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1
Superconductivity: Basics and Formulation

1.1
Introduction

The Bardeen–Cooper–Schrieffer (BCS) theory captures the essential physics that
gives rise to the condensation of the Cooper pairs into a coherent superconduct-
ing state. It specifically deals with a homogeneous and clean system in three di-
mensions and is essentially a self-consistent, mean field treatment. Following its
success, subsequent theories are based on a mean field treatment on the BCS or
related models. In order to account for inhomogeneous systems, such as those oc-
curring in multilayer systems of superconductor- insulators, or normal metals, de
Gennes, and independently Bogoliubov, derived a system of coupled equations be-
tween electrons and holes that yield the solutions for the fermionic quasiparticles
above the superconducting condensate, which are separated from the condensate
by the superconducting energy gap, Δ. Such a formalism is useful for computing
the properties of ultrathin SC films and clean SC nanowires, as will be discussed
in Chapter 2.

Prior to the BCS microscopic theory, Ginzburg and Landau sought to generalize
the Landau theory of second order phase transitions to the superconductivity prob-
lem. The result is the celebrated Ginzburg–Landau (GL) theory of superconductiv-
ity. The free energy is written in terms of the superconducting order parameter,
which in this case is a complex quantity. This theory is expected to be valid near Tc,
and was derived from a microscopic BCS model by Gorkov.

Gorkov invented a powerful methodology by deducing the equations of motion
for the Green’s functions. An anomalous Green’s function, F, accounting for pair-
correlations was introduced in addition to the normal electron Green’s function.
The two Green’s functions form a closed set of equations, the solutions of which
yield all the results of the BCS theory, and moreover, can be readily extended to
incorporate dirty systems with impurities, as well as deal with nonlinearities, dy-
namics, and so on. Thus, type-II superconductors can readily be described. From
the perspective of this text, the central importance of the Gorkov equations is the
ultimate deduction of the Usadel equation for related Green’s functions (to the
Gorkov GF’s), in the limit of dirty systems. The derivation of the Usadel diffusion
equation was based on the works of Eilenberger and of Larkin and Ovchinnikov,
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4 1 Superconductivity: Basics and Formulation

who independently applied the quasiclassical approximation to the Gorkov equa-
tions, and identified an energy-integrated version of the Gorkov Green’s functions.
These approaches led to a simplification of the Gorkov equations into Boltzmann
transport-like equations for these modified Green’s functions.

The Usadel diffusion equation is much more tractable and amenable to nu-
merical implementations, enabling realistic experimental geometries and situa-
tions to be analyzed. In particular, issues of quasiparticle injection at the normal-
superconductor interface, nonequilibrium quasiparticle distribution, and so on, are
readily computed. These methodologies based on the Usadel equation are natu-
rally suited to analyzing systems with 1D SC nanowires. In fact, Dr. Pauli Virta-
nen provides downloadable CCC programs for such computations on his website:
http://ltl.tkk.fi/~theory/usadel1/!

Beyond these standard methodologies, a powerful technique for analyzing com-
plex superconducting phenomena has been developed over the past 20 years, which
is particularly well-suited for understanding quantum phase transitions, such as
those in dissipative Josephson junction arrays of 2D and 1D varieties, dissipative
single Josephson junctions, vortex states and associated transitions, as well as tran-
sitions in the 1D superconducting nanowire system. This technique is based on
the path integral formulation. Thus, introducing such a formulation is important
in bridging the gap to enable the study of quantum-tunneling processes, such as
the macroscopic quantum tunneling of the phase slip, which is central to the un-
derstanding of the unique behaviors in 1D superconducting nanowires.

1.2
BCS Theory

Conventional superconductivity has, as its key components, the binding of the
Cooper pairs, and the Bose condensation of such Cooper pairs. The binding arises
from an attractive interaction between electrons mediated by phonons or other ex-
citations, for example, plasmons. The essential behaviors and outstanding charac-
teristics are captured by a self-consistent mean field approximation. The celebrated
BCS theory, proposed by Bardeen, Cooper, and Schrieffer in 1957 [1], provides both
a microscopic model, which provides the underpinning of our current understand-
ing of conventional superconductivity and a basic formalism, which is most con-
veniently cast in terms of the second-quantized formalism, that is, in terms of the
creation and destruction operators of the single particle electronic states.

The Cooper instability [2] indicates that the Fermi sea is unstable to the formation
of bound-pairs (Cooper pairs) of electrons, in the presence of an effective, attractive
interaction. In the original formulation, and in most conventional superconductors
to date, the attractive interaction is a time-retarded interaction mediated by lattice
vibration phonons. A passing electron, whose velocity, given by the Fermi velocity,
is much larger than the phonon propagation speed, polarizes the local ions: before
the lattice can relax, a second electron arrives and feels the attraction from the still-
polarized positive ions. This attraction produces a pairing of electrons which gives
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1.2 BCS Theory 5

rise to an entity which is bosonic in character. The two electrons thus form a Cooper
pair whose size-scale is denoted by the superconducting coherence length � .

The Bose condensation of such Cooper pairs into a macroscopic, coherent quan-
tum ground state is the source of the unusual physical properties associated with
superconductivity. In a weak-coupling superconductor, where the electron–phonon
coupling is much smaller than the Fermi energy, the size of the Cooper pair, or � ,
is typically much larger than the Fermi wavelength λF. In a homogeneous system,
the attraction is maximal when the relative total momentum of the two electrons
is zero, that is, when the center of mass is stationary. This gives the requirement
of pairing between Ck and �k states. At the same time, the s-wave channel has
the largest attractive potential, leading to an s-wave superconductor, for which the
energy gap created by the condensation is isotropic in k-space. As the spatial wave-
function is symmetric, in order to satisfy Pauli’s exclusion principle, the spin must
be in an antisymmetric, singlet state.

To simplify the calculations, the BCS model assumes that the attractive phonon-
mediated potential is a delta-function in real space (a contact interaction). This is
sensible since the interaction occurs on the length scale of the Fermi wavelength
λF, and the length scale of the phonons associated with the Debye frequency, of
order the lattice constant, whereas the Cooper pair has a much larger scale given by
the superconducting coherence length, � . The coherence length has its minimum
value at T D 0, with a value typically exceeding 10 nm.

The second quantization formulation is then equivalent to a formulation based
on the occupation of single-particle states – in this case of a homogeneous,
disorder-free system, the k-states. The Pauli exclusion in the occupation dictating
that a given state to be either singly occupied or unoccupied, with multi-occupation
forbidden, is encoded in the anticommutation relation of the creation and annihi-
lation operators. In the k-representation, the model Hamiltonian is given by

H D
X
k σ

�k c†
kσ ckσ �

X
k,k0Wj�k j,j�k 0 j�„ωD

Vc†
k"c†

�k#c�k0#ck0" . (1.1)

Here, c†
kσ is the creation operator for an electron in momentum-state k and spin σ.

