded by
0.25. So Qk = 1/2 − 0.25 = 0.25. After
the addition of the search key, the subse-
quent dynamical update yields the max-
imal state 1 only for the element holding
0.25. The ones with states higher and
lower than the matching state (namely
0.1 and 0.4) are mapped to lower values.
See also color figure on page 230.

detection. Further, by relaxing the detection level by a prescribed ‘tol-
erance’, we can check for the existence within our database of numbers
or patterns that are close to the number or pattern being searched for.

24 1 The Chaos Computing Paradigm

So nonlinear dynamics works as a powerful ‘preprocessing’ tool, re-
ducing the determination of matching patterns to the detection of max-
imal states, an operation that can be accomplished by simple means, in
parallel (see [23]).

1.9.3
Representative Example

Consider the case where our data is English language text, encoded
as described above by an array of tent maps. In this case the distinct
items are the letters of the English alphabet. As a result M = 26 and
we obtain r = 0.018 518 5 . . . from (1.7), and the appropriate threshold
levels for each item is obtained via (1.8). More specifically, consider as
our database the line ‘the quick brown fox jumps over the lazy dog’;
each letter in this sentence is an element of the database, and can be
encoded using the appropriate threshold, as in Figure 1.10(a). Now
the database, as encoded above, can be queried regarding the existence
of specific items in the database. Figure 1.10 presents the example of
querying for the letter ‘d’. To do so the search key value corresponding
to letter ‘d’ (1.9) is added globally to the state of all elements (b). Then
through their natural evolution, upon the next time step, the state of
the element(s) containing the letter ‘d’ is maximized (c). In Figure 1.11
we performed an analogous query for the letter ‘o’, which is present
four times in our database, in order to show that multiple occurrences
of the same item can be detected. Finally, in Figure 1.12 we consider a
modified database (encoding the line ‘a quick brown fox jumped over
a lazy dog’) and query for an item that is not part of the given database,
namely the letter ‘h’. As expected, Figure 1.12 (c) shows that none of
the elements are maximized.

Further, by relaxing the detection level by a prescribed ‘tolerance’, we
can check for the existence within our list of numbers or patterns that
are close to the number or pattern being searched for. For instance, in
the example above, by lowering the detection level to the value 1− (2r),
we can detect whether adjacent items to the queried one are present.
Specifically in the example in Figure 1.12, we can detect that the neigh-
boring letters ‘g’ and ‘i’ are contained in our database, though ‘h’ is
not.

However, if we had chosen our representation such that the ordering
put T and U before and after Y (as is the case on a standard QWERTY
keyboard), then our inexact search would find spellings of bot or bou

1.9 Exploiting Nonlinear Dynamics to Store and Process Information 25

(c)

(b)

(a)

Figure 1.10 From top to bottom: (a) Threshold levels en-
coding the sentence ‘the quick brown fox jumps over the
lazy dog’, (b) the search key value for letter ‘d’ is added to
all elements, (c) the elements update to the next time step.
For clarity we marked with a dot any elements that reach
the detection level.

when boy was intended. Thus ‘nearness’ is defined by the choice of the
representation and can be chosen advantageously depending on the
intended use.

Also note that the system given by (1.1), realizable with the elec-
tronic circuit described in Figure 1.2, can also be utilized in a straight-
forward fashion to implement this storage and information processing
method [13].

1.9.4
Implementation of the Search Method with Josephson Junctions

The equations modelling a resistively shunted Josephson junction [22]
with current bias and rf drive are as follows:

C
dV
dt

+ R−1V + Ic sin φ = Idc + Irf sin(ωt) (1.10)

26 1 The Chaos Computing Paradigm

(c)

(b)

(a)

Figure 1.11 From top to bottom: (a) Threshold levels en-
coding the sentence ‘the quick brown fox jumps over the
lazy dog’, (b) the search key value for letter ‘o’ is added to
all elements, (c) the elements update to the next time step.
For clarity we marked with a dot any elements that reach
the detection level.

where 2 eV = h̄φ̇, C is the Josephson junction capacitance, V is the
voltage across the junction, R is the shunting resistance, Ic is the critical
current of the junction, φ is the phase difference across the junction, Idc
is the current drive, Irf is the amplitude of the rf-current drive.

