Index

a

ab initio calculations 4
– based on plane wave pseudo-potential 234
– Hartree–Fock SCF method 40
– linear and nonlinear optical properties 61–79
– molecular orbital calculation method 4
– performed on LCB 266
– PWPP calculation 31, 34, 36, 72

absorption spectroscopy 274

accelerated crucible rotation technique (ACRT) 134

acceptance angle 143

ACP model. See anionic coordination polyhedra (ACP) model

ACRT. See accelerated crucible rotation technique (ACRT)

AFM. See atomic force microscopy (AFM)

alkaline earth metal elements energy 41

alkaline metal energy 41

angle-tuning LBO-based OPG/OPA system 152

angle tuning OPO systems 147

anionic coordination polyhedra (ACP) model 227, 228

anionic group model
– configurations 31–33
– energy-level electronic structure 61
– anionic group theory 15, 16–25, 28, 37, 38, 61, 71, 75, 79, 82, 85, 87, 101, 137, 153, 270, 279, 289

– degree of approximation 65
– of NLO effects in crystals 16
– for NLO susceptibility 17
– principle 6
– (IO₃)⁻, lone-pair orbital 59
– MO energy and percentage population 46
– [B₃O₆(OH)₄]⁻ 54
– (H₂PO₄)⁻ 56
– (IO₃)⁻ 58
– (NO₃)⁻ 59
– (SbF₅)²⁻ 58

anti π-conjugated orbital 60

approximate quantum chemical methods 16–25

atom-cutting analysis 75

atomic force microscopy (AFM) 171

b

BABF. See barium aluminum borate difluoride, BaAlBO₃F₂ (BABF)

β-BaB₂O₄ (BBO) 117–131, 310
– applications 127–131
– BBO linear optical properties 120–122
– BBO nonlinear optical properties 122–127
– BBO single-crystal growth 117–120
– electronic structure 44–47

BaB₂O₄ compound
– melting point 118
– phases 117

BaB₂O₄–NaF pseudo-binary system 119
– phase equilibrium diagram 119

BaB₂O₄–Na₂O system, phase diagram 118
– band gaps 35, 100, 101

barium aluminum borate difluoride, BaAlBO₃F₂ (BABF) 233–245
– atomic coordinates 235
– conversion efficiency 245
– crystallographic data 235
– crystal structure 236
– redetermination 234–237
– effective nonlinear optical coefficient 245
– equivalent isotropic displacement parameters 235
– grown by MSSG technique 241
– homogeneity plot 238
-- from KBBF to SBBO family development 106–109

