Contents

	Foreword V
	Preface XVII
	Contributors XIX
1	Introduction 1 Jürn W. P. Schmelzer and Ivan S. Gutzow
2	Basic Properties and the Nature of Glasses: an Overview 9 Ivan S. Gutzow and Jürn W. P. Schmelzer
2.1	Glasses: First Attempts at a Classification 9
2.2	Basic Thermodynamics 14
2.2.1	The Fundamental Laws of Classical Thermodynamics
	and Consequences 14
2.2.2	Thermodynamic Evolution Criteria, Stability Conditions and the Thermodynamic Description of Nonequilibrium States 22
2.2.3	Phases and Phase Transitions:
	Gibbs's Phase Rule, Ehrenfest's Classification, and the Landau Theory 26
2.3	Crystallization, Glass Transition and Devitrification
	of Glass-Forming Melts: an Overview of Experimental Results 36
2.4	The Viscosity of Glass-Forming Melts 46
2.4.1	Temperature Dependence of the Viscosity 46
2.4.2	Significance of Viscosity in the Glass Transition 54
2.4.3	Molecular Properties Connected with the Viscosity 57
2.5	Thermodynamic Properties of Glass-Forming Melts and Glasses:
	Overview on Experimental Results 59
2.5.1	Heat Capacity 59
2.5.2	Temperature Dependence of the Thermodynamic Functions:
	Simon's Approximation 65
2.5.3	Further Methods of Determination of Caloric Properties
	of Glass-Forming Melts and Glasses 74
2.5.4	Change of Mechanical, Optical and Electrical Properties
	in the Glass Transition Range 76

х	Contents
I	

2.6 2.7	Thermodynamic Nature of the Glassy State 82 Concluding Remarks 88			
3	Generic Theory of Vitrification of Glass-Forming Melts 91 Jürn W. P. Schmelzer and Ivan S. Gutzow			
3.1	Introduction 91			
3.2	Basic Ideas and Equations of the Thermodynamics			
	of Irreversible Processes and Application			
	to Vitrification and Devitrification Processes 95			
3.2	1			
3.2	/ 1			
3.2	11			
3.3	Properties of Glass-Forming Melts: Basic Model Assumptions 103 1 Kinetics of Relaxation 103			
3.3 3.3				
3.4	Kinetics of Nonisothermal Relaxation as a Model of the Glass Transition:			
Э.Т	Change of the Thermodynamic Functions			
	in Cyclic Cooling-Heating Processes 107			
3.4				
3.4.2 Temperature Dependence of the Structural Order Parameter				
in Cyclic Cooling and Heating Processes 108				
3.4	3 Definition of the Glass Transition Temperature			
	via the Structural Order Parameter: the Bartenev–Ritland Equation 110			
3.4	17			
3.4	<u> </u>			
	at Vitrification 115			
	5.1 Configurational Contributions to Thermodynamic Functions 115			
3.4	5.2 Some Comments on the Value of the Configurational Entropy at Low Temperatures and on the Kauzmann Paradox 121			
3.4				
3.5	The Prigogine–Defay Ratio 125			
	1 Introduction 125			
	2 Derivation 127			
3.5	2.1 General Results 127			
3.5	2.2 Quantitative Estimates 133			
3.5	2.3 An Alternative Approach:			
	Jumps of the Thermodynamic Coefficients in Vitrification 135			
3.5	The state of the s			
	3.1 The Prigogine–Defay Ratio 137			
	3.2 Change of Young's Modulus in Vitrification 140			
3.5				
3.6	Fictive (Internal) Pressure and Fictive Temperature			
2.0	as Structural Order Parameters 143 1. Brief Overview 143			
3.6	1 Brief Overview 143			