If we scale currents to be in units of Ic and time to be in units of ω−1
p ,

where ωp = (2eIc/h̄C)1/2 is the plasma frequency, we obtain the scaled
dynamical equations to be:

dv
dt

= β−1/2
c [idc + irf sin(Ωt) − v − sin φ] (1.11)

dφ

dt
= β1/2

c v

1.9 Exploiting Nonlinear Dynamics to Store and Process Information 27

(c)

(b)

(a)

Figure 1.12 From top to bottom: (a) Threshold levels en-
coding the sentence ‘a quick brown fox jumps over a lazy
dog’. (b) The search key value for letter ‘h’ is added to all
elements. (c) The elements update to the next time step.
No elements reach the detection level as ‘h’ does not occur
in the encoded sentence.

where βc = 2eIcR2C/h̄ is the McCumber parameter. Here we choose
representative values ωp ∼ 36 GHz, Ω = 0.11, βc = 4, ir f = 1.05,
idc = 0.011.

Using an additional external bias current (added to idc) to encode an
item, one obtains an inverted ‘tent-map’-like relation between the ab-
solute value of the Josephson-junction voltage and the biasing input
(essentially like a broadened tent map). So, exactly as before, a section
of this (broadened) ‘map’ can be used for encoding and a complemen-
tary key can be chosen. The output is a match if it drops below a certain
voltage (for instance the one showed by a line in Figure 1.13).

28 1 The Chaos Computing Paradigm

Figure 1.13 Absolute voltage |v| of the Josephson junc-
tion vs Input (bias current) given by (2.1).

1.9.5
Discussions

A significant feature of this scheme is that it employs a single simple
global shift operation, and does not entail accessing each item sepa-
rately at any stage. It also uses a nonlinear folding to select out the
matched item, and this nonlinear operation is the result of the natural
dynamical evolution of the elements. So the search effort is consider-
ably minimized as it utilizes the native processing power of the non-
linear dynamical processors. One can then think of this as a natural
application, at the machine level, in a computing machine consisting
of chaotic modules. It is also equally potent as a special-applications
‘search chip’, which can be added on to regular circuitry, and should
prove especially useful in machines which are repeatedly employed for
selection/search operations.

So in terms of the time scales of the processor the search operation
requires one dynamical step, namely one unit of the processor’s intrin-
sic update time. The principal point here is the scope for parallelism
that exists in our scheme. This is due to the selection process occur-
ring through one global shift, which implies that there is no scale-up
(in principle) with size N. Additionally, this search does not need an
ordered set, further reducing operational time.

Regarding information storage capacity, note that we employ an M-
state encoding, where M can in principle be very large. This offers
much gain in encoding capacity. As in the example we present above,

1.9 Exploiting Nonlinear Dynamics to Store and Process Information 29

the letters of the alphabet are encoded by one element each; binary cod-
ing would require much more hardware to do the same.

Specifically, consider the illustrative example of encoding a list of
names and then searching the list for the existence of a certain name.
In the current ASCII encoding technique, each ASCII letter is encoded
into two hexadecimal numbers or 8 bits. Assuming a maximum name
length of k letters, this implies that one has to use 8 × k binary bits per
name. So typically the search operation scales as O(8kN).

Consider, in comparison, what our scheme offers. If base 26 (‘alpha-
betical’ representation) is used, each letter is encoded into one dynam-
ical system (an ‘alphabit’). As mentioned before, the system is capable
of this dense encoding as it can be controlled on to 26 distinct fixed
points, each corresponding to a letter. Again assuming a maximum
length of k letters per name, one needs to use k ‘alphabits’ per name. So
the search effort scales as kN. Namely, the storage is eight times more
efficient and the search can be done roughly eight times faster as well!

If base S encoding is employed, where S is the set of all possible
names (size(S) ≤ N), then each name is encoded into one dynamical
system with S fixed points (a ‘superbit’). So one needs to use just 1
‘superbit’ per name, implying that the search effort scales simply as N,
i.e. 8 k times faster than the binary encoded case. In practice, the final
step of detecting the maximal values can conceivably be performed in
parallel. This would reduce the search effort to two time steps (one to
map the matching item to the maximal value and another step to detect
the maximal value simultaneously). In that case the search effort would
be 8 kN times faster than the binary benchmark.

Alternate ideas to implement the increasingly important problem of
search have included the use of quantum computers [26]. However,
the method here has the distinct advantage that the enabling technol-
ogy for practical implementation need not be very different from con-
ventional silicon devices. Namely, the physical design of a dynamical
search chip should be realizable through conventional CMOS circuitry.
Implemented at the machine level, this scheme can perform unsorted
database searches efficiently. CMOS circuit realizations of chaotic sys-
tems, like the tent map, operate in the region of 1 MHz. Thus a com-
plete search for an item comprising of: search key addition, update,
threshold detection and database restoration, should be able to be per-
formed at 250 kHz, regardless of the size of the database. Commercial
efforts are underway to construct VLSI circuitry in GHz ranges and are
showing promising results in terms of power, size and speed.

