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1.1
Introduction

In this chapter, we discuss some of the fundamentals of optics. We first cover the
electromagnetic (EM) spectrum, which shows that the visible spectrum occupies
just a very narrow portion of the entire EM spectrum. We then discuss geometrical
optics and wave optics. In geometrical optics, we formulate the propagation of light
rays in terms of matrices, whereas in wave optics we formulate wave propagation
using the Fresnel diffraction formula, which is the solution to Maxwell’s equations.
Fourier optics and its applications in optical image processing are then discussed.
One of the important optical image processing applications in optical correlation is
subsequently explained. Finally, we discuss the human visual system and end this
chapter with a brief conclusion.

1.2
The Electromagnetic Spectrum

James Clerk Maxwell (1831–1879) used his famous Maxwell’s equations to show
that EM waves exhibit properties similar to those of visible light. After continuous
studies of optical and EM waves in the last century, we have finally understood
that visible light is only a narrow band in the EM spectrum. Figure 1.1 shows the
complete EM spectrum. It consists of regions of radio waves, microwaves, infrared
(IR), visible light, ultraviolet (UV), X-rays, and γ -rays.

Visible light is the EM radiation that can be observed by human eyes directly. Be-
cause of the various receptors in human eyes (see Section 1.7), people can identify
EM radiation of different wavelengths by their colors. Visible light can be roughly
separated into violet (390–455 nm), blue (455–492 nm), green (492–577 nm), yel-
low (577–597 nm), orange (597–622 nm), and red (622–780 nm). Beyond the red
end of the visible band lies the IR region. It contains the near infrared (NIR, 0.78–3
µm), the middle infrared (MIR, 3.0–6.0 µm), the far infrared (FIR, 6.0–15 µm),
and the extreme infrared (XIR, 15–1000 µm). There are also other nomenclatures
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Figure 1.1 The electromagnetic spectrum.

and division schemes, depending on the purposes of the applications and the users
[1]. The IR imaging technique is applied in astronomical measurements, thermo-
graphs, heat targets, and noninvasive medical imaging of subcutaneous tissues. The
band merging into the violet end of the visible light is the UV region. Its spectrum
range is roughly between 1.0 and 390 nm. UV radiation is used as the light source
for lithography to achieve narrower linewidth. Sometimes, the visible band, together
with parts of the UV and IR regions, is classified as the optical region, in which we
use similar ways to produce, to modulate, and to measure the optical radiation.

At the long-wavelength end of the EM spectrum are microwaves and radio waves.
Their ranges are from 3 × 1011 to 109 Hz, and from 109 Hz to very low frequency,
respectively. The radiations in this region exhibit more wave properties, and are
usually applied to remote sensing and communications. Although antennae are
used to produce and to receive microwaves and radio waves, we can still perform
imaging in this region, especially for astronomical measurements [2]. It is worth
noting that the spectrum range between FIR and microwaves, namely, from 0.1 to
10 THz, is called the terahertz band (THz band). The THz band covers the millimeter
wave (MMW, 0.03–0.3 THz), the submillimeter wave (SMMW, 0.3–3 THz), and
the FIR regions. Terahertz radiation is highly absorbed by water and reflected by
metals. Thus terahertz imaging has unique applications in nondestructive testing,
biomedical imaging, and remote sensing.

At the short-wavelength end of the EM spectrum are the X-rays and γ -rays.
X-rays, ranging from 1.0 nm to 6.0 pm, can pass through the soft tissues easily
and are thus widely used in applications in medical imaging. The X-ray lasers
and their related imaging techniques have been studied for decades and are still
under development [3]. Since the wavelength of X-rays is shorter than UV rays,
the success of X-ray imaging techniques will lead to a greater improvement of
image resolution. γ -Rays have the shortest wavelength and thus they possess very
high photon energy (>104 eV) and behave more like particles. γ -Rays have been
applied in medical imaging because of their excellent depth of penetration into
soft tissues and their high resolution. For example, Technetium-99m or 99mTc
is the most commonly used γ -ray-emitting radionuclide in radiopharmacology,
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and it produces γ -radiation with principal photon energy of 140 keV. Another
nuclear medicine technique called positron emission tomography (PET) is also an
imaging technique of 511 keV γ -radiation resulting from the annihilation of
positron–electron pairs of a radionuclide.

1.3
Geometrical Optics

In geometrical optics, light is treated as particles called photons and the trajectories
that these photons follow are termed rays.Hence geometrical optics is also known
as ray optics. Ray optics is based on Fermat’sprinciple, which states that the path
that a light ray follows is an extremum in comparison to nearby paths. Usually
the extremum is a minimum. As a simple example shown in Figure 1.2, the
shortest distance, that is, the minimum distance, between two points A and B is
along a straight line (solid line) in a homogeneous medium (medium with a constant
refractive index). Hence the light ray takes the solid line as a path instead of taking
the nearby dotted line. By the same token, according to Fermat’s principle, we
can derive the laws of reflection and refraction [4]. The law of refraction, which
describes a light ray entering from one medium, characterized by refractive index
ni, into another medium of refractive index nt, is given by

ni sin θi = nt sin θt (1.1)

where θi and θt are the angles of incidence and transmission (or refraction),
respectively, as shown in Figure 1.3. The angles are measured from the normal
NN′ to the interface MM′, which separates the two media.