3.6.2	Model-Independent Definition of Fictive (Internal) Pressure and Fictive Temperature 146				
3.7	On the Behavior of the Viscosity and Relaxation Time at Glass Transition 149				
3.8	On the Intensity of Thermal Fluctuations in Cooling and Heating of Glass-Forming Systems 152				
3.8.1					
3.8.2	Glasses as Systems with Frozen-in Thermodynamic Fluctuations: Mueller and Porai-Koshits 153				
3.8.3	3 Final Remarks 158				
3.9	Results and Discussion 158				
4	Generic Approach to the Viscosity and the Relaxation Behavior of Glass-Forming Melts 165 Jürn W. P. Schmelzer				
4.1	Introduction 165				
4.2	Pressure Dependence of the Viscosity 166				
4.2.1	Application of Free Volume Concepts 166				
4.2.2	A First Exception: Water 169				
4.2.3					
4.2.4					
4.3	Relaxation Laws and Structural Order Parameter Approach 174				
4.3.1					
4.3.2	= .				
4.3.3 Discussion <i>177</i>					
5	Thermodynamics of Amorphous Solids, Glasses,				
	and Disordered Crystals 179				
	Ivan S. Gutzow, Boris P. Petroff, Snejana V. Todorova, and Jürn W. P. Schmelzer				
5.1	Introduction 179				
5.2	Experimental Evidence on Specific Heats and Change of Caloric Properties in Glasses and in Disordered Solids: Simon's Approximations 182				
5.3	Consequences of Simon's Classical Approximation: the $\Delta G(T)$ Course 194				
5.4	Change of Kinetic Properties at T_g and the Course of the Vitrification Kinetics 195				
5.5	The Frenkel–Kobeko Postulate in Terms of the Generic Phenomenological Approach and the Derivation of Kinetic and Thermodynamic Invariants 198				
5.6	Glass Transitions in Liquid Crystals and Frozen-in Orientational Modes in Crystals 208				
5.7	Spectroscopic Determination of Zero-Point Entropies in Molecular Disordered Crystals 212				

5.8	Entropy of Mixing in Disordered Crystals, in Spin Glasses and in Simple Oxide Glasses 213				
5.9	Generalized Experimental Evidence on the Caloric Properties of Typical Glass-Forming Systems 215				
5.10	General Conclusions 219				
6	Principles and Methods of Collection of Glass Property Data and Analysis of Data Reliability 223 Oleg V. Mazurin				
6.1	Introduction 223				
6.2	Principles of Data Collection and Presentation 225				
6.2.1	Main Principles of Data Collection 225				
6.2.2	Reasons to Use the Stated Principles of Data Collection 228				
6.2.3 Problems in Collecting the Largest Possible Amounts					
	of Glass Property Data 230				
6.2.4	Main Principles of Data Presentation 231				
6.3	Analysis of Existing Data 232				
6.3.1	About the Reliability of Experimental Data 232				
6.3.2	Analysis of Data on Properties of Binary Systems 233				
6.3.2.1	General Features of the Analysis 233				
6.3.2.2	Some Factors Leading to Gross Errors 237				
6.3.2.3	Some Specific Examples of the Statistical Analysis of Experimental Data 239				
6.3.2.4	What is to Do if the Number of Sources Is Too Small? 243				
6.4	About the Reliability of the Authors of Publications 246				
6.4.1	The Moral Aspect of the Problem 246				
6.4.2	An Example of Systematically Unreliable Experimental Data 247				
6.4.3	Concluding Remarks 251				
6.5	General Conclusion 253				
7	Methods of Prediction of Glass Properties				
	from Chemical Compositions 255				
	Alexander I. Priven				
7.1	Introduction: 120 Years in Search of a Silver Bullet 255				
7.2	Principle of Additivity of Glass Properties 257				
7.2.1	Simple Additive Formulae 257				
7.2.2	Additivity and Linearity 258				
7.2.3	Deviations from Linearity 259				
7.3	First Attempts of Simulation of Nonlinear Effects 260				
7.3.1	Winkelmann and Schott: Different Partial Coefficients				
	for Different Composition Areas 260				
7.3.2	Gehlhoff and Thomas: Simulation of Small Effects 260				
7.3.3	Gilard and Dubrul: Polynomial Models 262				
7.4	Structural and Chemical Approaches 264				
7.4.1	Nonlinear Effects and Glass Structure 264				
7.4.2	Specifics of the Structural Approach to Glass Property Prediction 266				

7.4.3	First Trials of Application of Structural and Chemical Ideas to the Analysis of Glass Property Data 267				
7.4.4	Evaluation of the Contribution of Boron Oxide to Glass Properties 267				
7.4.4.1					
7.4.4.2	Models by Appen and Demkina 268				
7.4.5	Use of Other Structural Characteristics				
	in Appen's and Demkina's Models 271				
7.4.6	Recalculation of the Chemical Compositions of Glasses 272				
7.4.7	Use of Atomic Characteristics in Glass				
	and Melt Property Prediction Models 278				
7.4.8	Ab Initio and Other Direct Methods of Simulation				
	of Glass Structure and Properties 279				
7.4.9 Conclusion 280					
7.5	Simulation of Viscosity of Oxide Glass-Forming Melts				
	in the Twentieth Century 280				
7.5.1	Simulation of Viscosity as a Function				
of Chemical Composition and Temperature 280					
7.5.2	Approaches to Simulation of Concentration Dependencies				
	of Viscosity Characteristics 282				
7.5.2.1	Linear Approach 282				
7.5.2.2	Approach of Mazurin: Summarizing of Effects 283				
7.5.2.3	Approach of Lakatos: Redefinition of Variables 284				
7.5.2.4	Polynomial Models 284				
7.5.3	•				
7.6 Simulation of Concentration Dependencies of Glass and Melt Pro					
	at the Beginning of the Twenty-First Century 286				
7.6.1	Global Glass Property Databases as a Catalyst				
	for Development of Glass Property Models 286				
7.6.2	Linear and Polynomial Models 286				
7.6.3	Calculation of Liquidus Temperature: Neural Network Simulation 289				
7.6.4	Approach of the Author 291				
7.6.4.1	Background 291				
	Model 292				
7.6.4.3	Comparison with Previous Models 294				
7.6.4.4	Conclusion 296				
7.6.5	Fluegel: a Global Model as a Combination of Local Models 296				
7.6.6	Integrated Approach: Evaluation of the Most Probable Property Values				
	and Their Errors by Using all Available Models				
	and Large Arrays of Data 297				
7.7	Simulation of Concentration Dependencies of Glass Properties				
	in Nonoxide Systems 299				
7.8	Summary: Which Models Were Successful in the Past? 301				
7.9	Instead of a Conclusion: How to Catch a Bluebird 306				