�k D „2 k2/(2m) � EF is the energy of the single-particle k-state measured from the
Fermi energy of the system, V > 0 for an attractive interaction, and the scattering
is between (k, �k) – and (k0, �k0)-states. The pairing in real space is an s-wave,
which is symmetric under exchange, while the spin is an antisymmetric singlet,
in order to satisfy Pauli exclusion. Because phonons mediate the interaction, the
scattering term is restricted to states within „ωD of the Fermi surface, where ωD

is the Debye frequency. This form of the phonon-mediated attractive interaction
between electrons is equivalent to a contact potential interaction in real space, that
is,

V(r i , r j ) D �VVδ(r i � r j ) D �gδ(r i � r j ) , (1.2)

between electrons at positions r i , r j , where V is the interacting strength, V is the
system volume, and g the volume-independent Gorkov coupling.
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6 1 Superconductivity: Basics and Formulation

To find the ground state energy of the system, a variational wavefunction in the
form is assumed

jΨBCSi D
Y

k

�
u k C vk c†

k"c†
�k#

�
j0i , (1.3)

where j0i is the vacuum, and u k and vk are the amplitude of electron-like Cooper
pairs and hole-like Cooper pairs, respectively, chosen to be real, and subjected to
the normalization condition u2

k C v2
k D 1. By varying the expectation value of the

ground state Eg energy and minimizing Eg D hΨBCSjH jΨBCSi with respect to vk ,
one finds the condition for

2�k u k vk D
X

k0Wj�(k ,k0 )j�„ωD

V
�
u2

k � v2
k

�
u k0 vk0 (1.4)

for the ground state energy

hΨBCSjH jΨBCSi D 2
X

k0
v2

k �k �
X

k,k0Wj�(k ,k0 )j�„ωD

V u k vk u k0 vk0 . (1.5)

Changing to the customary variables of Ek and Δk , where

u k D 1p
2

r
1 C �k

Ek
(1.6)

and

vk D 1p
2

r
1 � �k

Ek
(1.7)

with

Ek D
q

�2
k C Δ2

k , (1.8)

the minimization condition yields the self-consistency expression

Δk D 1
2

X
k0Wj�k0 j�„ωD

V Δk0q
�2

k0 C Δ2
k0

. (1.9)

This is the BCS gap equation for the superconducting gap of a quasi-particle of
momentum k. The restriction in k0 leads to a k-independent gap

Δk D Δ , j�k j < „ωD , (1.10)

and

Δk D 0 , otherwise . (1.11)
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1.2 BCS Theory 7

Converting to an integral using the normal electron density of states, and approxi-
mating the density of states with its value at the Fermi energy N(0) gives

1
N(0)g

D
„ωDZ
0

d�p
�2 C Δ2

. (1.12)

The solution yields the celebrated BCS expression for the energy gap Δ

Δ D 1.14„ωD e�1/N(0)g D 1.14„ωD e�1/[N(0)VV] , (1.13)

with g � V V the Gorkov coupling constant. The nonanalytic dependence on g
indicates that this result cannot be obtained by a perturbation calculation in the
small parameter V/EF!

At finite temperatures T > 0, the gap equation is modified by the Fermi–Dirac
occupation of the fermionic excitations across the gap (� D 1/(kB T ))

1
N(0)g

D
„ωDZ
0

d�p
�2 C Δ2

"
1 � 2

1

1 C exp(�
p

�2 C Δ2)

#
. (1.14)

At Tc, the gap vanishes, giving the condition

1
N(0)g

D
„ωDZ
0

d�

�
tanh

�

2kB T
(1.15)

and the relation

Δ D 1.76kB Tc . (1.16)

The BCS gap, Δ(T ), occupies a central role in the phenomenon of conventional
superconductivity. From the existence of the gap, many important properties can
be derived, such as the quasiparticle excitation spectrum

Ek D
q

�2
k C Δ2

k (1.17)

and the density of states

Dq p (Ek) D D(EF)
Ekq

E 2
k � Δ2

k

D N(0)
Ekq

E 2
k � Δ2

k

I D(EF) � N(0) , (1.18)

the London equations [3] accounting for the Meissner effect of flux expulsion, flux
quantization, specific heat, critical current, and so on. Our purpose here is to intro-
duce the essential aspect of BCS superconductivity, and to wet the appetite of those
readers unfamiliar with this subject matter. We refer to the excellent standard text-
books, for example, de Gennes [4], Tinkham [5], Ashcroft and Mermin [6], Fetter
and Walecka [7], and so on, for a comprehensive treatment.
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8 1 Superconductivity: Basics and Formulation

1.3
Bogoliubov–de Gennes Equations – Quasiparticle Excitations

The BCS theory in the previous section is for a 3D, homogeneous system without
disorder. An essential feature of the theory is the pairing between time-reversed
states. The role of time-reversed states was highlighted by Anderson’s well-known
theoretical analysis, demonstrating that nonmagnetic impurities do not suppress
the superconducting gap [8]. To go beyond a translational invariant system, and
account for boundaries, and for the possibility of tunnel junctions or SNS bridges,
the theories of Bogoliubov [9, 10] and de Gennes [11] are required.

In the method of Bogoliubov and de Gennes, a solution is sought for the
fermionic electron-like and hole-like quasiparticle excitations above the gap, which
separates the condensed Cooper pairs from these unbound, quasiparticles. The
theory was developed in part to address situations where there are boundaries or
coupling to normal metals [11]. Because the presence of boundaries is properly
accounted for, this formalism lends itself readily to deduce the behaviors of clean,
1D superconducting nanowires in which the boundaries are in the two lateral
directions, perpendicular to the length of the nanowire, as was done in the work of
Shanenko, Croitoru, Peeters, and collaborators [12–14] (please see Chapter 2).

The fermionic electron- and hole-like quasiparticles are each linear combinations
of the electron and hole wavefunctions in the normal state. However, because of
the spatial dependences introduced by the boundaries, the linear combinations are
in general not as simple as in the homogeneous case. The point contact attractive
interaction between electrons may be spatially dependent: �V(r)Vδ(r) � �g(r)δ(r)
(see (1.2)).

The starting point is the equation of motion for the field operator ψ†
σ(r , t), which

creates an electron of spin σ at position r . In the special case of a homogeneous,
clean system, it is related to the creation operator c†

k σ for the k σ state by the
(inverse-)Fourier transform

ψ†(r, t) D 1p
2π

X
k

e i k�r c†
k (t) . (1.19)

The usual commutation with the BCS Hamiltonian in real space gives the equation
of motion:

�i„@ψ†
σ(r, t)
@t

D
�

p2

2m
C Uo(r)

�
ψ†

σ(r, t)

� g(r)
X

σ0
ψ†

σ(r , t)ψ†
σ0 (r , t)ψσ0 (r, t) I g(r) D V(r)V .