1.3.1
Ray Transfer Matrix

To describe ray propagation through optical systems comprising, for instance, a
succession of lenses all centered on the same axis called the optical axis, we can
use matrix formalism if we consider paraxial rays. Figure 1.4 depicts the system
coordinates and parameters under consideration. We take the optical axis along

A

B

Figure 1.2 A light ray takes the shortest distance, a straight
line (solid line), between two points in a homogeneous
medium.
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Figure 1.3 Law of refraction and its transfer matrix R.
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Figure 1.4 Input and output planes in an optical system.

the z-axis, which is the general direction in which the rays travel. Paraxial rays lie
only in the x–z plane and are close to the z-axis. In other words, paraxial rays are
rays with angles of incidence, reflection, and refraction at an interface, satisfying
the small-angle approximation in that tan θ ≈ sin θ ≈ θ and cos θ ≈ 1, where the
angle θ is measured in radians. Paraxial optics deals with paraxial rays. Hence in
paraxial optics, the law of refraction simplifies to

niθi = ntθt (1.2)

A ray at a given x–z plane may be specified by its height x form the optical axis and
by its angle θ or slope that it makes with the z-axis. The convention for the angle is
anticlockwise positive measured from the z-axis. The height x of a point on a ray is
taken positive if the point lies above the z-axis and negative if it is below the z-axis.
The quantities (x, θ ), therefore, represent the coordinates of the ray for a given
z-plane. It is customary to replace the corresponding angle θ by v = nθ , where n is
the refractive index at the z-constant plane. Therefore, as shown in Figure 1.4, the
ray at z = z1 passes through the input plane with input ray coordinates (x1, n1θ1)
or (x1, v1). If the output ray coordinates at z = z2, the output plane, are (x2, n2θ2)
or (x2, v2), we can relate the input coordinates to the output coordinates by a 2 × 2
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matrix as follows:(
x2

v2

)
=

(
A B
C D

) (
x1

v1

)
(1.3)

The above ABCD matrix is called the ray transfer matrix, which can be made up of
many matrices to account for the effects of the ray passing through various optical
elements such as lenses. Equation (1.3) is equivalently given by

x2 = Ax1 + Bv1 (1.4a)

v2 = Cx1 + Dv1 (1.4b)

Hence, the law of refraction given by Eq. (1.2) can be written as(
x2

v2

)
=

(
1 0
0 1

)(
x1

v1

)
= R

(
x1

v1

)
(1.5)

where v2 = n2θt = ntθt and v1 = n1θi = niθi. Therefore, the ABCD matrix for the

law of refraction is R =
(

1 0

0 1

)
and Figure 1.3 summarizes the matrix formalism

for the law of refraction. From Eq. (1.5), we see that x2 = x1 as the heights of the
input and output rays are the same. Also, v2 = v1, which gives the law of refraction,
ntθt = niθi. We also notice that the input and output planes in this case are the
same plane at z = z1 = z2.

Figure 1.5 shows two more useful ray transfer matrices: the translation matrix
T and the thin-lens matrix L. The translation matrix describes the ray undergoing
a translation of distance d in a homogeneous medium characterized by n and the

z = z1
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(x2, v2)

x1

x2 T =
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q2

z = z2
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01
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Figure 1.5 (a) Translation matrix and (b) lens matrix.
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matrix equation is given as follows:(
x2

v2

)
=

(
1 d

n
0 1

)(
x1

v1

)
= T

(
x1

v1

)
(1.6a)

where v2 = nθ2, v1 = nθ1, and

T =
(

1 d
n

0 1

)
(1.6b)

Note that when the ray is undergoing translation as shown in Figure 1.5a in a
homogeneous medium, θ1 = θ2 and therefore v1 = v2 as given by Eq. (1.6a). From
Eq. (1.6a), we also see that x2 = x1 + dv1/n = x1 + dθ1. Hence x2 is dθ1 higher than
x1, consistent with the situation shown in Figure 1.5a. When a thin converging
lens of focal length f is involved, the matrix equation is(

x2

v2

)
=

(
1 0
−1
f 1

)(
x1

v1

)
= L

(
x1

v1

)
(1.7a)

where L is the thin-lens matrix given by

L =
(

1 0
−1
f 1

)
(1.7b)

By definition, a lens is thin when its thickness is assumed to be zero and hence
the input plane and the output plane have become the same plane or z1 = z2 as
shown in Figure 1.5b. We also have x1 = x2 as the heights of the input and output
rays are the same for the thin lens. Regarding the slope, from Eq. (1.7a), we have
v2 = − 1

f x1 + v1. For v1 = 0, that is, the input ray is parallel to the optical axis,

v2 = − 1
f x1 = − 1

f x2. For positive x1, v2 < 0, since f > 0 for a converging lens. For
negative x1, v2 > 0. Hence all input rays parallel to the optical axis converge behind
the lens to a point called the back focal point, that is, at a distance f away from
the lens. Note that for a thin lens, the front focal point is also a distance f away
from but in front of the lens. For the input ray coordinates given by (x1, x1/f ) and
according to Eq. (1.7), the output ray coordinates are (x2 = x1, 0), which implies
that all output rays will be parallel to the optical axis as v2 = 0. This is the case
that all rays passing through the front focal point of a lens will give rise to parallel
output rays. The output plane that contains the back focal point is called the back
focal plane and, similarly, the plane that contains the front focal point is the front
focal plane.

1.3.2
Two-Lens Imaging System

Figure 1.6 shows a more complicated optical system as an example. The system
is a two-lens imaging system with lenses L1 and L2 of focal lengths f1 and f2,
respectively, and the two lenses are separated by a distance f1 + f2. The object is
placed in the front focal plane of lens L1. We can relate the input ray coordinates
(x1, v1) and the output ray coordinates (x2, v2) using the ray transfer matrices.
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Figure 1.6 Two-lens imaging system.