-- KB5 (KB₂O₆·4H₂O/K[B₂O₆(OH)₄]·2H₂O) crystal 36, 37

-- KBe₂BO₃F₂ (KBBF), electronic structure 49–52

-- KB₂O₆·4H₂O, electronic structure 52–55

-- KH₂PO₄ (KDP) crystals, calculations and analysis for 77–79

-- KH₂PO₄ (KDP), electronic structure 55–57

-- LiBO₂ (LBO), electronic structure 47–49

-- linear and nonlinear optical properties, ab initio calculations 61–79

-- model and approximation 39–44

-- molecular orbital calculation method 20–25

-- molybdate crystals 33, 34

-- NaNO₂ crystals 37–39

-- calculations and analysis for 74–76

-- electronic structure 57–60

-- Na₂SbF₅ crystals 34–36

-- calculations and analysis for 76, 77

-- electronic structure 57

-- NLO borate crystals development 87–109

-- calculations and analysis for 74–79

-- devices, material requirement for 79–81

-- with molecular engineering approach 101–109

-- NLO/LO properties, basic structural units 87–93

-- perovskite and tungsten-bronze type of crystals 25–29

-- phosphate crystals 32, 33

-- second-order susceptibilities 93–99

-- theoretical basis for development 15–109

-- theoretical evaluation 82–87

-- theoretical model 16–20

-- typical NLO crystals calculation

-- with anionic group theory, SHG coefficients for 25–39

-- UV side, anionic group and inorganic crystals absorption edge 39–61

-- nonlinear optical effects in borate series NLO crystals, discovery 15

-- Brewster-cut CLBO crystals 163

-- bulk KBBF crystal 182

-- conversion efficiency relationship with peak-power density 185

-- cutoff wavelength 187

-- hydrothermally grown 184

-- interference pattern 187

-- morphology 183, 184

-- phase-matching angles 190

-- phase-matching characteristics 188

-- refractive indices 189

-- right-angle prism 188, 189

-- space group 184

-- space structure 186

-- transmittance 187, 188

-- X-ray rocking curve 183

-- bulk laser-induced damage thresholds 168

-- bulk RBBF crystal 205

-- Cartesian components 63

-- Cartesian coordinates 34

-- Ce:LCB, spectral properties of 265

-- centimeter-sized crystals 227

-- cesium lithium borate CsLiB₆O₁₀ (CLBO) 161–178, 310

-- applications 171–178

-- basic structural properties 161

-- B parameters and d_eff comparison of 346

-- crystalline single phase 168

-- degradation crystallinity and solution 165

-- high-quality, advanced growth technology for 165–170

-- interferogram 166

-- ion beam etching for surface damage resistance enhancement 170, 171

-- laser damage durability 172

-- lattice constants 165

-- linear and nonlinear optical properties 161–164

-- phase-matching properties 175, 177

-- photograph 162

-- projection 162

-- sample 169

-- thermooptic dispersion formulas 163

-- UV light generation, properties for 164

-- cesium triborate (CsB₃O₅, CBO) 310

-- charge density 64, 74

-- contour 76

-- distribution 64, 76

-- charge transfer model

-- of conjugated organic molecules 3

-- CLBO. See cesium lithium borate CsLiB₆O₁₀ (CLBO)

-- CNDO method. See complete neglect of differential overlap (CNDO) method

-- CNDO-type approximation method 78

-- S-type approximation 38

-- coherence length, thickness 9

-- coherent anti-Stokes Raman scattering (CARS) microscopy 153

-- commercial laser systems 81
complete neglect of differential overlap
(CNDO) method 20, 22
– approximation 23, 24
computational methods 61–65
computer-assisted molecular design
system 15, 79–86
– for new NLO crystals 88
π-conjugated orbital system 38, 68, 94, 97
conjugated organic molecules
– charge transfer model 3
continuous wave (CW)
– harmonic generation 348–355
– laser system 81
conventional mechanical polishing
process 170
conversion coefficient 18
conversion efficiency 80, 126, 127, 130, 160,
175, 177, 183, 185, 197, 198, 200, 201, 202
conversion system 176, 273
cooling process 156
Coulomb correction potentials 44
critical phase-matched (CPM) LBO
configuration 147
crystal cracking 315
– in CLBO crystal 165
– due to growth rate variation 317, 318
– due to large supercooling 315, 317
crystal growth mechanism 154
crystallization system 224
crystallographic system 131, 135
CsBe₂(BO₃)F₂ (CBBF) crystal 218
– atomic coordinates 216
– crystallographic data 215
– DSC curve 219
– equivalent isotropic displacement
parameters 216
– interference pattern 215
– measured and calculated, refractive
indices 220
– phase-matching angles, for type I SHG
with 222
– polycrystalline samples 215
– powder XRD diffraction 217
– structure 216, 217
– transmittance in IR region 220
– transmittance in UV region 219
– type I SHG phase-matching angles vs.
fundamental wavelength 223
– X-ray Rietveld refinement 215
CsB₂O₄(CBO) crystal 153–161
– applications 159–161
– conversion efficiency 159, 160
– linear optical properties 156, 157
– Mohs hardness 159
– Nd-based lasers 159
– nonlinear optical properties 157–159
– SHG coefficients 154, 157
– single-crystal growth 154–156
– transparent single crystals 155
– unit cell 154
– UV and IR absorption edges 156
CW. See continuous wave (CW)
CW diode-pumped mode-rocked Nd:YVO₄
laser system 152
CW power density 146
Czochralski (CZ) method 120, 155
damage threshold 144, 158, 193
dangling bonds 52, 85, 100, 101, 103
deep ultraviolet generation (DUV)
– coherent light 103
– harmonic generation 212
– capability 194
– laser photoemission electron microscopy
(DUV-PEEM) 224
– light sources 173, 174
– wavelength region 161
density functional theory (DFT) 44, 61
– first-principles 65
density matrix 21
DFT. See density functional theory (DFT)
dielectric function 62, 64
– imaginary part 65
differential scanning calorimetry
(DSC) 217
differential thermal analysis (DTA) 237
diode-pumped multilongitudinal mode
Q-switched Nd:YAG laser 127
diode-pumped Nd:YVO₄ laser 160
diode-pumped solid-state laser
technology 309
discrete variational Xₜ (DV-Xₜ) method 42,
43, 46, 49, 51, 53, 56, 58, 59
disk texturing 361
distrontium diberyllo-borate Sr₂Be₂B₂O₇
(SBBBO) 107
– linear and nonlinear optical properties 107
– unit cell structure 108
domain inversion technique 10
DSC. See differential scanning calorimetry
(DSC)
DTA. See differential thermal analysis (DTA)
DUV. See deep ultraviolet generation (DUV)
DV-SCM- Xₜ approximation method 60, 85
DV-SCM-Xₜ localized cluster calculation
method 15
DV SCM- Xₜ program 100
EDFA. See erbium-doped fiber amplifier (EDFA)