30 1 The Chaos Computing Paradigm

Finally, regarding the general outreach of the scheme: nonlinear sys-
tems are abundant in nature, and so embodiments of this concept are
very conceivable in many different physical systems, ranging from flu-
ids to electronics to optics. Potentially good candidates for physical
realization of the method include nonlinear electronic circuits and op-
tical devices, which have distributed degrees of freedom [24]. Also,
systems such as single electron tunneling junctions [25], which are nat-
urally piecewise linear maps, can conceivably be employed to make
such search devices. All this underscores the general scope of this con-
cept.

1.10
VLSI Implementation of Chaotic Computing Architectures: Proof of
Concept

We are currently developing a VLSI implementation of chaotic comput-
ing in a demonstration integrated circuit chip. The demonstration chip
has a parallel read/write interface to communicate with a microcon-
troller, with standard logic gates. The read/write interface responds to
a range of addresses to give access to internal registers, and the inter-
nal registers will interface with the demonstration chaotic computing
circuits.

For the demonstration we selected circuits that were based upon
known experimental discrete component implementations and, as
such, the circuits are larger than is necessary in this first generation
of chip. Currently, the TSMC 0.18 µm process is the IC technology cho-
sen for the development. This process was chosen to demonstrate that
the chaotic elements work in smaller geometries, and the extra metal
layers in this process will provide a margin of safety for any routing
issues that might develop.

For our proof of concept on the VLSI chip a small ALU (Arithmetic
Logic Unit) with three switchable functions: two arithmetic functions
(adder, multiplier, divider, barrel shifter or others) and one function of
scratchpad memory, is being implemented. The ALU switches between
at least two arithmetic functions and a completely different function
like a small FIFO (First-In, First-Out memory buffer). This experiment
takes a significant step toward showing the possibilities for future con-
figurable computing. The three functions are combined into a single
logic array controlled through a microcontroller interface. The micro-

1.10 VLSI Implementation of Chaotic Computing Architectures: Proof of Concept 31

controller can switch functions and then write data to the interface and
read the results back from the interface. Figure 1.14 shows the simpli-
fied representation of this experiment [17].

Figure 1.14 Simplified schematic of the proof of concept
VLSI implementation of an ALU which can switch between
at least two arithmetic functions, and a completely different
function such as a small FIFO (First-In, First-Out memory
buffer).

Recently, ChaoLogix Inc. designed and fabricated a proof of concept
chip that demonstrates the feasibility of constructing reconfigurable
chaotic logic gates, henceforth ChaoGates, in standard CMOS-based
VLSI (0.18 µm TSMC process operating at 30 MHz with a 3.1 × 3.1 mm
die size and a 1.8 V digital core voltage). The basic building block
ChaoGate is shown schematically in Figure 1.14. ChaoGates were then
incorporated into a ChaoGate Array in the VLSI chip to demonstrate
higher-order morphing functionality including the following:

1. A small Arithmetic Logic Unit (ALU) that morphs between higher-
order arithmetic functions (multiplier and adder/accumulator) in
less than one clock cycle. An ALU is a basic building block of com-
puter architectures.

2. A Communications Protocols (CP) Unit that morphs between two
different complex communications protocols in less than one clock cy-
cle: Serial Peripheral Interface (SPI, a synchronous serial data link)
and an Inter Integrated Circuit Control bus implementation (I2C, a
multi-master serial computer bus).

While the design of the ChaoGates and ChaoGate Arrays in this proof
of concept VLSI chip was not optimized for performance, it clearly

32 1 The Chaos Computing Paradigm

(a) (b)

Figure 1.15 (a) Schematic of a two-
input, one-output morphable Chao-
Gate. The gate logic functionality (NOR,
NAND, XOR, . . .) is controlled (mor-
phed), in the current VLSI design, by
global thresholds connected to VT1, VT2

and VT3 through analog multiplexing cir-
cuitry. (b) A size comparison between
the current ChaoGate circuitry imple-
mented in the ChaoLogix VLSI chaotic
computing chip and a typical NAND gate
circuit. (Courtesy of ChaoLogix Inc.)

demonstrates that ChaoGates can be constructed and organized into
reconfigurable chaotic logic gate arrays capable of morphing between
higher-order computational building blocks. Current efforts are fo-
cused upon optimizing the design of a single ChaoGate to levels where
they are comparable to or smaller than a single NAND gate in terms of
power and size yet are capable of morphing between all gate functions
in under a single computer clock cycle. Preliminary designs indicate
that this goal is achievable and that all gates currently used to design
computers may be replaced with ChaoGates to provide added flexibil-
ity and performance.