8	Glasses as Accumulators of Free Energy		
	and Other Unusual Applications of Glasses 311		
	Ivan S. Gutzow and Snejana V. Todorova		
8.1	Introduction 311		
8.2 Ways to Describe the Glass Transition, the Properties of Glasses			
	and of Defect Crystals: a Recapitulation 313		
8.3	Simon's Approximation, the Thermodynamic Structural Factor,		
	the Kinetic Fragility of Liquids and the Thermodynamic Properties		
	of Defect Crystals 318		
8.4	The Energy, Accumulated in Glasses and Defect Crystals:		
	Simple Geometric Estimates of Frozen-in Entropy and Enthalpy 324		
8.4.1	Enthalpy Accumulated at the Glass Transitions 324		
8.4.2 Free Energy Accumulated at the Glass Transition			
	and in Defect Crystals 327		
8.5	Three Direct Ways to Liberate the Energy, Frozen-in in Glasses:		
0.5.4	Crystallization, Dissolution and Chemical Reactions 331		
8.5.1	Solubility of Glasses and Its Significance in Crystal Synthesis		
0.5.2	and in the Thermodynamics of Vitreous States 332		
8.5.2	The Increased Reactivity of Glasses and the Kinetics of Chemical Reactions Involving Vitreous Solids 339		
8.6	The Fourth Possibility to Release the Energy of Glass:		
0.0	the Glass/Crystal Galvanic Cell 340		
8.7	Thermoelectric Driving Force at Metallic Glass/Crystal Contacts:		
0.7	the Seebeck and the Peltier Effects 344		
8.8	Unusual Methods of Formation of Glasses in Nature		
	and Their Technical Significance 348		
8.8.1	Introductory Remarks 348		
8.8.2	Agriglasses, Glasses as Nuclear Waste Forms		
	and Possible Medical Applications of Dissolving Organic Glasses 350		
8.8.3	Glasses as Amorphous Battery Electrodes, as Battery Electrolytes		
	and as Battery Membranes 352		
8.8.4	Photoeffects in Amorphous Solids and the Conductivity of Glasses 353		
8.9	Some Conclusions and a Discussion of Results and Possibilities 354		
9	Glasses and the Third Law of Thermodynamics 357		
	Ivan S. Gutzow and Jürn W. P. Schmelzer		
9.1	Introduction 357		
9.2	A Brief Historical Recollection 360		
9.3	The Classical Thermodynamic Approach 363		
9.4	Nonequilibrium States and Classical Thermodynamic Treatment 366		
9.5	Zero-Point Entropy of Glasses and Defect Crystals:		
	Calculations and Structural Dependence 368		
9.6	Thermodynamic and Kinetic Invariants of the Glass Transition 369		
9.7	Experimental Verification of the Existence of Frozen-in Entropies 371		

9.8	Principle of Thermodynamic Correspondence and Zero-Point Entropy Calculations 376			
9.9	A Recapitulation: the Third Principle of Thermodynamics in Nonequilibrium States 377			
10	On the Etymology of the Word "Glass" in European Languages and Some Final Remarks 379			
	Ivan S. Gutzow			
10.1	Introductory Remarks 379			
10.2	"Sirsu", "Shvistras", "Hyalos", "Vitrum", "Glaes", "Staklo", "Cam" 380			
10.3	"Vitreous", "Glassy" and "Glasartig", "Vitro-crystalline" 382			
10.4	Glasses in Byzantium, in Western Europe, in Venice,			
	in the Balkans and Several Other Issues 384			
10.5	Concluding Remarks 385			

References 387 Index 407