EHMO method. See extended Hueckel molecular orbital (EHMO) method

electric field 2
electron–core interactions 17
electronics manufacturing 360
energy band calculation method 4
energy band theory 38
energy conversion efficiency 245
erbium-doped fiber amplifier (EDFA) 175, 362
Euler angles 84
exchange correction potentials 44
extended Hueckel molecular orbital (EHMO) method 20, 21, 24–26, 30, 32, 34, 35, 41

FBGs. See fiber Bragg gratings (FBGs)
femtosecond Ti:sapphire laser 212
Fermi’s golden rule 62
fiber Bragg gratings (FBGs) 364
– fabrication 364
first-order perturbation theory 28
first-principles methods 15, 61
flashlamp-pumped Q-switched Nd:YAG laser 221
fluoride series crystals 77
flux pulling method 119, 132
– advantages 120
Fock Hamiltonian 23, 24
four-color output light beam, experimental OPO setup for 150
frequency conversion
– β-BaB₂O₄ 117–131
– borate nonlinear optical crystals 117
– efficiency 327
– KBBF family 178–245
– LBO family 131–178
– techniques 9–11, 343, 359
– figures of merit 343, 344, 347
– industrial applications of 359
– normalized conversion efficiency 343, 344, 347
frequency-doubled Argon ion laser 177
FT-IR spectroscopy 169
full-matrix least square methods 234
fullwidth at half-maximum (FWHM) 141, 181, 272, 285, 303, 307, 308
FWHM. See fullwidth at half-maximum (FWHM)
gain flattening filters (GFFs) 364
GaN semiconductor laser 10
Gaussian 92 ab initio calculations 65, 77, 94
Gaussian package 20
GdCa₄O(BO₃)₃ 276
– applications of crystals 282, 283
– second harmonic generation for 283, 284
– used for laser host crystal 284, 285
– basic physical property of 278
– crystal structure 275, 276
– nonlinear properties of 279–282
– single-crystal growth 276–278
GdYCOB (GdₓY₁₋ₓCa₄O(BO₃)₃) 301
– applications 302
– NCPM SHG for Nd:YAG Laser 307, 308
– NCPM SHG for Ti:Sapphire laser 308, 309
– NCPM THG for Nd:YAG laser 302–307
– basic properties 301, 302
generalized gradient approximations (GGAs) 61
GFFs. See gain flattening filters (GFFs)
GGAs. See generalized gradient approximations (GGAs)
goniometer–spectrometer system 218
green luminescence 156
group velocity dispersion (GVD) 153
GVD. See group velocity dispersion (GVD)