Therefore, from Eq. (1.6), we first relate the input coordinates (x1, v1) on the input
plane to the ray coordinates (x′

1, v′
1), located on a plane immediately before the lens

L1 by (
x′

1

v′
1

)
=

(
1 f1
0 1

)(
x1

v1

)
(1.8)

where we have assumed that the two-lens system is immersed in air, that is, n = 1.
The distance of ray transfer is d = f1. Now we relate (x′

1, v′
1) to (x′′

1 , v′′
1 ), the ray

coordinates located on a plane immediately after the lens L1 by(
x′′

1

v′′
1

)
=

(
1 0
−1
f1

1

)(
x′

1

v′
1

)
(1.9)

where we have used the lens matrix in Eq. (1.7) with f = f1. Now by substituting
Eq. (1.9) into Eq. (1.8), we can relate the input ray coordinates (x1, v1) to the ray
coordinates (x′′

1 , v′′
1 ) just after the lens L1:(

x′′
1

v′′
1

)
=

(
1 0
−1
f1

1

)(
1 f1
0 1

)(
x1

v1

)
(1.10)

Note that the overall system matrix so far is expressed in terms of the product
of two matrices written in order from right to left as the ray transverses from
left to right on the optical axis. By the same token, we can show that the input
ray coordinates (x1, v1) and the final output ray coordinates (x2, v2) on the image
plane are connected using five ray transfer matrices (three translation matrices and
two-lens matrices):(

x2

v2

)
= S

(
x1

v1

)
(1.11a)

where S is system matrix of the overall system and is given by

S =
(

1 f2
0 1

) (
1 0
−1
f2

1

)(
1 f1 + f2
0 1

)(
1 0
−1
f1

1

)(
1 f1
0 1

)
(1.11b)
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The system matrix S can be simplified to

S =
(

− f2
f1

0

0 − f1
f2

)
(1.12)

and Eq. (1.11a) becomes

(
x2

v2

)
=

(
− f2

f1
0

0 − f1
f2

)(
x1

v1

)
(1.13)

From the above equation, we can find, for example, x2 = − f2
f2

x1; and the lateral
magnification M of the imaging system is found to be

M = x2

x1
= − f2

f1
(1.14)

Since both the focal lengths of the converging lenses are positive, M < 0 signifies
that the image formed is real and inverted as shown in Figure 1.6. In addition, if
f2 > f1, as is the case illustrated in Figure 1.6, we have a magnified image. In the
figure, we show a ray diagram, illustrating an image formation of the system. A ray
(Ray 1 in the Figure 1.6) coming from O′ parallel to the optical axis hits the image
point I′ and a ray (Ray 2) from the object point O parallel to the optical axis hits the
image point I.

1.3.3
Aberrations

In the preceding section, we have introduced the basic concepts of an imaging
system in which a point object will produce a point image using paraxial rays. In
real optical systems, nonparaxial rays are also involved in image formation and the
actual image departs from the ideal point image. In fact, these rays form a blur
spot instead of a single point image. This departure from ideal image formation is
known as aberrations.

Aberrations are usually due to the deviation from the paraxial approximation,
but this is not always so. We also have defocus aberration and chromatic aberration
because these aberrations also result in a blurred image spot. However, the former
is due to the mismatch between the observation plane and the image plane, while
the latter is due to the various refractive indices of the same material at different
wavelengths.

To systematically analyze the aberrations, we can expand the sine of the angle
between the ray and the optical axis, that is, sin θ ≈ θ − θ/3! + θ/5! − · · ·. The
first expansion term is also what we use in the paraxial approximation (Eq. (1.2)),
which leads to an ideal image point due to an ideal object point. Aberrations that
come about from neglecting the second term in the expansion are called third-order
aberrations, while the fifth-order aberrations arise from neglecting the third term
in the expansion. Usually, in aberration analysis we only need to consider the
third-order aberrations. The effect of fifth-order and higher order aberrations are
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Paraxial image plane

Figure 1.7 Spherical aberration on a single lens.

complicated and minor, and these are only considered in high-precision optical
systems. Spherical aberration is one of the five third-order aberrations, and it is
easily found in a low-cost single lens. We can consider the imaging of a general
spherical lens, in which a point object is set at infinity as shown in Figure 1.7. The
light rays near the center of the lens are converged to the paraxial image plane (back
focal plane). The light rays passing through the periphery of the lens also converge,
but the image point deviates from the paraxial image point. As a result, the image of
a point in the image plane is not an infinitesimal point but a blurred spot. Spherical
aberration is a function of the lens profile, the lens thickness, the lens diameter, and
the object distance (or equivalently, the image distance). The easiest way to reduce
spherical aberration is to shorten the effective diameter of the lens. However, the
light intensity is reduced accordingly. Alternatively, spherical aberration can be
minimized by using an aspheric surface (departing from spherical) on a single lens
or by using several lenses.

Besides spherical aberration, there are also coma, astigmatism, field curvature,
and distortion that comprise the third-order aberrations. The readers may consult
Chapters 13 and 25 of this book or other books for more details [2, 5–7]. Finally, it
may be noted that even if the optical system is free from all the third- and high-order
aberrations, we still cannot accomplish an infinitesimal image point because of
diffraction effects (see Section 1.5).