(1.20)

Here, the one-electron potential Uo(r) includes the boundary and static impurity
potentials. Using a Hartree–Fock mean field approximation, the term cubic in the
field operators is replaced in the anomalous channel byD

ψ†
σ(r , t)ψ†

σ0 (r, t)
E

ψσ0 (r , t) , (1.21)
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1.3 Bogoliubov–de Gennes Equations – Quasiparticle Excitations 9

and, in the normal channel byD
ψ†

σ0 (r, t)ψσ(r, t)
E

ψ†
σ(r, t) . (1.22)

Here, the averaging denotes a thermal average. For the anomalous channel, in
anticipation of a coupling similar to s-wave coupling in the homogeneous case,
only the dominant terms, which come from the down- and up-spin correlators (and
up- and down-), are kept, that is,

g(r)
D
ψ†

#ψ†
"
E

D V(r)V
D
ψ†

#ψ†
"
E

D Δ†(r) , (1.23)

which defines the partial potential Δ†(r). For the normal channel, the self-
consistent potential contributes a term

Usc(r) D �g(r)
D
ψ†

σ0 ψσ0
E

(1.24)

to the single-particle potential U(r) D Uo(r) C Usc(r), where Uo represents the con-
tributions from static background ions, impurities, and boundaries. New fermionic
operators γ †

nτ, which carry the usual anticommutation relationships, are intro-
duced, namely,

ψ†
"(r , t) D

X
n

h
u†

n(r)e i En t/„γ †
n" C vn(r)e�i En t/„γn#

i
,

ψ†
#(r , t) D

X
n

h
u†

n(r)e i En t/„γ †
n# � vn(r)e�i En t/„γn"

i
, (1.25)

where the energies En are positive. The eigenfunctions u n(r) and vn(r) satisfy the
following coupled equations, namely,

En u n(r) D
�

p2

2m
C U(r)

�
u n(r) C Δ(r)vn(r)

En vn(r) D �
�

p 2

2m
C U(r)

�
vn(r) C Δ(r)�u n(r) . (1.26)

The pair potential satisfies the self-consistency condition

Δ(r) D g(r)
X

n

v†
n (r)u n(r)

�
1 � 2

1
1 C exp[En/(kBT )]

	
. (1.27)

In addition,

Usc(r) D �g(r)
X

n

�
ju n(r)j2 1

1 C exp[En/(kBT )]

Cjv†
n (r)j2

�
1 � 1

1 C exp[En/(kB T )]

�	
. (1.28)

In the presence of an external magnetic field, these equations are supplemented,
of course, by the London equations. As expected, in the homogeneous case in three
dimensions, they reproduce the BCS results.
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10 1 Superconductivity: Basics and Formulation

1.4
Ginzburg–Landau Theory

The Ginzburg–Landau (GL) [15] approach to the description of conventional super-
conductivity is based on the notion of an order parameter, and follows Landau’s
phenomenological theory of second order phase transitions. The free energy of the
superconducting state is envisioned to differ from the normal state by a contri-
bution from the condensate when the order parameter becomes nonzero below a
transition temperature Tc. The thermodynamic state is given by the solution which
minimizes the free energy with respect to variations in the order parameter. In
the case of a charged superconductor, which couples to the electromagnetic scalar
and vector field, minimization with respect to the potentials leads to the London
equations. The GL equations therefore represent a mean field treatment and are
valid below, but near Tc. Very close to Tc, additional fluctuations may arise. Gorkov
showed that the GL equations (see below) can be derived from a microscopic theory
starting from a BCS model Hamiltonian [16].

For a superconductor, the order parameter Ψ is a complex quantity, having a
magnitude, jΨ j, and a phase, '. The physical interpretation of this order param-
eter is that its modulus squared 2jΨ j2 yields the density fraction of superfluid
component. Thus, Ψ may be thought of as the "wavefunction" of the Cooper pairs;
these pairs are coherent below Tc and are described by a single “wavefunction.”
The GL theory was used by Little [17], and Langer and Ambegaokar to analyze the
phase-slip process, to account for the generation of a finite voltage below Tc in thin
superconducting whiskers, at current levels below the expected critical current [18].
Thus, in some sense, the GL approach has been essential in providing a physical
picture of a phase-slip defect. A time-dependent version was used by McCumber
and Halperin to more accurately estimate the prefactor in the rate for the thermal
generation of phase slips for an activated process just below Tc [19]. In this ap-
proach, relaxation to equilibrium from an external perturbation is characterized by
a relaxation time, and modeled by the addition of a relaxation term which is propor-
tional to the variation of the free energy density with respect to the order parameter.

The phenomenological GL free energy, in cgs units, has the following form:

F D Fn C
Z

d3x
�

αjΨ j2 C �
2

jΨ j4 C 1
2M

j

„

i
r C 2e

c
A
�

Ψ j2 C jBj2
8π

�
.

(1.29)

Here, M refers to the mass of the Cooper pair, and its charge is �2e. The inclusion
of the gradient term with the covariant derivative („/ ir C 2e/cA) accounts for the
kinetic energy term when the superfluid is in motion, such as when a current is
flowing.

The coefficients are dependent on temperature. Near Tc,

α D a(T � Tc) C O((T � Tc)2) , (1.30)

� D b C O(T � Tc) , (1.31)
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1.4 Ginzburg–Landau Theory 11

where a and b are positive constants, and

M D Mo C O(T � Tc) . (1.32)

Note that α changes sign and is negative below Tc. This leads to a minimum energy
state which has a nonzero value for the order parameter.

Minimization with respect to the order parameter Ψ � yields the GL equations

δF
δΨ � D α(T )Ψ C �(T )jΨ j2Ψ � „2

2M



r C 2 i e

„c
A
�2

Ψ D 0 . (1.33)

Near Tc, the solution for a uniform state is given by

jΨ j2 D a(Tc � T )
b

. (1.34)

Thus, the superfluid density, ns, goes as

ns D 2jΨ j2 /



1 � T
Tc

�
. (1.35)

Variation with respect to the vector potential gives

r � B D 4π
c

J , (1.36)

with

J D �2e
2M

�
Ψ �


„
i
r C 2e

c
A
�

Ψ � Ψ

„

i
r � 2e

c
A
�

Ψ �
�

D � 2e„
M

jΨ j2



rφ C 2e
„c

A
�

. (1.37)

These are the phenomenological London equations, which were put forth by Lon-
don [3] to account for the complete expulsion of magnetic flux from the interior of
a bulk SC sample, beyond the London penetration depth λ.

In the Ginzburg–Landau theory, the coherence length � characterizing the size
of the Cooper pair is given by

� (T ) D
s

„2

2M jα(T )j , � (0) D
s

„2

2M jα(T D 0)j D
s

„2

2M aTc
, (1.38)

while the penetration depth

λ(T ) D
s

M c2

16πe2jΨ j2 D
s

M c2�
16πe2jα(T )j , λ(0) D

s
M c2b

16πe2 aTc
I

λ(T ) D
s

M
4μ o e2jΨ j2 [SI units] . (1.39)
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12 1 Superconductivity: Basics and Formulation

1.4.1
Time-Dependent Ginzburg–Landau Theory

In equilibrium, the minimization of the free energy yields the lowest energy state,
for which the free energy does not change, to first order, with any variation of
the order parameter or the fields. If, however, the system is not in an equilibrium
state, the system should relax toward the equilibrium state. To account for the time-
dependence of this relaxation process, the time-dependent Ginzburg–Landau equa-
tion is often used to describe the temporal behavior. The relaxation rate is assumed
proportional to the variation of the free energy density with the order parameter
ψ�. The TDGL equation is written as



i„ @

@t
� 2μ

�
Ψ D � i

τGL

„
jα(T )j

@ f
@Ψ �

D � i
τGL

„
jα(T )j

"
α(T ) C �(T )jΨ j2 � „2

2M



r C 2 i e

„c
A
�2
#

Ψ .