Hamiltonian elements 23
Hartree–Fock (HF) equation 21, 23, 42
Hartree–Fock quantum chemical method 78
heat field rotation method (HFRM) 119
heat field symmetry control technique, development 134
heat–mass transfer 119
hexagonal cell dimensions 118
HFRM. See heat field rotation method (HFRM)
highest occupied ionic orbitals (HOIOs) 40, 60
highest occupied molecular orbitals (HOMOs) 57
high-intensity pump sources 128
high-power diode-pumped Nd:YAG laser 160
high-temperature flux method 181, 204
high-temperature in situ observation device 227
HOIOs. See highest occupied ionic orbitals (HOIOs)
HOMOs. See highest occupied molecular orbitals (HOMOs)
hydrogen bond system 55, 56
hydrothermal method 204
hydrothermal RBBF crystals
– grown by seed method 206
– grown by spontaneous nucleation 205

i
ICBO crystal 161
ICSD. See inorganic crystal structure database (ICSD)
immersion-seeded solution growth (ISSG) technique 120
infinite lattice network 202
infrared region
– transmittance spectrum in 121
injection-seeded master oscillator power amplifier system 174
inorganic crystals, absorption edges 85
inorganic crystal structure database (ICSD) 106
interatomic chemical bonds 76
intra-atomic transitions 64
– dipole transition 65
intracavity method 10
I-O bond parameter method 30
iodate crystals 29–32
– electronic structure 57–60
– SHG coefficients 30
ion beam-etched CLBO
– AFM images 171
ion–electron transport 6
IR transmittance spectrum 169
isolated anionic group type, absorption edge calculations for 44–60
ISSG technique. See immersion-seeded solution growth (ISSG) technique

j
J-O calculations 265
– of Ce:LCB, Nd,Yb:LCB, and Pr:LCB 265

k
K₂Al₂B₂O₇ (KABO) crystal 228
– advantages 232
– applications 233
– damage threshold 232, 233
– evolution procedure 228
– linear optical properties 228–230
– Maker fringes of 231
– morphology evolution process 227
– nonlinear optical properties 231, 232
– phase-matching angles 232
– phase-matching curve 231
– refractive indices 230
– structure projection 224, 225
– transmission spectrum 229
– UV absorption mechanism 228
KBBF-CaF₂ prism-coupling technique 189
KBBF-prism-coupled device (KBBF-PCD) 195
– stability test 199
KB₅ (KB₂O₈·4H₂O/K[B₂O₆(OH)₄]·2H₂O) crystal 36, 37
– absorption range 53
– transparent spectrum 55
KB₂Be₂O₄F₂ (KBBF) crystal family 69, 101, 178–245
– absorption edge 52
– BaAlBO₄F₂ 233–245
– CsBe₂BO₄F₂ (CBBF) crystal 213–224
– d₁₁ coefficient 194
– electronic structure 49–52
– frameworks 214
– K₂Al₂B₂O₇ 224–233
– RbBe₂(BO₃)F₂ (RBBF) crystal 202–213
– stability test 197
– UV transmittance spectrum on UV side 53
KBF₆–BeO system 178
KB₂O₈·4H₂O, electronic structure 52–55
K₂CO₃–B₂O₃ systems 225
Kerr effect 266
Kerr-lens mode-locked Ti:sapphire laser 153
KH₂PO₄ (KDP) crystal family 32, 33
– ab initio calculations for 77
– absorption behavior 57
– atom-cutting analysis results for 78
– calculations and analysis for 77–79
– electronic structure 55–57
– electrooptic coefficient 33
– ferroelectric transition temperature 56
– transmittance spectrum 55
Kleinman symmetry 122, 137, 158
knife-edge technique 171
KTaO₃ crystal 27, 28
– electric field-induced SHG coefficients 29
Kyropoulos technique 155