1.11
Conclusions

In summary, we have demonstrated the direct and flexible implemen-
tation of all the basic logic gates utilizing nonlinear dynamics. The
richness of the dynamics allows us to select out all the different gate
responses from the same processor by simply setting suitable thresh-
old levels. These threshold levels are known exactly from theory and

1.11 Conclusions 33

are thus available as a look-up table. Arrays of such logic gates can
conceivably be programmed on the run (for instance, with a stream of
threshold values being sent in by an external program) to be optimized
for the task at hand. For example, such a morphing device may serve
flexibly as an arithmetic processing unit or an unit of memory and can
be swapped, as the need demands, to be one or the other. Thus archi-
tectures based on such logic implementations may serve as ingredients
of a general-purpose reconfigurable computing device more powerful
and fault tolerant [11] than statically wired hardware.

Further, we have demonstrated the concept of using nonlinear dy-
namical elements to store information efficiently and flexibly. We have
shown how a single element can store M items, where M can be large
and can vary to best suit the nature of the data being stored and the
application at hand. So we obtained information storage elements of
flexible capacity, which are capable of naturally storing data in different
bases or in different alphabets or multilevel logic. This cuts down space
requirements significantly, and can find embodiment in many different
physical contexts.

Further, we have shown how this method of storing information can
be naturally exploited for processing as well. In particular, we have
demonstrated a method to determine the existence of an item in the
database. The method involves a single global shift operation applied
simultaneously to all the elements comprising the database and this
operation, after one dynamical step, pushes the element(s) storing the
matching item (and only those) to a unique, maximal state. This ex-
tremal state can then be detected by a simple level detector, thus di-
rectly giving the number of matches. So nonlinear dynamics works as
a powerful ‘preprocessing’ tool, reducing the determination of match-
ing patterns to the detection of maximal states. The method can also
be extended to identify inexact matches as well. Since the method in-
volves just one parallel procedural step, it is naturally setup for parallel
implementation on existing and future implementations of chaos based
computing hardware ranging from conventional CMOS based VLSI cir-
cuitry to more esoteric chaotic computing platforms such as magneto
based circuitry [27] and high speed chaotic photonic integrated circuits
operating in the GHz frequency range [28].

34 References

References

1 Mano, M.M. Computer System Ar-
chitecture, 3rd edition, Prentice Hall,
Englewood Cliffs, 1993; Bartee, T.C.
Computer Architecture and Logic De-
sign, New York, Mc-Graw Hill, 1991.

2 Sinha, S. and Ditto, W.L. Phys. Rev.
Lett. 81 (1998) 2156.

3 Sinha, S., Munakata, T. and Ditto,
W.L, Phys. Rev. E 65 (2002) 036214;
Munakata, T., Sinha, S. and Ditto,
W.L, IEEE Trans. Circ. and Systems 49
(2002) 1629; Munakata, T. and Sinha,
S., Proc. of COOL Chips VI, Yoko-
hama, (2003) 73.

4 Sinha, S. and Ditto, W.L. Phys. Rev. E
59 (1999) 363; Sinha, S., Munakata,
T. and Ditto, W.L Phys. Rev. E 65
036216; W.L. Ditto, K. Murali and
S. Sinha, Proceedings of IEEE Asia-
Pacific Conference on Circuits and Sys-
tems (APCCAS06), Singapore (2006)
pp. 1835–38.

5 Murali, K., Sinha, S. and Ditto, W.L.,
Proceedings of the STATPHYS-22
Satellite conference Perspectives in
Nonlinear Dynamics Special Issue of
Pramana 64 (2005) 433

6 Murali, K., Sinha, S. and Ditto, W.L.,
Int. J. Bif. and Chaos (Letts) 13 (2003)
2669; Murali, K., Sinha S., and I. Raja
Mohamed, I.R., Phys. Letts. A 339
(2005) 39.

7 Murali, K., Sinha, S., Ditto, W.L., Pro-
ceedings of Experimental Chaos Confer-
ence (ECC9), Brazil (2006) published
in Phil. Trans. of the Royal Soc. of Lon-
don (Series A) (2007); Murali, K.,
Sinha, S. and Ditto, W.L., Proceed-
ings of IEEE Asia-Pacific Conference
on Circuits and Systems (APCCAS06),
Singapore (2006) pp. 1839–42.