1.4
Maxwell’s Equations and the Wave Equation

In geometrical optics, we treat light as particles. In wave optics, we treat light as
waves. Wave optics accounts for wave effects such as interference and diffraction.
Maxwell’s equations form the starting point for wave optics:

∇•D = ρv (1.15)

∇•B = 0 (1.16)

∇ × E = −∂B
∂t

(1.17)
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∇ × H = J = JC + ∂D
∂t

(1.18)

where, in these equations, we have four vector quantities called electromagnetic
fields: the electric field strength E (V m−1), the electric flux density D (C m−2), the
magnetic field strength H (A m−1), and the magnetic flux density B (Wb m−2).
The vector quantity JC and the scalar quantity ρv are the current density (A m−1)
and the electric charge density (C m−3), respectively, and they are the sources
responsible for generating the EM fields. In addition to Maxwell’s equations, we
have the constitutive relations:

D = εE (1.19)

and

B = µH (1.20)

where ε and µ are the permittivity (F m−1) and permeability (H m−1) of the
medium, respectively. In this chapter, we take ε and µ to be scalar constants, which
is the case for a linear, homogeneous, and isotropic medium such as in vacuum.
Using Eqs (1.15–1.20), we can derive a wave equation in E or B [8]. For example,
the wave equation in E is

∇2E − µε
∂2E
∂t2

= µ
∂JC

∂t
+ 1

ε
∇ρv (1.21)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator in Cartesian coordinates.

For a source-free medium, that is, JC = 0 and ρv = 0, Eq. (1.21) reduces to the
homogeneous wave equation:

∇2E − µε
∂2E
∂t2

= 0 (1.22)

Note that v = 1/
√

µε is the velocity of the wave in the medium. Equation (1.22) is
equivalent to three scalar equations, one for every component of E. Let

E = Exax + Eyay + Ezaz (1.23)

where ax, ay, and az are the unit vectors in the x, y, and z directions, respectively.
Equation (1.22) then becomes(

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
(Exax + Eyay + Ezaz) = µε

∂2

∂t2
(Exax + Eyay + Ezaz)

(1.24)

Comparing the ax-component on both sides of the above equation gives us

∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2
= µε

∂2Ex

∂t2

Similarly, we have the same type of equation shown above for the Ey and Ez

components by comparing other components in Eq. (1.24). Hence we can write a
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compact equation for the three components as follows:

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= µε

∂2ψ

∂t2
(1.25a)

or

∇2ψ = µε
∂2ψ

∂t2
(1.25b)

where ψ may represent a component, Ex , Ey, or Ez, of the electric field E. Equation
(1.25) is called the scalar wave equation.

1.5
Wave Optics and Diffraction

In the study of wave optics, we start from the scalar wave equation. Let us look at
some of the simplest solutions. One of the simplest solutions is the plane wave
solution:

ψ(x, y, z, t) = A exp[i(ω0t − k0•R)] (1.26)

where ω0 is the oscillating angular frequency (rad s−1), k0 = k0xax + k0yay + k0zaz

is the propagation vector, and R = xax + yay + zaz is the position vector. The

magnitude of k0 is called wavenumber and is |k0| = k0 =
√

k2
0x + k2

0y + k2
0z = ω0/v

with v being the velocity of the wave in the medium given by v = 1/
√

µε. If the
medium is free space, v = c (the speed of light in vacuum) and |k0| becomes the
wavenumber in free space. Equation (1.26) is a plane wave of amplitude A, traveling
along the k0 direction. If a plane wave is propagating along the positive z-direction,
Eq. (1.26) becomes

ψ(z, t) = A exp[i(ω0t − k0z)] (1.27)

Equation (1.27) is a complex representation of a plane wave and since the EM fields
are real functions of space and time, we can represent the plane wave in real terms
by taking the real part of ψ to get

Re{ψ(z, t)} = A cos(ω0t − k0z) (1.28)

For a plane wave incident on an aperture or a diffracting screen, that is, an opaque
screen with some openings allowing light to pass through, the field distribution
exiting the aperture or the diffracted field is a little more complicated to find.
To tackle the diffraction problem, we need to find the solution of the scalar wave
equation under some initial condition. Let us assume the aperture is represented by
a transparency function, t(x, y), located on the plane z = 0 as shown in Figure 1.8. A
plane wave of amplitude A is incident on it. Hence at z = 0, according to Eq. (1.27),
the plane wave immediately in front of the aperture is given by A exp(iω0t). The
field immediately after the aperture is

ψ(x, y, z = 0, t) = At(x, y) exp(iω0t) = ψp(x, y; z = 0) exp(iω0t)

= ψp0(x, y) exp(iω0t) (1.29)
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Figure 1.8 Diffraction geometry: t(x, y) is the diffracting screen.

where we have assumed that the aperture is infinitively thin. ψp(x, y; z = 0) or
ψp0(x, y) is called the initial condition. In the present case, the initial condition of
the complex wave is given by ψp0(x, y) = A × t(x, y), the amplitude of the incident
plane wave multiplied by the transparency function of the aperture. To find the
field distribution at a distance z away from the aperture, we model the solution in
the form of

ψ(x, y, z, t) = ψp(x, y; z) exp(iω0t) (1.30)

where ψp(x, y; z) is the unknown to be found. In optics, ψp(x, y; z) is called a
complex amplitude. In engineering, it is known as a phasor. To find ψp(x, y; z), we
substitute Eq. (1.30) into Eq. (1.25). With the given initial condition ψp0(x, y), we
find [8]

ψp(x, y; z) = exp(−ik0z)
ik0

2πz

∫ ∞

−∞

∫ ∞

−∞
ψp0(x′, y′)

× exp
{−ik0

2z

[
(x − x′)2 + (y − y′)2]} dx′dy′ (1.31)