(1.40)

Here, τGL is the Ginzburg–Landau relaxation time τGL D (π/8)„/(Tc � T ), μ the
chemical potential, and f is the free energy density. The last expression, of course,
equals zero in equilibrium, but is nonzero when displaced from equilibrium.

This form of the TDGL is somewhat controversial and is believed to be accu-
rate when close to Tc [20, 21]. It was used by McCumber and Halperin to estimate
the attempt frequency to surmount the free energy barrier due to a phase slip in
the vicinity of Tc. Review papers on applying the TDGL approach to the phase-slip
phenomena in narrow superconducting devices are readily available in the litera-
ture [22, 23]. In addition, the generalized TDGL approach of Kramer and cowork-
ers [24, 25] has been widely used to describe the property of both 1D [26, 27] and
2D [28, 29] superconducting systems, for example.

1.5
Gorkov Green’s Functions, Eilenberger–Larkin–Ovchinnikov Equations,
and the Usadel Equation

Gorkov developed a powerful method for understanding superconductivity by
introducing a set of coupled equations for the dynamics (time evolution) of the
Green’s functions [30]. The equations couple the normal Green’s functions, G, and
the anomalous Green’s, F, functions relevant to Cooper pairing. The equations of
motion follow from the time evolution of the fermion field operators (see (1.20)),
in which the interaction terms are again treated in a mean field manner. From
such equations, essentially all interesting physical quantities can be obtained.
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However, these coupled equations are difficult to solve. Starting from these
equations, Eilenberger [31], and separately Larkin and Ovchinnikov [32], developed
transport-like equations for a set of Green’s functions closely related to Gorkov’s
Green’s functions; these Green’s functions are related to Gorkov’s via an integra-
tion over the energy variable. By exploiting the fact that most quantities of interest
are derivable from such Green’s functions integrated over energy, and exploiting
the quasiclassical approximation (which amounts to the neglect of the second order
spatial derivatives relative to terms involving kF times the first order derivatives),
after averaging over the position of impurities, the number of Green’s functions
was reduced from four to two, and a transport-like equation for these Green’s
functions integrated over energy emerged.

Going one step further, Usadel noted that in the dirty limit, the Eilenberger–
Larkin–Ovchinnikov Green’s functions are nearly isotropic in space [33]. By exploit-
ing this condition, the Eilenberger equations are further simplified to the transport-
like Usadel equations describing diffusive motion of the Cooper pairs and the nor-
mal electrons. These equations now form the corner stone of many analyses of the
dynamics of superconducting nanowires and SNS (superconductor–normal metal–
superconductor) bridges. The purpose of this section is to provide a brief summary
and some intuitive understanding of the transport-like Usadel equations, starting
from the Gorkov formulation. These equations will be essential to understanding
1D nanowires, when either parts of the nanowires are driven into the normal state
in a nonequilibrium situation, or else are connected to normal leads at one or mul-
tiple points along the nanowire.

The BCS Hamiltonian, which contains a contact interaction for the attraction
between electrons, is written in the form

H D
Z 0
B@X

σ

Oψ†
σ

2
64
�

„
i r C eA

c

�2

2m
C u(r)

3
75 Oψσ � g

2

X
σ¤σ0

Oψ†
σ Oψ†

σ0 Oψσ0 Oψσ

1
CA d3r ,

(1.41)

where �e is the charge of the electron, σ denotes the spin (up or down), u(r) is
a one-particle potential, which includes impurity and boundary effects, g D VV
is the Gorkov electron phonon coupling, and as before, the interaction between
electrons is nonzero only within a region of the Debye energy „ωD of the Fermi
surface. The Heisenberg field operators

ψσ(r , t) D e i H t/„ Oψσ(r)e�i H t/„ , (1.42)

and

ψ†
σ(r , t) D e i H t/„ Oψ†

σ(r)e�i H t/„ , (1.43)
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satisfy the following equations of motion:

�i„@ψσ(r, t)
@t

D �

2
64
�

„
i r C eA

c

�2

2m
C u(r) � μ

3
75ψσ(r , t)

C gψ†
σ0 (r , t)ψσ0 r , t)ψσ(r , t)

�i„@ψ†
σ(r, t)
@t

D C

2
64
�

„
i r � eA

c

�2

2m
C u(r) � μ

3
75ψ†

σ(r , t)

� gψ†
σ(r, t)ψ†

σ0 (r, t)ψσ0 (r , t) , (1.44)

where σ0 ¤ σ and the terms �μ have been added to measure the energy relative to
the chemical potential μ. Defining the normal Green’s function, G, and anomalous
Green’s function, F, which measures pair correlations

G1 � G""(r, tI r0, t0) D �i
D
T(ψ"(r , t)ψ†

"(r 0, t0)
E

,

G2 � G†
##(r, tI r0, t0) D �i

D
T(ψ†

#(r , t)ψ#(r 0, t0)
E

,

F1 � F"#(r, tI r0, t0) D �i
˝
T(ψ"(r , t)ψ#(r 0, t0)

˛
,

F2 � F†
##(r, tI r0, t0) D �i

D
T(ψ†

#(r , t)ψ†
"(r 0, t0)

E
. (1.45)

Here, the chemical potential μ is given by the relationship 2μ D 2(@E/@N ) D
ENC2 � EN . Equation (1.45) represents the thermodynamic Green’s functions,
where the brackets around an operator O denote hOi � Tr(e��H O).

For these Green’s functions, their dynamical equations of motion form a closed
set of coupled equations. The coupled equations are derived from the equations
of motion for ψ and ψ†, making use of the same mean field approximation em-
ployed in the BCS solution as well as the BdG formulations to account for pair
correlations. Defining a Green’s function matrix OG ,

OG �



G1 F1

�F2 G2

�
, (1.46)

and going over to imaginary time with t ! �i τ, the dynamical equations of motion
for the Green’s functions in matrix notation are found to be [30–32]0

BB@
�
�„ @

@τ � ( „
i rC eA

c )2

2m � u(r) C μ
�

Δ(r)

�Δ�(r)
�
„ @

@τ � ( „
i r� eA

c )2

2m � u(r) C μ
�
1
CCA OG

D δ(r � r 0)δ(τ � τ0)O1 . (1.47)
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Here,

Δ�(r, τ) D �gF†
#"(r, τI r , τ) (1.48)

is the gap function.
The potential u(r) may include the random impurity potentials, as well as that

from an applied electric potential φ. From these equations, many properties, in-
cluding nonequilibrium properties, can be obtained. However, the equations are
difficult to solve in realistic situations of relevance to experiment, except for special
cases, such as thin films at weak perturbation of external drive.