l
La₃CaB₁₀O₁₉ (LCB) 261
– basic physical, and optical properties 263, 264
– crystal structure 262
– laser and optical applications 265
– as optically operated limiters 266
– SFD application of Nd:LCB 265
– SHG and THG applications of LCB 265
– nonlinear properties of 264, 265
La³⁺ ions 261
Langmuir–Blodgett films 10
laser experiments 179
laser frequency conversion 80, 163
laser-induced damage mechanism 164
laser-induced damage threshold (LIDT) 164,
169, 170
laser marking 360, 361
LB4 crystals 309, 310
– characterization, along phase-matching
directions 319
– fourth and fifth harmonic generation
of Nd:YAG 327, 328
– laser damage 328, 329
– linear and nonlinear optical
properties 323–325
– nonlinear optical properties 325–327
– optical homogeneity 319, 320
– scattering 320–323
– sum frequency generation of 328
– surface damage threshold 329–332
– crystal growth 312
– cracking problem during growth 315–318
– thermal treatment of LB4 melt 312–315
– crystallization electromotive force 312, 313
– grown in phase-matching directions
318, 319
– nonlinear properties 310, 311
– optimum composition for growth 310, 311
– quasi-phase-matching structure formed
in 332
LCAO self-consistent field method 23
LDA. See local density approximation (LDA)
Levine’s bond charge model 34
LiB3O5 (LBO) crystal family 65–68, 131–153,
131–178
– advantages 145
– applications 145–153
– cesium lithium borate CsLiB6O10
(CLBO) 161–178
– CsB4O5 (CBO) 153–161
– electronic structure 47–49
– large-size 134
– lattices 48, 104
– UV transmittance in UV side 48
– valence-band XPS spectra 51
– LBO linear optical properties 135, 136
– LBO nonlinear optical coefficients 136–145
– LBO–OPO system 152
– LBO single-crystal growth 132–135
– MoO3 binary system 133
– phase-matching curves 140
– principal refractive indices 136
– refractive indices 66, 67
– SHG coefficients 137, 154
– analysis 67
– transmittance
– in infrared region 136
– spectrum 135
– on UV side 135
– unit cell structure 132
– X-ray powder diffraction data 132
LIDT. See laser-induced damage threshold
(LIDT)
linear combination of atomic orbits
(LCAO) 21
linear expansion coefficients 21
linear optical (LO) 1
– refractive indices 61
linear polarizability 16
linear refractive indices 70
linear susceptibilities, anisotropy of 85
Li2O–B2O3 system
– nucleation thermodynamics 133
– phase diagram 131, 132
– viscosity in 133
Li2O–MoO3 flux system 134
lithium tetraborate (Li2B4O7). See LB4 crystals
lithium triborate (LiB3O5, LBO) 310
– B parameters and d eff, comparison of 346
LO. See linear optical (LO)
local core matrix 24
local density approximation (LDA) 61, 63
localized spontaneous nucleation 180
lone-pair bonds 34
lone-pair electron 73
long period gratings (LPGs) 364
Lorentz linewidth modification 49
lowest unoccupied ionic orbitals (LUIOs) 40
LUIOs. See lowest unoccupied ionic orbitals
(LUIOs)

m
Madelung correction 20, 24
Madelung energy 47
Madelung potential energy corrections. See
Madelung correction
Madelung’s potential 40, 41, 43
Maker fringes
– of d11 coefficient 223
– technique 36, 123, 137, 211, 221, 231, 243
master oscillator power amplifier
(MOPA) 160, 174, 175
mercury laser system 273
metrology 361–363
microscopic second-order susceptibilities 87,
95, 96, 98
– (B5O10)5−, [B5O6(OH)4]−, (B4O9)6− 96
– coefficients 106
Index

– planer six-member ring molecules 96
microscopy 361–363
Millennium Research for Advanced
Information Technology (MIRAI) 176
Miller’s rule 2, 128
minimum deviation method 229, 241
mixing-in-aqueous-solution techniques 168
modified middle-seeded solution growth
(MSSG) method 225
Mohs hardness scale 211, 222
molecular configurations 89–91, 98, 99
molecular engineering approach 39, 79
molecular orbital calculations
– method 20–25
– CNDO-type approximation 21–24
– EHMO-type approximation 24–25
– for nonplanar molecules 23
molecular orbital transition moments 19
molybdate crystals 33, 34
molybdenum oxide flux 134
momentum matrix elements 63
(MO₄)⁶⁻ coordination octahedron,
deformation modes 26
monolithic wavelength converter 305–307.
See also GdYCOB
– output power of third-harmonic wave,
measurement 306
– using GdYCOB and KTP 305
MOPA. See master oscillator power ampli-
er (MOPA)
MSSG method. See modified middle-seeded
solution growth (MSSG) method
muffin-tin approximation 42
multiphoton absorption process 145
multiple scattering-Xₙ (MS-Xₙ) method 42