Equation (1.31) is called the Fresnel diffraction formula and describes the Fresnel
diffraction of a ‘‘beam’’ during propagation and having an initial complex amplitude
given by ψp0(x, y). The Fresnel diffraction formula has been derived under the
following conditions: (i) z must be many wavelengths away from the aperture and
(ii) it should be valid under the paraxial approximation, that is, z2 � x2 + y2. The
Fresnel diffraction formula can be written in a compact form if we make use of the
convolution integral

g(x, y) = g1(x, y) ∗ g2(x, y) =
∫ ∞

−∞

∫ ∞

−∞
g1(x′, y′)g2(x − x′, y − y′)dx′dy′ (1.32)

where ∗ denotes convolution of two functions g1(x, y) and g2(x, y). We also define a
function

h(x, y; z) = exp(−ik0z)
ik0

2πz
exp

[−ik0

2z
(x2 + y2)

]
(1.33)

With Eqs (1.32) and (1.33), the Fresnel diffraction formula can be written simply as

ψp(x, y; z) = ψp0(x, y) ∗ h(x, y; z) (1.34)
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yp0(x,y) yp(x,y;z) = yp0(x,y)∗h(x,y;z)h(x,y;z)

Figure 1.9 Block diagram summarizing Fresnel diffraction.

Hence Fresnel diffraction can be considered as a linear and space-invariant system
[8] with input given by ψp0(x, y) and with the system’s impulse response given by
h(x, y; z). In optics, h(x, y; z) is called free-space spatial impulse response. Figure 1.9 is
a block diagram, which summarizes the Fresnel diffraction of a beam with initial
profile ψp0(x, y).

If we have a situation such that the calculation of the diffraction pattern is at
distances far away from the aperture, Eq. (1.31) can be simplified. To see how
this can be done, let us complete the square in the exponential function and then
rewrite Eq. (1.31) to become

ψp(x, y; z) = exp(−ik0z)
ik0

2πz
exp

[−ik0

2z
(x2 + y2)

] ∫ ∞

−∞

∫ ∞

−∞
ψp0(x′, y′)

× exp
{−ik0

2z
[(x′)2 + (y′)2]

}
exp

[
ik0

z
(xx′ + yy′)

]
dx′dy′ (1.35)

In the above integral, ψp0 is considered as the ‘‘source,’’ and therefore the coordi-
nates x′ and y′ can be called the source plane. In order to find the field distribution ψp

on the observation plane, or the x–y plane, we need to have the source multiplied
by the two exponential functions as shown inside the integrand of Eq. (1.35),
and then to integrate over the source coordinates. The result of the integration is

then multiplied by the factor exp(−ik0z) ik0
2πz exp

[−ik0
2z (x2 + y2)

]
to arrive at the final

result on the observation plane given by Eq. (1.35). Note that the integral in Eq.
(1.35) can be simplified if the approximation below is true:

k0

2
[(x′)2 + (y′)2]max = π

λ0
[(x′)2 + (y′)2]max � z (1.36)

The term π [(x′)2 + (y′)2]max is like the maximum area of the source and if this area
divided by the wavelength is much less than the distance z under consideration, the

term exp
{−ik0

2z [(x′)2 + (y′)2]
}

inside the integrand can be considered to be unity,

and hence Eq. (1.35) becomes

ψp(x, y; z) = exp(−ik0z)
ik0

2πz
exp

[−ik0

2z
(x2 + y2)

] ∫ ∞

−∞

∫ ∞

−∞
ψp0(x′, y′)

× exp
[

ik0

z
(xx′ + yy′)

]
dx′dy′ (1.37)

Equation (1.37) is the Fraunhofer diffraction formula and is the limiting case of
Fresnel diffraction. Equation (1.36) is therefore called the Fraunhofer approximation
or the far field approximation as diffraction is observed beyond the distance of
near-field (Fresnel) diffraction.
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1.6
Fourier Optics and Applications

Fourier optics is a term used by many authors to describe the use of Fourier
transform to analyze problems in wave optics [8]. We first introduce the definition
of Fourier transform and then we formulate wave optics using the transform. The
two-dimensional spatial Fourier transform of a signal f (x, y) is given by

F{ f (x, y)} = F(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y) exp(ikxx + ikyy)]dxdy (1.38)

and its inverse Fourier transform is

F−1{F(kx, ky)} = f (x, y) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
F(kx, ky) exp(−ikxx − ikyy)]dkxdky

(1.39)

where the transform variables are spatial variables, x, y (in m), and spatial radian
frequencies, kx, ky (in rad m−1). We can now rewrite the Fresnel diffraction formula
(see Eq. (1.35)) in terms of Fourier transform:

ψp(x, y; z) = exp(−ik0z)
ik0

2πz
exp

[−ik0

2z
(x2 + y2)

]

× F
{

exp
[−ik0

2z
(x2 + y2)

]
ψp0(x, y)

}
kx= k0x

z ,ky= k0y
z

(1.40)

Similarly, the Fraunhofer diffraction formula given by Eq. (1.37) can be written as

ψp(x, y; z) = exp(−ik0z)
ik0

2πz
exp

[−ik0

2z
(x2 + y2)

]
F{ψp0(x, y)}

kx= k0x
z ,ky= k0y

z
(1.41)

Figure 1.10 shows the simulation of Fresnel diffraction of a circular aperture
function circ(r/r0), that is, ψp0(x, y) = circ(r/r0), where r = √

x2 + y2 and circ(r/r0)
denotes a value 1 within a circle of radius r0 and 0 otherwise. The used wavelength
for simulations is 0.6 µm. Since ψp(x, y; z) is a complex function, we plot its
absolute value in the figures. Physically, the situation corresponds to the incidence
of a plane wave with unit amplitude on an opaque screen with a circular opening of
radius r0 as ψp0(x, y) = 1 × t(x, y) with t(x, y) = circ(r/r0). We would then observe
the intensity pattern, which is proportional to |ψp(x, y; z)|2, at distance z away from
the aperture. In Figure 1.11, we show Fraunhofer diffraction. We have chosen the
distance of 80 cm so that the Fraunhofer approximation from Eq. (1.36) is satisfied.