Eilenberger, and independently Larkin and Ovchinnikov, applied a quasiclassical
approximation to the Fourier transformed Green’s functions, OG (kI r , τ, τ0), where
the transform is taken in the relative coordinates r 00 D r � r0 [31, 32, 34]. These
Green’s functions, in matrix notation, are given by

OG(kI R , τ, τ0) D
Z

OG (r, τI r 0, τ0)e�i k�r00
d3r 00

D
Z

OG



R C r 00

2
, τI R � r 00

2
, τ0
�

e�i k�r00
d3r 00 . (1.49)

Here, the choice of singling out the relative coordinate is predicated on the
weak dependence of the Green’s functions on the center-of-mass coordinate
(R � (r C r 0)/2), once averaged over impurity positions. (Note that Eilenberger
introduced extra gauge potential phase factors in his definition of the Green’s
functions, and thus these matrix equations are in a slightly different but equivalent
form [34].) Following an average over the impurity positions, one arrives at a set of
equations which are now first order in the covariant derivatives, rather than sec-
ond order. In the absence of paramagnetic impurities that flip spins, the Gorkov
equations become (from here on, we denote R by r)0

BBB@
�„ @

@τ � � (k) � v(kF) � „
i r

� e„
mc kF � A

Δ(r)

�Δ�(r)
„ @

@τ � � (k) � v (kF) � „
i r

C e„
mc kF � A

1
CCCA OG(kI r , τ, τ0)

�
Z

dτ1 OΣ (kFI r , τ, τ1) OG (kI r , τ1, τ0) D δ(τ � τ0)O1 ,

(1.50)

where

� (k) D „2k2

2m
� μ , (1.51)

and

OΣ (kFI r , τ, τ1) D 1
2

Z
d3q W(kF, q) OG(kI r , τ1, τ0)

� 1
4 i

Z
SF

d2 qF�(qF)W(kF, qF)
i
π

Z
d� 0 OG (qI r , τ1, τ0) . (1.52)
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16 1 Superconductivity: Basics and Formulation

The evaluation of the integral over � 0 requires care to remove an unphysical di-
vergence [31]. Here, W(k, q) is the probability of scattering from the k-state to the
q-state. The approximation follows with the assumption that W varies slowly in the
energy regions of relevance: � (k) and � 0(q) (with � 0(q) D „2q2/2m � μ). In the
Born approximation

W(kF, qF) � 2πN(0)niju(kF � qF)j2 , (1.53)

where ni is the impurity concentration, and u(k) is the Fourier transform of the
impurity potential u(r). The quasiclassical approximation amounts to neglecting
the terms of second order in the covariant derivatives in comparison to the first
order derivatives, that is, (r ˙ eA/ i„)2 	 kF � (r C eA/ i„), a consequence of
the fact that the length scales of relevance for superconductivity: λ, the penetration
depth, and � , the coherence length, on which Δ and A vary, far exceeds the Fermi
wavelength λF D 2π/ kF.

A key observation significantly simplifies the situation. As it turns out, physical
quantities of interest, such as the self-consistent gap equation

Δ(r)
g

D hψ#(r)ψ"(r)i , (1.54)

and the supercurrent density, and so on, can be written in terms of the energy
integrated Green’s functions

Og(kFI r, τ, τ0) D i
2π

Z
d� OG(kI r, τ1, τ0) . (1.55)

Here, the wave vector k is to be taken to indicate the direction on the Fermi surface,
or in essence kF, which points in the same direction as the vector k, and the energy
integration must be taken as the principal value for large energies � . The energy-
variable integrated Green’s functions satisfy the normalization condition

„�Z
0

Og(kFI r , τ, τ1) Og(kFI r , τ1, τ0)dτ1 D δ(τ � τ0)O1 , (1.56)

with � D 1/(kB T ). In the simplest case of time-independent perturbations, written
in terms of the individual components

g(kF, ωI r) D Og11 D Og22 ,

f (kF, ωI r) D i Og12 ,

f †(kF, ωI r) D i Og21 , (1.57)

where the normalization condition now reads

g(kF, ωI r) D �
1 � f (kF, ωI r) f †(kF, ωI r)

1/2
, (1.58)



�

� Fabio Altomare and Albert M. Chang: One-Dimensional Superconductivity in Nanowires —
Chap. altomare9952c01 — 2013/3/7 — page 17 — le-tex

�

�

�

�

�

�

1.5 Gorkov Green’s Functions, Eilenberger–Larkin–Ovchinnikov Equations, and the Usadel Equation 17

the resultant equations of motion of these Green’s functions that are integrated
over the energy variable are given by�

�2 i„ @

@τ
C v (kF) �



r C i

2e
„c

A
��

f (kF, ωI r)

D 2Δ(r)g(kF, ωI r) C
Z
SF

d2qF�(qF)W(kF, qF)

� �g(kF, ωI r) f (qF, ωI r) � f (kF, ωI r)g(qF, ωI r)


�
2 i„ @

@τ
� v (kF) �



r � i

2e
„c

A
��

f †(kF, ωI r)

D 2Δ�(r)g(kF, ωI r) C
Z
SF

d2qF�(qF)W �(kF, qF)

� �g(kF, ωI r) f †(qF, ωI r) � f †(kF, ωI r)g(qF, ωI r)


, (1.59)

where SF denotes the Fermi surface.
Defining the Fourier transform

Og(kF, ωI r) D 1
2

„/(kBT )Z
�„/(kB T )

Og(kFI r , τ, 0)e i ωτdτ , (1.60)

and the inverse transform

Og(kFI r, τ, 0) D i �
nD1X

nD�1
e�i ωn τ Og(kF, ωn I r) , � D 1

kBT
, (1.61)

the Eilenberger–Larkin–Ovchinnikov equations read�
2ω C v (kF) �



r C i

2e
„c

A
��

f (kF, ωI r)

D 2
Δ(r)

„ g(kF, ωI r) C
Z
SF

d2qF�(qF)W(kF, qF)

� �g(kF, ωI r) f (qF, ωI r) � f (kF, ωI r)g(qF, ωI r)


�
2ω � v (kF) �



r � i

2e
„c

A
��

f †(kF, ωI r)

D 2
Δ�(r)

„ g(kF, ωI r) C
Z
SF

d2qF�(qF)W �(kF, qF)

� �g(kF, ωI r) f †(qF, ωI r) � f †(kF, ωI r)g(qF, ωI r)


. (1.62)

These equations are reminiscent of Boltzmann transport equations, albeit for
quantities which are complex, and thus can account for quantum-mechanical
interference. The second term on the right-hand side has the appearance of a
collision integral. An additional equation for g(kF, ωI r) is redundant.
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18 1 Superconductivity: Basics and Formulation

These equations are supplemented by the self-consistent equations for the gap
Δ(r) and for the relation between the magnetic field and the supercurrent, which
now become

Δ(r)N(0) ln
T
Tc

C 2πN(0)kBT

�
1X

nD0

2
4Δ(r)

ωn
�
Z
SF

d2kF�(kF) f (qF, ωn I r)

3
5 D 0

Js(r) D 1
4π

r � i
�
B(r) � Be(r)


D i

2e
„c

2πN(0)kBT
1X

nD0

Z
SF

d2kF�(kF)v (kF)g(qF, ωn I r) , (1.63)

with Js the supercurrent density and Be the magnetic field generated by normal
electrons. Using (1.62) and (1.63), all the important physical quantities can be de-
rived. Written in terms of the f and f † only using the relationship g D (1�j f j2)1/2,
these equation are nonlinear, and can therefore go beyond the linear approxima-
tion used by de Gennes [11]. For instance, they readily reproduce the higher order
corrections cubic in jΔj calculated by Maki for dirty superconductors [35–37].