N
NaF flux system 237, 238
NaF pyrohydrolysis 119
NaNO₂ crystals 37–39
– calculations and analysis for 74–76
– electronic structure 57–60
– linear and nonlinear optical coefficients 74
– SHG calculation 59
– SHG coefficients in 85
nanosecond pulsed Nd:YAG laser 195
Na₂SbF₅ crystal 34–36
– atom-cutting analysis for 76
– calculations and analysis for 76, 77
– charge density contour 77
– electronic structure 57
– SHG coefficients 34
NCPM. See noncritical phase-matching
(NCPM)
Nd-based laser systems 81, 171, 179, 213, 233
– harmonic generation 127, 195, 220
Nd³⁺-doped LCB (Nd:LCB) 261
Nd:GdCOB, as practical SFD crystal 286–288
– effective NLO coefficients 286
– infrared laser properties 286, 287
– maximum green output power 286
– optical conversion efficiency 287
– optimal doping 287
– output and pump power, relationship
between 287
– output stability 288
– pump-absorbed power 286
– Sellmeier equations 286
– spectroscopic properties 286, 287
Nd:LCB
– as-grown 263
– measurements 265
– SFD application of 265
Nd:YAG laser 129, 138, 140, 158, 163, 228,
233, 301, 310
– fourth harmonic generation 183
– frequency
– second-harmonic and sum frequency
generation 158
– generation 80
– harmonics 141
– phase-matching coupling 124
– Q-switched and rotating mirror 123
– second harmonic and sum frequency
generation 124
– tuning curves 125
Nd:YLF laser 147, 152
– Q-switched Nd:YLF laser 158
near-hexagon trigonal symmetry 181
neodymium lasers, harmonic generation
– phase matching configurations of 345
– third harmonic of 359, 360
(NO₂) group, lone-pair orbital 38
noncritical phase-matching (NCPM) 81, 127,
141, 144, 146, 147, 152, 153, 302, 303, 307,
308, 309
nonlinear coefficients 9, 159, 294, 354
nonlinear optical (NLO) crystals 213. See also
GdCOB; YCOB
– active group theory 25
– birefringence in 86
– borate crystals
– development with molecular engineering
approach 101–109
– history of development 4–7
– calculations and analysis for 74–79
– coefficients 163
– calculation with anionic group theory, SHG 25–39
– IEEE/ANSI standard 122, 136
– developments in borate series 87–109
– devices
– material requirement for 79–81
– experimental and calculated absorption edges 60
– frequency conversion
– crystals, conditions for 8
– higher efficiency methods 8
– history of NLO crystals 7–11
– macroscopic properties 2
– NLO and LO properties 15
– optical parameters 4
– physical origin 3
– property 165
– second harmonic generation, frequency conversion efficiency 7, 8
– SHG coefficient 4
– structure–property relation (See Miller’s rule)
– and techniques, frequency conversion history 9–11
– theoretical understanding history 1–4

o
odd-ordered crystal field 27
off-diagonal core matrix elements 22
OPO device. See optical parametric oscillation (OPO) device
optical axis system 137
optical coefficients 64, 74, 76, 79, 144, 281, 348, 353
optical contact prism-coupling device 223
optical devices, characterization of 355
– finesse measurement 358, 359
– photothermal interferometry 355
– resonator measurement 355–358
– optical disk standards 363
– optical parametric oscillation (OPO) device 128, 152
– optical-to-optical conversion efficiency 146
orthorhombic system 157
oscillating temperature regime 120

p
Pariser’s calculation 18
PCBs. See printed circuit boards (PCBs)
Perkins-Elmer spectrophotometer 241
perovskite-bronze type of crystals 25–29
– niobate crystals 25–27
– SrTiO₃, BaTiO₃, KTaO₃ crystals 27–29
– phase equilibrium diagram 103
phase-matched (PM)
– angles 138, 141, 188, 209
– vs. fundamental wavelength 191
– characterization 137, 139, 142, 143
– method 9, 36, 81, 123
– range 5, 49, 81, 90, 101, 102, 138, 146, 192, 209
– SHG properties 265
phosphate crystals 32, 33
photomultiplier tube (PMT) 221
phot energy-tunable photoemission spectrometer 202
plane wave pseudopotential (PWPP) total energy package 15
PM. See phase-matched (PM)
PMT. See photomultiplier tube (PMT)
point charge model 27
point-group symmetry 22
potassium difluo-diberrylo-borate KBe₂BO₃F₂ (KBBF) 104
– framework 106
– linear and nonlinear optical properties 107
– unit cell 105
powder SHG test 117
PPLN devices 10
printed circuit boards (PCBs) 360
prism-coupling technique 195, 212
Pr:LCB 262, 265
proton transfer potential energy curve 77
pseudo-potential method 38, 72
pseudo-ternary system 180
– KBBF primary crystallization 180
pulsed OPO system 130
PWPP method 29, 68, 75, 78, 79, 82