1.6.1
Ideal Thin Lens as Optical Fourier Transformer

An ideal thin lens is a phase object, which means that it will only affect the phase
of the incident light. For an ideal converging lens having a focal length f , the phase
function of the lens is given by

tf (x, y) = exp
[

ik0

2f
(x2 + y2)

]
(1.42)
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4.2 mm
(a)

(b) (c)

Figure 1.10 (a) Aperture function in the form of circ(r/r0),
r0 = 1mm. (b) Diffraction at z = 7 cm (Fresnel diffraction),
|ψp(x, y; z = 7 cm)|. (c) Diffraction at z = 8 cm (Fresnel
diffraction), |ψp(x, y; z = 8 cm)|.

9.6 mm

(a) (b)

Figure 1.11 (a) 3D plot of a diffraction pattern at z =
80 cm (Fraunhofer diffraction), |ψp(x, y; z = 80 cm)|.
(b) Gray-scale plot of |ψp(x, y; z = 80 cm)|. (Please find a
color version of this figure on the color plates.)

where we have assumed that the lens is of infinite extent. For a uniform plane
wave incident upon the lens, we can calculate the field distribution in the back
focal plane of the lens using Eq. (1.34). To employ Eq. (1.34), we need to find
the initial condition of the complex wave, which is given by ψp0(x, y) = A × t(x, y),
the amplitude of the incident plane wave multiplied by the transparency function
of the aperture. In the present case, A = 1 and the transparency function of the
aperture is now given by the lens function tf (x, y), that is, t(x, y) = tf (x, y). Hence
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ψp0(x, y) = A × t(x, y) = 1 × tf (x, y) = tf (x, y). The field distribution at a distance f
away from the lens, according to Eq. (1.34) with z = f in h(x, y; z), is then given by

ψp(x, y; f ) = tf (x, y) ∗ h(x, y; f )

= exp
[

ik0

2f
(x2 + y2)

]
∗ exp(−ik0f )

ik0

2π f
exp

[−ik0

2f
(x2 + y2)

]
(1.43)

The above equation can be shown on evaluation to be proportional to a delta
function, δ(x, y) [8], which is consistent with the geometrical optics that already
states that all input rays parallel to the optical axis converge behind the lens to a
point called the back focal point. The discussion thus far in a sense justifies the
functional form of the phase function of the lens given by Eq. (1.42). We now look
at a more complicated situation shown in Figure 1.12a, where a transparency t(x, y)
illuminated by a plane wave of unit amplitude is located in the front focal plane.
We want to find the field distribution in the back focal plane. In Figure 1.12b, we
describe the process of finding the field using a block diagram. Assuming that
t(x, y) is illuminated by a plane wave of unity, the field immediately after t(x, y)
is given by 1 × t(x, y). The resulting field then undergoes Fresnel diffraction at a
distance f, and according to Figure 1.9, 1 × t(x, y) is the input to the block h(x, y; f )
as shown in Figure 1.12a. The diffracted field, t(x, y) ∗ h(x, y; f ), is now immediately
in front of the lens with a phase function given by tf (x, y), and hence the field after
the lens is [t(x, y) ∗ h(x, y; f )] × tf (x, y). Finally, the field at the back focal plane is
found using Fresnel diffraction one more time for a distance f, which is shown in
Figure 1.12b. The resulting field is

ψp(x, y; f ) = {[t(x, y) ∗ h(x, y; f )]tf (x, y)} ∗ h(x, y; f ) (1.44)

The above equation can be worked out to become [8], apart from some constant,

ψp(x, y; f ) = F{t(x, y)}
kx= k0x

f
,ky= k0y

f

= T

(
k0x

f
,

k0y

f

)
(1.45)

Plane wave
illumination

t(x,y)

t (x,y)

t f (x,y)

h(x,y; f )

t f (x,y) Yp (x,y; f )

yp (x,y; f )

f f

h(x,y; f )

(a)

(b)

Figure 1.12 (a) Optical Fourier transformer: ψp(x, y; f ) is
proportional to the Fourier transform of t(x, y). (b) Block dia-
gram for the physical system shown in (a).
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where T
(

k0x
f , k0y

f

)
is the Fourier transform or the spectrum of t(x, y). We see that

we have the exact Fourier transform of the ‘‘input,’’ t(x, y), on the back focal plane
of the lens. Hence an ideal thin lens is an optical Fourier transformer.

1.6.2
Imaging and Optical Image Processing

Figure 1.12a is the backbone of an optical image processing system. Figure 1.13
shows a standard image processing system with Figure 1.12a as the front end
of the system. Figure 1.13 is the same optical system we have studied before in
geometrical optics (Figure 1.6) except for the additional transparency function,
p(x, y), on the confocal plane. p(x, y) is called the pupil function of the optical system.
Now we analyze the system using the wave optics approach. On the input plane,
we have an image in the form of a transparency, t(x, y), which is assumed to be
illuminated by a plane wave. Hence, according to Eq. (1.45), we have its spectrum

on the back focal plane of lens L1, T
(

k0x
f1

, k0y
f1

)
, where T is the Fourier transform

of t(x, y). Hence the confocal plane of the optical system is often called the Fourier
plane. The spectrum of the input image is now modified by the pupil function, and

the field immediately after the pupil function is T
(

k0x
f1

, k0y
f1

)
p(x, y). According Eq.