Although these equations are substantially more convenient than the Gorkov
equations, and are more amenable to numerical implementation for computing
the physical quantities under realistic experimental conditions, one further devel-
opment rendered this entire theoretical machinery far more tractable. Usadel, fol-
lowing the earlier work by Lüders [38–41], recognized that a crucial further simpli-
fication can be obtained in the case of a very dirty superconductor. Starting with
the Eilenberger–Larkin–Ovchinnikov equations in the form of (1.62), Usadel noted
that the large amount of scattering in a dirty system renders the Green’s functions
nearly isotropic in space, and they can thus be written as the sum of a dominant
isotropic part, plus a smaller part dependent on the direction on the Fermi sur-
face. Based on this idea, and keeping the leading terms, Usadel transformed the
equations into a diffusion equation valid in this dirty limit.

Separating to the dominant isotropic term and the Fermi velocity-dependent
term

f (kF, ωI r) D F(ωI r) C kF � F (ωI r)

g(kF, ωI r) D G(ωI r) C kF � G(ωI r) , (1.64)

the quantities for g are expressible in terms of those for f via the normalization
condition, which now, to leading order, reads

G(ωI r) D �
1 � jF(ωI r)j21/2

, (1.65)

yielding, in addition,

G (ωI r) D 1
2

F(ωI r)F�(ωI r) � F�(ωI r)F (ωI r)
G(ωI r)

. (1.66)
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1.6 Path Integral Formulation 19

Under the conditions

G � 2τtr ω , F � 2τtrΔ , (1.67)

and of course jF j � j OkF � F j, the resultant diffusion equation is given by

2ωF(ωI r) � D



r C 2 i e
„c

A
�

�
�

G(ωI r)



r C 2 i e
„c

A
�

F(ωI r) � F(ωI r)rG(ωI r)
�

D 2
Δ(r)

„ G(ωI r) (1.68)

with the diffusion constant D D (1/3)τtr v2
F , where vF is the Fermi velocity. The

transport time is given by the average of the scattering rate over the Fermi sur-
face SF

1
τtr

D
Z
SF

qF�(qF)W(kF, qF) , W(kF, qF) � 2πN(0)niju(kF � qF)j2 , (1.69)

where the approximation denotes the first Born approximation. Note that the fre-
quencies ω are to be taken as the Matsubara frequency and are positive: ω D ωn D
(2n C 1)πkBT/„ > 0.

1.6
Path Integral Formulation

The techniques described thus far are powerful and have been extremely success-
ful in describing most of the properties of conventional superconductors and the
phenomena associated with them as well. However, in order to formulate a fully
quantum theory that captures the physics of 1D superconducting nanowires in the
dirty limit, in which the mean free path lmfp 	 �0, where �0 is the clean limit co-
herence length, a path integral formulation has proven to be a convenient starting
point. This formulation enables to go beyond their description close to Tc, and is
also naturally suited to describe issues pertaining to quantum phase transitions,
such as those occurring in Josephson junctions coupled to a dissipative environ-
ment [42–44], such as those occurring in arrays of Josephson junctions in 2D and
1D, or in vortex matter [45].

In the path integral formulation, the action plays a central role. Theoretical de-
velopments in the 1970s [42] enabled one to make a connection from the computa-
tion of quantum evolution in time, to the partition function, with the introduction
of the imaginary time. The nonequilibrium case, such as under current or voltage
bias, is also readily incorporated through the generalization of the Keldysh for-
mulation, with the ordered imaginary-time integrals in the expansion of the path
integral [42, 46–49]. More to the point, the computation of the low temperature
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20 1 Superconductivity: Basics and Formulation

behaviors of a 1D superconducting nanowire has required the use of path integral
techniques based on instantons [50–52]. Instantons are saddle point solutions of
the action and describe the quantum tunneling processes. Thus, such calculations
yield the quantum tunneling rates for the phase slip.

Here, we summarize a formulation of conventional superconductors in a path
integral formulation put forth by Otterlo, Golubev, Zaikin, and Blatter [49], which
has developed out of earlier works [42, 46–48]. Such an approach not only re-
produces the static results of the BCS theory, but enables the treatment of dy-
namical responses, including relaxation, collective modes, particularly the Carlson-
Goldman [53] and Mooij–Schön modes [54], the latter being of direct relevance to
1D superconducting nanowires. Topological defects, such as the motion and the
tunneling of vortices, as well as the quantum tunneling of phase slips in one di-
mension, are also included within this formalism. The Mooij–Schön mode will
emerge to play a central role in the dynamics of phase slips and will be discussed
in Chapter 3. The standard starting point to compute the partition function in the
BCS model is written in terms of the path integral in the imaginary-time formula-
tion [42, 49]

Z D
Z

DψDψ�DVD3 A exp



� S
„
�

S
„ D 1

„
Z

dτd3x
�

ψ†
"

�
„@τ C i eV C �



r C i e

„c
A
��

ψ"

C ψ†
#

�
„@τ C i eV C �



r C i e

„c
A
��

ψ# � gψ†
"ψ†

#ψ#ψ"

� i eniV C E2 C B2

8π

)
, (1.70)

where � (r) � �r2/2m � μ. The action includes the action of the electromagnetic
field, and the coupling between the electrons and electromagnetic field is contained
in the covariant derivative: @/@r D r C (i e/„c)A. The background ion charge den-
sity is ni .