8 Prusha B.S. and Lindner J.F., Phys.
Letts. A 263 (1999) 105.

9 Cafagna, D. and Grassi, G., Int. Sym.
Signals, Circuits and Systems (ISSCS
2005) 2 (2005) 749.

10 Chlouverakis, K. E. and Adams, M. J.,
Electronics Lett. 41 (2005) 359.

11 Jahed-Motlagh, M.R., Kia, B., Ditto,
W.L. and Sinha, S., Int. J. of Bif. and
Chaos 17 (2007) 1955.

12 Murali, K. and Sinha, S., Phys. Rev. E
75 (2007) 025201

13 Miliotis, A., Murali, K., Sinha, S.,
Ditto, W.L., and Spano, M.L., Chaos,
Solitons & Fractals, Volume 42, (2009)
Pages 809–819.

14 Miliotis, A., Sinha, S. and Ditto, W.L.,
Int. J. of Bif. and Chaos 18 (2008) 1551–
59; Miliotis, A., Sinha, S. and Ditto,
W.L., Proceedings of IEEE Asia-Pacific
Conference on Circuits and Systems
(APCCAS06), Singapore (2006) pp.
1843–46.

15 Murali, K., Miliotis, A., Ditto, W.L.
and Sinha, S., Phys. Letts. A 373 (2009)
1346–51

16 Murali, K., Sinha, S., Ditto, W.L., Bul-
sara, A.R., Phys. Rev. Lett. 102 (2009)
104101; Sinha, S., Cruz, J.M., Buhse,
T., Parmananda, P., Europhys. Lett. 86
(2009) 60003

17 Ditto, W., Sinha, S. and Murali, K., US
Patent Number 07096347 (August 22,
2006).

18 Taubes, G., Science 277 (1997) 1935.
19 Biswas, S. and D., Phys. Rev. Lett. 71

(1993) 2010; Glass, L. and Zheng, W.,
Int. J. Bif. and Chaos 4 (1994) 1061;
Sinha, S., Phys. Rev. E 49 (1994) 4832;
Sinha, S., Phys. Letts. A 199 (1995) 365;
Sinha, S. and Ditto, W.L., Phys. Rev. E
63 (2001) 056209; Sinha, S., Phys. Rev.
E 63 (2001) 036212; Sinha, S., Nonlin-
ear Systems, Eds. Sahadevan, R. and
Lakshmanan, M.L., (Narosa, 2002)
309–28; Ditto, W.L. and Sinha, S., Phil.
Trans. of the Royal Soc. of London (Se-
ries A) 364 (2006) 2483.

20 Murali, K. and Sinha, S., Phys. Rev. E
68 (2003) 016210.

References 35

21 Maddock, R.J. and Calcutt, D.M.,
Electronics: A Course for Engineers, Ad-
dison Wesley Longman Ltd., (1997)
p. 542; Dimitriev, A.S. et al, J. Comm.
Tech. Electronics, 43 (1998) 1038.

22 Cronemeyer, D.C., et al, Phys. Rev. B
31 (1985) 2667.

23 For instance, content-addressable
memory (CAM) is a special type of
computer memory used in certain
very-high-speed searching applica-
tions, such as routers. Unlike stan-
dard computer memory (random
access memory or RAM) in which
the user supplies a memory address
and the RAM returns the data word
stored at that address, a CAM is de-
signed such that the user supplies
a data word and the CAM searches
its entire memory to see if that data

word is stored anywhere in it. What
we attempt to design here is a CAM-
like device.

24 Sukow, D.W., et al. Chaos 7 (1997)
560; Blakely, J.N., Illing, L. and Gau-
thier, D.J., Phys. Rev. Lett. 92 (2004);
Blakely, J.N., Illing, L. and Gauthier,
D.J., IEEE Journal of Quantum Electron-
ics 40 (2004) 299.

25 Yang, T. and Chua, L.O., Int. J. of Bif.
and Chaos 10 1091 (2000).

26 Grover, LK., Phys. Rev. Letts. (1997) 79
325.

27 Koch, R., Scientific American, 293(2),
56 (2005).

28 Yousefi, M., Barbarin, Y., Beri, S.,
Bente, E. A. J. M., Smit, M. K., Notzel,
R., and Lenstra, D., Phys. Rev. Lett. 98,
044101 (2007)