(1.45) again, this field will be Fourier transformed to give the field on the image
plane as

ψpi = F
{

T

(
k0x

f1
,

k0y

f1

)
p(x, y)

}
kx= k0x

f2
,ky= k0y

f2

(1.46)

which can be evaluated, in terms of convolution, to give

ψpi(x, y) = t
( x

M
,

y

M

)
∗ F{p(x, y)}

kx= k0x
f2

,ky= k0y
f2

= t
( x

M
,

y

M

)
∗ P

(
k0x

f2
,

k0y

f2

)

= t
( x

M
,

y

M

)
∗ hC(x, y) (1.47)

Object plane

t(x,y)

f f f f

p(x,y)L1 L2 ypi (x,y)

Fourier plane Image plane

Figure 1.13 Optical image processing system.
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where M = − f2
f1

as is the case for the two-lens imaging system in Figure 1.6 and P
is the Fourier transform of p. From Eq. (1.47), we can recognize that

hC(x, y) = F{p(x, y)}
kx= k0x

f2
,ky= k0y

f2

= P

(
k0x

f2
,

k0y

f2

)
(1.48)

is the point spread function in the context of a linear and spatial invariant system.
In optics, it is called the coherent point spread function. Hence, the expression given
by Eq. (1.47) can be interpreted as the result of a linear and spatial invariant system
in that the scaled image of t(x, y) is processed by an impulse response given by Eq.
(1.48). The impulse response, and therefore the image processing capabilities, can
be varied by simply changing the pupil function, p(x, y). For example, if we take
p(x, y) = 1, which means we do not modify the spectrum of the input image, then,
hC(x, y), according to Eq. (1.48), becomes a delta function and the output image
from Eq. (1.47) is ψpi(x, y) ∝ t

(
x
M , y

M

) ∗ δ(x, y) = t
(

x
M , y

M

)
. The result is an image

scaled by M, consistent with the result obtained from geometrical optics.
If we now take p(x, y) = circ(r/r0), then, from the interpretation of Eq. (1.46),

we see that for this kind of chosen pupil, filtering is of low-pass characteristic as
the opening of the circle on the pupil plane only allows physically the low spatial
frequencies to go though. Figure 1.14 shows examples of low-pass filtering. In
Figure 1.14a,b, we show the original of the image and its spectrum, respectively.
In Figure 1.14c,e, we show the filtered images, and their low-pass filtered spectra
are shown in Figure 1.14d,f, respectively, where the low-pass filtered spectra are
obtained by multiplying the original spectrum by circ(r/r0). Note that the radius
r0 in Figure 1.14d is larger than that in Figure 1.14f. In Figure 1.15, we show
high-pass filtering examples where we take p(x, y) = 1 − circ(r/r0).

(a) (c) (e)

(b) (d) (f)

Figure 1.14 Low-pass filtering examples: (a) original image,
(b) spectrum of (a), (c), and (e) low-pass images, (d) and
(f) spectrum of (c) and (e), respectively.
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(a) (c) (e)

(b) (d) (f)

Figure 1.15 Same as in Figure 1.14, but with high-pass filtering.

1.6.3
Optical Correlator

The correlation of two images is one of the most important mathematical operations
in pattern recognition [9]. However, as the images become more and more complex
and large in size, the calculation becomes time consuming for a digital computer.
Optical processing provides an alternative to digital processing as it offers greater
speed. For images g1(x, y) and g2(x, y), the correlation between them is given by

g1(x, y) ⊗ g2(x, y) =
∫ ∞

−∞

∫ ∞

−∞
g∗

1 (x′, y′)g2(x + x′, y + y′)dx′dy′ (1.49)

where g∗
1 (x, y) is the complex conjugate of g1(x, y) and ⊗ denotes the operation of

correlation. The role of optical correlators is to implement Eq. (1.49) optically. In
this section, we describe an optical correlator called the joint-transform correlator.
Figure 1.16 shows a standard optical correlator. g1(x, y) and g2(x, y) are the two
images to be correlated, and they are in the form of transparencies, which are
illuminated by plane waves. They are separated by a distance of 2x0 in the front
focal plane of Fourier transform lens L1 as shown in Figure 1.16. The so-called
joint-transform power spectrum, JTPS(kx , ky), on the back focal plane of lens L1 is
given by

JTPS(kx , ky) = |F{g1(x + x0, y)} + F{g2(x − x0, y)}|2 (1.50)

The expression in Eq. (1.50) is essentially the intensity pattern on the focal plane.
Expanding Eq. (1.50), we have

JTPS(kx , ky) = |ĝ1(kx, ky)|2 + |ĝ2(kx , ky)|2 + ĝ∗
1 (kx , ky)ĝ2(kx , ky) exp(i2k0x0)

+ ĝ1(kx , ky)ĝ
∗
2 (kx, ky) exp(−i2k0x0) (1.51)
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Figure 1.16 Optical correlator.

where ĝ1(kx , ky) and ĝ2(kx , ky) are the Fourier transform of g1 and g2, respectively
with kx = k0x/f and ky = k0y/f , where k0 is the wavenumber of the plane wave. The
joint-transform power spectrum (JTPS) is now detected by a CCD camera, whose
output is fed to a 2D spatial light modulator. A 2D spatial light modulator is a device
with which one can imprint a 2D pattern on a laser beam by passing the laser beam
through it (or by reflecting the laser beam off it) [10]. A liquid crystal TV (LCTV)
(upon suitable modification) is a good example of a spatial light modulator. In
fact, we can think of a spatial light modulator as a real-time transparency because
one can update 2D images on the spatial light modulator in real time without
developing films into transparencies. The readers may refer to Chapter 9 of this
book for more details of spatial light modulators. Once the JTPS is loaded to the
spatial light modulator; we can then put the spatial light modulator in the front
focal plane of Fourier transform lens L2 as shown in Figure 1.16. The back focal
plane of lens L2 is the correlation plane as it shows all the correlation outputs. To
see that, we take the Fourier transform of JTPS.