q
Q-switched diode-pumped Nd:YAG master oscillator 173
Q-switched Nd:YAG laser 244
Q-switched Nd:YLF laser 158
Q-switched Nd:YLF oscillator 145
quantum chemical approximation method 39
quantum chemistry calculation methods 17
quartz crystal, second harmonic generation (SHG) 1
quasi-cw DUV sources 176
quaternary phase diagram 180

r
Raman spectroscopy 44
rare earth (RE) elements 261
RbBe₂(BO₃)F₂ (RBBF)
– building units 202
– crystal structure 203, 204
– d_{11} coefficient 211, 212
– disadvantages 211
– frameworks 214
– interference pattern 203
– measured and calculated refractive indices 207
– phase-matching angles for type I SHG with 208, 209
– RBBF-PCD device 212, 213
– special prism-coupling device, schematic presentation 212
– transmittance
 – in IR region 207
 – in UV region 206
– type I SHG phase-matching angles vs. fundamental wavelength for 210
Rb$_2$Be$_2$Si$_2$O$_7$ unit cell structure 107
– real-space atom-cutting 72
– analysis 69, 74
– techniques 63, 70, 78
ReCOB family
– development of 266, 267
– trinary phase diagram 277
refractive indices 66, 207, 218, 264
– calculated and experimental values 69
– data 120
– dispersion 192, 210
– dispersion curve 221, 230
– experimental values 157
RE:LCB crystals
– basic physical and optical properties 263, 264
– nonlinear properties 264, 265
– synthesis and crystal growth 261, 262
resonance integral 22
Rietveld analysis 214
Rigaku Thermoflex TAS 200 237
Roothaan equations 21
Roothaan–Hartree–Fock (RHF) equation 40

s
saturation effect 28
SAW devices. See surface acoustic wave (SAW) devices
scattering process 17
Schroedinger equation 43
second harmonic generation (SHG) 1, 80
– coefficients 4, 8, 15, 17, 26, 28, 57, 62, 68, 70, 83, 84, 93, 117, 122
 – atom-cutting analysis for 78
 – calculation 31, 37
 – conversion efficiency 146
– crystals, applications 62
– powder SHG test technique 3, 4
– type I phase-matching angles 207
second-order perturbation theory 18, 39
second-order susceptibilities 20, 37, 63, 82, 88, 93–99, 94
– calculation 93
– tensor 97
seeded growth technique 180
seed method 205
seed-submerged growth technique 156
self-fluxes systems 225
self-frequency doubling (SFD)
– application of
 – basic physical 263
 – crystal structure of 262
 – nonlinear properties 264
 – optical properties 263
 – optical quality 262
 – SHG and THG applications 266
– crystal 261, 278, 281, 283, 286
 – in Nd:YCOB 274
 – in ReCOB family Nd:GdCOB 267
 Sellmeier equation 120, 124, 135, 138,
 157, 161, 187, 189, 191, 192, 193, 207,
 209, 211, 219, 220, 230, 231, 243, 294,
 324, 325
SFD. See self-frequency doubling (SFD)
SFG method. See sum frequency generation (SFG) method
SHELX-97 system 234
SHG. See second harmonic generation (SHG)
Siamese-twin double six-member
– molecular configurations 92, 93
simplified phase diagram 181
single-pass conversion 347
single-resonance sum frequency mixing cavity 177
single-site orbitals (SSOs) 43
– potential 47
solid reaction method 132
solution-stirring technique 167
space structure resolution process 202, 213
spectral bandwidth 144
spontaneous nucleation technique 204
SS-TSSG method 167, 171, 173
stability test 195, 197–199
stacking fault model 184
stereolithography 359
strontium boron beryllium oxide
 (Sr$_2$B$_2$Be$_2$O$_7$, SBBO) 310
structure–property relationship 5