In order to perform the integral over the fermion Grassman fields ψσ and ψ†
σ ,

it is useful to decouple quartic attractive interaction term into terms bilinear in
the ψs by the introduction of the superconducting gap Δ D jΔje i' via the Hub-
bard–Stratonovich transformation, that is,

exp



g
„
Z

dτd3x ψ†
"ψ†

#ψ#ψ"
�

D
�Z

D2Δ exp



� 1
„g

Z
dτd3x jΔj2

���1

�
Z

D2 Δ exp
�
� 1

„
Z

dτd3x
�

g�1jΔj2 C Δψ†
"ψ†

# C h.c.
��

. (1.71)

After integrating out the fermion degrees of freedom and discarding the normal-
ization factor, which is not important for the dynamics we seek, the partition func-
tion becomes, with certain restrictions on the choice of gauge, that is, the Coulomb



�

� Fabio Altomare and Albert M. Chang: One-Dimensional Superconductivity in Nanowires —
Chap. altomare9952c01 — 2013/3/7 — page 21 — le-tex

�

�

�

�

�

�

1.6 Path Integral Formulation 21

gauge with r � A D 0,

Z D
Z

D2ΔDVD3 A exp
�
� (S0 C S1)

„
�

, (1.72)

where

S0(V, A, Δ)
„ D

Z
dτd3x

 
E2 C B2

8π
� i eniV C jΔj2

g

!
, (1.73)

and
S1

„ D �Tr ln OG�1 OGo [0] I

OGo [0] � OGo [Δ D 0] D
0
@
h

„@
@τ C � (r)

i�1
0

0
h

„@
@τ � � (r)

i�1

1
A . (1.74)

OG denotes the Green’s function matrix in Nambu space:

OG D



G F
NF NG

�
, (1.75)

while the inverse matrix

OG�1 D
 „@

@τ C i eV C � (r C i e
„c A) Δ

Δ� „@
@τ � i eV � � (r � i e

„c A)

!

D

0
BBB@

„@
@τ C � (r) C i eΦ C mv2

s
2

� i„
2 fr, v sg

Δ

Δ� „@
@τ � � (r) � i eΦ � mv2

s
2

� i„
2 fr, vsg

1
CCCA .

(1.76)

The trace Tr is taken over the matrix in Nambu space and also over internal co-
ordinates of frequency and momenta, and the curly brackets f. . . , . . . g denote an
anticommutator. In addition, the gauge invariant linear combinations of the elec-
tromagnetic fields and the order parameter phase ' are introduced:

Φ D V C „
2e

P' , v s D 1
2m



„r' C 2e

c
A
�

. (1.77)

The action may be expanded in terms of these gauge invariant quantities about a
saddle point delineated below.

The Green’s functions in space and real time are defined as

G(r1, t1I r2, t2) � �ihjT fψ"(r1, t1)ψ†
"(r2, t2)gi

NG(r1, t1I r2, t2) � �ihjT fψ†
#(r1, t1)ψ#(r2, t2)gi

F(r1, t1I r2, t2) � �ihjT fψ"(r1, t1)ψ#(r2, t2)gi
NF (r1, t1I r2, t2) � �ihjT fψ†

#(r1, t1)ψ†
"(r2, t2)gi , (1.78)
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where ψ†
σ , and ψσ are the electron creation and annihilation field operators for spin

σ D f", #g, respectively. The imaginary-time operators are obtained by replacing t
by �i τ and t0 by �i τ0.

The variation of (1.72) with respect to V, A, and Δ, respectively, yields the equa-
tions describing the Thomas–Fermi screening, London screening, and the BCS-
gap equations.

At this point, to further progress, the term with Tr ln OG�1 is expanded up to sec-
ond order, retaining Gaussian fluctuation terms around the saddle point solution:
Δ D Δ0, Φ D 0, and A D 0, and V D VΔ a constant which will absorbed into
the chemical potential μ. The gap is written as a uniform term plus a fluctuating
term: Δ D Δ0 C Δ1, with Δ1 being the fluctuation, and Δ0 is taken to be real.
In addition, the inverse of the Green function OG in (1.74)–(1.76) is split into an
unperturbed part OG�1

0 and OG�1
1 with

OG0 D



G0 F0
NF0 NG0

�
I NF0 D F0 D Δ0 (1.79)

for the saddle point solution, such that

OG�1
0 D

 „@
@τ C � (r) Δ0

Δ0
„@
@τ � � (r)

!
, (1.80)

and

OG�1
1 D0
@
h

m
2

� e
mc

�2 A2 C i eV
i

� i
2

„e
mc fr, Ag Δ1

Δ�
1 �

h
m
2

� e
mc

�2 A2 C i eV
i

� i
2

„e
mc fr, Ag

1
A

D
 

Ci eΦ C mv2
s

2 � i„
2 fr, v sg Δ1

Δ�
1 �i eΦ � mv2

s
2 � i„

2 fr, v sg

!
. (1.81)

The trace of the natural log of the inverse Green’s function can thus be expanded
as

Tr ln OG�1 OG0[0] D Tr ln OG�1
0

OG0[0] � Tr
1X

nD1

(�1)n

n

� OG0 OG�1
1

�n
. (1.82)

Note that since the gap Δ0 in the unperturbed matrix G0 is chosen to be real,
we have NF0 D F0, F0(x1, x2) D F0(x2, x1), and G0(x1, x2) D �G0(x2, x1), where
xi � (r i , ti ).

From here on, various treatments diverge based on the assumption of Galilean
invariance [46–48], gauge invariance, and so on [49]. In the formulation due to Ot-
terlo et al., by using Ward identities [49, 55] due to gauge invariance and charge and
particles number conservation, they recast the effective action into four contribu-
tions:

Seff D Ssc[ΔL, Φ , vs] C Sn[E , B ] C Sp–h[ΔL, Φ , v s] C Sem[E , B] , (1.83)
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where Ssc denotes the superconducting contribution, Sn the normal metallic con-
tribution, Sp–h the contribution from particle–hole symmetry breaking terms, and
Sem the contribution of the free electromagnetic field. In addition, the gap fluctua-
tion Δ1 with Δ1 D ΔL C i ΔT, where ΔL and ΔT are both real, is written in terms
of a longitudinal component ΔL, and a phase-like transverse component ΔT [49].
Please see (1.94) below regarding longitudinal and transverse projections. In this
expansion, all terms linear in the expansion parameters vanish. Only quadratic or
bilinear terms survive. Higher order terms are discarded.

To express these action terms explicitly, we make use of the gauge invariant quan-
tities

v s D 1
2m

�
„r' C 2e

c
A
�

� 1
2m

�
„r ΔT

Δ0
C 2e

c
A
�

, (1.84)

Φ D V C „
2e

P' � V C „
2e

PΔT

Δ0
, (1.85)

where the approximation holds for small fluctuations, that is, jΔ1j 	 Δ0. The
second order expansion leads to to terms of the form tr[G O G 0O ]. Here, G and
G 0 symbolize any of the Green functions G, NG , F, or NF , and O is an operator. To
evaluate the traces over the internal coordinates, tr[G O G 0O 0], we define

q � (q, ωμ) . (1.86)

fBgG G 0 (q) D kB T
„

X
ωμ

Z
d3 p

(2π)3 B G0(p C q)G 0
0(p ) , (1.87)

where B denotes a function of frequency-momentum p and q. For example,

g0 D f1gG G (q) , g1 D
�

Q
q2

	
G G

(q) ,

g2 D
�

Q2

q4

	
G G

(q) , g3 D
�

(p � q)2

2q4

	
G G

(q) , (1.88)

with Q D q � (p C q/2), and likewise for f i , hi , and ki denoting f. . .gF F , f. . .gG G† ,
f. . .gG F , respectively. Specializing to the various forms of the operators encoun-
tered, we have

tr[G O G 0O 0] D kBT
„

X
ωμ

Z
d3q

(2π)3 O(q)O 0(�q)f1gG G 0 ,

tr[G O G 0fra , O0
ag] D 2 i

kB T
„

X
ωμ

Z
d3 q

(2π)3 O(q)O0
a (�q)