F
{

JTPS
(

k0x

f
,

k0y

f

)}
kx= k0x

f
,ky= k0y

f

= C11(−x, −y) + C22(−x, −y)

+ C12(−x − 2x0, −y) + C21(−x + 2x0, −y) (1.52)

where

Cmn(x, y) = gm ⊗ gn (1.53)

with m = 1 or 2, and n = 1 or 2. Cmn(x, y) is the autocorrelation when m = n,
and is the cross-correlation when m �= n. Therefore, if the two images gm and gn
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(a) (b) (c)

(d) (e) (f)

Figure 1.17 Simulation results for optical correlator shown
in Figure 1.16. (a) Input patterns, (b) JTPS of the two input
patterns, (c) output on the correlation plane, (d–f) are the
same as in (a–c) but with the input patterns not identical.

are the same, besides a strong peak at the origin of the correlation plane due to
the first two terms in Eq. (1.52), we have two strong peaks centered at x = ±2x0.
Figure 1.17a–c shows the input patterns, the JTPS (on the CCD camera plane),
and the output on the correlation plane, respectively. Note that since the two input
patterns are identical, we have two bright correlation spots (denoted by white arrows
in the Figure 1.17c) on both sides of the center spot. Figure 1.17d–f is similar
to Figure 1.17a–c, respectively but the two input patterns are different. Note that
there are no discernible bright spots on both sides of the output in the center of the
correlation plane in the case of mismatched patterns in the input plane.

1.7
The Human Visual System

Figure 1.18 is a schematic diagram of a human eye. The cornea and the crystalline
lens together serve as a converging lens in the imaging system. To control the
entering light flux, there is an iris between the cornea and the lens. The diameter
of the iris can vary from about 2 to 8 mm. The crystalline lens is connected with
several ciliary muscles in order to alter the shape of the crystalline lens so that
the effective focal length of the lens can be adjusted. The eye is relaxed when
it is focused on an infinitely distant object. When a person looks at an object,
his brain will automatically control the ciliary muscles to focus the image on the
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Optic nerve

Retina

Ciliary muscle

Lens

Cornea

Iris

Figure 1.18 Cross section of the human eye.

retina clearly. The retina is a film that consists of numerous light-sensitive cells. Its
function is to transform the illuminating light to an electric signal – like the CCD
sensor in a digital camera. The electric signal is delivered to the brain via the optic
nerve, and is finally read and analyzed by the brain.

The human eye can measure not only light strength but also colors because
the retina contains two classes of receptors, the rods and the cones. Rods are very
sensitive to weak light, but cannot identify colors. In contrast to the rods, the cones
are insensitive to the weak light but can identify colors. This is because there are
three different types of cones, and they are respectively sensitive to red light, green
light, and blue light. The sensitivity spectrum of a normal human eye is roughly
between 390 and 780 nm. Owing to the various responses of the receptors, it is
interesting that the most sensitive wavelength of human eye is 555 nm in daytime,
but is 507 nm at night. Some people’s retina is short of one or more types of
cones, and thus they cannot identify colors correctly. This is called ‘‘color blindness.’’
Although most people own complete cones and rods, their color experiences are
usually different from one another. This is one of the major challenges in color
engineering [11, 12].

There are several kinds of abnormal eyes: nearsightedness, farsightedness, and
astigmatism. Nearsightedness and farsightedness are both due to the defocus
aberration of the eye. In the former case, the image of an object that is far away
is formed in front of the retina, and in the latter case the image is formed in the
back of the retina. Astigmatism of the eye is different from astigmatism aberration
that we mentioned in Section 1.3.3. For an eye with astigmatism, its cornea is
asymmetric. Thus for a distant point object, the image formed on the retina will be
an asymmetric and elliptic spot.

The above-mentioned abnormal eyes result in blurred images, which can be
corrected by glasses [2]. Note that the iris serves as an aperture stop of the lens
so that aberrations can be adjusted. People with nearsightedness or farsightedness
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see clearer in daytime (smaller iris) than at night (larger iris). They are also used to
squinting for clearer vision.

1.8
Conclusion

This chapter has provided some of the fundamentals and applications in optical
image processing. When diffraction is of no concern in the imaging systems, we
can use geometrical optics to explain the imaging process using matrix formalism.
However, the matrix formalism is only applicable for paraxial rays. To consider the
effect of diffraction, we need to use wave optics. Wave optics can be formulated in
terms of the Fresnel diffraction formula, which can be reformulated using Fourier
transforms. Hence image formation and image processing can be described in
terms of Fourier transforms, which is the basis of what is known as Fourier
optics. However, the use of Fourier optics is only applicable under the paraxial
approximation. Nevertheless, Fourier optics is widely used and one of its most
important applications is in the area of optical correlation. We have discussed an
optical correlation architecture called joint-transform correlator, which has provided
an important example on how one can use Fourier optics in the treatment of optical
image processing.
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