��
p C q

2

�
a

	
G G 0

,

tr[Gfra , O agG 0frb , O0
bg] D

� 4
kB T

„
X
ωμ

Z
d3q

(2π)3
O a(q)O0

b(�q)
��

p C q
2

�
a

�
p C q

2

�
b

	
G G 0

. (1.89)
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The four contributions to the effective action can now be written as

Ssc[ΔL, Φ , v s]
„ D �Tr ln

�
G�1

0 [Δ0] OG0[0]
�

C 1
kB T

V
Δ2

0

g

C kBT
2

X
ωμ

Z
d3q

(2π)3

��
2
g

C h0(q) C h0(�q) C 2 f0(q)
�

ΔL(q)ΔL(�q)

C



8e2Δ0k0(q)
i ωμ

�
Φ (q)Φ (�q) � 8mΔ0 k1(q)vs(q)v s(�q)

	
, (1.90)

Sn[E , B ]
„ D C kBT

2

X
ωμ

Z
d3q

(2π)3
C



2e2 g1(q)
mi ωmu

�
E (q)E (�q)

�



2e2

m2c2

�
[g2(q) C f2(q) � g3(q) � f3(q)]B(q)B(�q) (1.91)

Sp–h[ΔL, Φ , vs]
„ D kB T

X
ωμ

Z
d3 q

(2π)3



1
2

[h0(q) � h0(�a)]ΔL(q)ΔL(�q)

C 2 i e[k0(q) C k0(�q)]Φ (q)ΔL(�q)

C2[kq (q) � kq(�q)]q � v s(q)ΔL(�q)
�

, (1.92)

and

Sem[E , B]
„ D kB T

X
ωμ

Z
d3q

(2π)3



E (q)E (�q) C B(q)B(�q)

8π

�
. (1.93)

Here, V is the volume of the system. The subscripts “L” and “T” denote longitudi-
nal and traverse projected components, respectively, based on the project operator
associated with a momentum q:

P α�
L � qα q�

q2
, P α�

T D δα� � P α�
L , (1.94)

with

P2
L D PL , P2

T D PT , PL PT D PTPL D 0 , PL C PT D 1 . (1.95)

For example, electric field E can be projected into

EL D PLE D (E � q)
q
q2 , ET D PTE D E � EL . (1.96)

In addition, the electric and magnetic fields are expressible in terms of v s and Φ
as

jE (q)j2 D q2jΦ (q)j2 C m2ω2

e2
jv s(q)j2

� mω
e

�
Φ (q)q � v s(�q) C Φ (�q)q � v s(q)


, (1.97)
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and

jB(q)j2 D m2c2

e2 q2 P α�
T v α

s (q)v �
s (q) . (1.98)

Note that the various contributions to the effective action are expressed in terms
of the equilibrium, nonperturbed normal and anomalous Green functions G0, NG0,
F0, and NF0, for Δ D Δ0, V D VΔ D μ, and A D 0 (for the normal contribution,
Δ0 D 0). These standard Green functions are readily computed. See the appendices
in references [49, 55], for example.

In the above, by introducing the longitudinal and transverse components, for ex-
ample, ΔL and ΔT for the gap fluctuation Δ1 about the BCS equilibrium value Δ0,
the effective action is cast in a form advantageous for illustrating the gauge invari-
ant properties. For the 1D superconducting nanowire system, it is not necessary to
do so. By repeated use of the Ward identities associated with gauge-invariance and
particle number conservation, the second order expansion can be recast into the
following convenient form [50, 51, 55]:

Seff D Ssc[Δ, Φ , vs] C Sn[Δ, V, A] C Sem[E , B ] , (1.99)

where the particle–hole asymmetry contribution has been left out, as it is usually
small. The contribution Ssc is given by

Ssc[Δ, Φ , v s]
„ D �tr ln

�
G�1

0 [Δ]
�C 1

„

�Z
0

Z
dτd3x

Δ2

g
C (2e)2

2

� tr[F0Φ F0Φ ] � „2

2
tr[F0fr, vsgF0fr, v sg] , (1.100)

and the contribution Sn by

Sn[E , B ]
„ D 1

„

�Z
0

Z
dτd3x

m
2

u2ne[Δ]

� „2

4
tr[G0fr, ugG0fr, ug] C „2

4
tr[F0fr, ugF0fr, ug]

D 1
„

�Z
0

Z
dτd3x

m
2

u2ne[Δ]

C (2e)2

4
tr[G0V G0V ] � (2e)2

4
tr[F0V F0V ] , (1.101)

where ne is the electron density. The velocity u does not depend on the phase of
the order parameter ', and is defined as

u D �e
m

0
@ τZ

�1
dτ0rV(τ0) � 1

c
A

1
A . (1.102)
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The last line for Sn neglects the vector potential contribution, as the magnetic re-
sponse tends to be small in normal metals. The contribution Sem remains as be-
fore, and is, in real space representation,

Sem[E , B]
„ D

�Z
0

Z
dτd3x

 
E2 C B2

8π

!
. (1.103)

Going further, and expanding Δ about its BCS value Δ0, with Δ1(r , τ) D
Δ(r, τ) � Δ0, we arrive at the final form for the second order effective action,
that is,

S (2)
eff D SΔ C SJ C SL C SD C Sem . (1.104)

The various terms are

SΔ

„ D
�Z

0

dτ
Z

d3x
Δ2

0 C jΔ1j2
g

C tr
�
F0Δ�

1 F0Δ�
1 C G0Δ1G0 Δ�

1


, (1.105)

SJ

„ D (2e)2

2
tr[F0Φ F0Φ ] , (1.106)

SL

„ D �„2

2
tr[F0fr, vsgF0fr, v sg] , (1.107)

and

SD

„ D � (2e)2

4
tr[G0V G0V ] � (2e)2

4
tr[F0V F0V ] . (1.108)

The equilibrium BCS energy gap as a function of temperature Δ0(T ) is assumed
to obey the BCS gap equation (with g D λ)

1
N(0)g

D
ωDZ
0

d�n

tanh

q

�2
n C Δ2

0/(kBT )
�

q
�2

n C Δ2
0

. (1.109)

Physically, the term SΔ comes from fluctuations in the gap magnitude, SJ from
Josephson coupling via the gauge invariant potential Φ , SL pertains to the London
screening of the magnetic field penetrating the superconductor, and the Drude
contribution SD accounts for the Ohmic dissipation of the normal electrons.

Based on this action, and specializing into one dimension, Zaikin, Golubev, et
al. derived an effective action for 1D superconductors in terms of the Mooij–Schön
plasmon mode, which is linearly dispersing, plus a phase-slip core contribution.
The phase slips then arise as saddle point solutions (or instantons) of the effective
action. Please see Chapter 3.
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