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1.1
Introduction

Many laminar flows are often characterized by a high degree of symmetry due to the
confining effect of surface tension (for free-surface flows, e.g., in microdroplets) and/
or device geometry (e.g., for flows in microchannels). Designing a flow with good
mixing properties is particularly difficult in the presence of symmetries. Symmetry
leads to the existence of (flow) invariants[1, 2], which are functions of coordinates that
are constant along streamlines of the flow. The level sets of one invariant define
surfaces on which the (three-dimensional) flow is effectively two-dimensional. An
additional invariant further reduces the flow dimensionality: a flow with two
invariants is effectively one-dimensional. Since the flow cannot cross invariant
surfaces, the existence of invariants is highly undesirable in the mixing problem
as their presence inhibits complete stirring of the full fluid volume by advection.
Neither is chaotic advection per se sufficient for good mixing, as time-dependent
flows [3, 4] can have chaotic streamlines restricted to two-dimensional surfaces in the
presence of an invariant. Thus, the key to achieving effective chaotic mixing in any
laminar flow is to ensure that all flow invariants are destroyed.

In this section we will focus on the class of laminar flows characterized by small
deviations from exact symmetries. Not only are such flows common in various
applications of microfluidics, this is the only class of flows that generically affords a
quantitative analytical treatment. The description of the weakly perturbed flow in
terms of the action and angle variables allows quantitative analytical treatment using
perturbation theory. Indeed, if the symmetries are broken weakly, the invariants (or
actions) of the unperturbed flow become slowly varying functions of time (start to
drift, in the more technical language) for the perturbed flow, while the angle variable
remains quickly varying. Such perturbed flows are referred to as near-integrable, in
contrast to the flows with exact symmetries which are integrable, that is, possess an
exactanalytical solution. Near-integrable systems play a prominent role in many areas
of science. Often they arise naturally when there is a large separation of scales and,
hence, of the associated forces, for example, as in many problems in celestial
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mechanics, where the gravitational interaction with the Sun dominates all other
forces which can be considered small perturbations [5, 6]. Similarly, for weakly
perturbed action—action—angle fluid flows there is a large separation of timescales on
which the actions and the angle change.

The space of the integrable unperturbed system is foliated into invariant tori and
the motion on these tori is quasi-periodic or periodic. If there are two independent
integrals, the tori are invariant closed curves. In general, the integrability requires the
existence of at least one conserved quantity (or action or invariant), so all flows of
interest belong to one of two classes: action—action—angle or action-angle—angle [1].
Transport in the perturbed action—angle-angle flows is severely restricted by KAM
tori (it was illustrated in [7]), while the effective degeneracy of the action—action—angle
flows opens the possibility of global transport and mixing. We will, therefore, focus
our attention on action—action—angle flows and possible mechanisms leading to
chaotic advection.

Exact analytic solutions for near-integrable dynamics cannot be obtained. Direct
brute-force numerical simulation of such systems is possible, but usually very
challenging precisely due to a big separation of timescales. Approximate analytical
tools represent an important alternative for studying such systems. Specifically, the
assumption of a weak perturbation allows one to use a collection of perturbation
theory methods to describe the dynamics quantitatively. In particular, by averaging
the evolution equations for the actions I and | over a period of the fast motion
described by the angle ¢ one finds that although the original exact invariants are
destroyed, the averaged system of equations itself possesses an invariant ®(I, J).
Since the averaged equations are an approximation, in the exact perturbed system ®
is only conserved in the adiabatic sense: its value undergoes small oscillations with
period close to that of ¢ but the average value of ® remains the same on much longer
time intervals [8]. Therefore, this approximate invariant is referred to as an adiabatic
invariant (Al).

Asitturns out, the existence of an Al enables a greatly simplified description of the
mixing dynamics in near-integrable flows. Of course, if the AI were conserved
everywhere, mixing would be restricted to the two-dimensional level sets of the Al
(usually tori) defined by @ = const, which is often indeed the case (i.e., nonintegr-
ability does not lead to mixing). Mixing requires the breakdown of the adiabatic
invariance, which can occur in the flows possessing certain types of singular
manifolds, where the fast subsystem slows down and the separation of scales
disappears. A very elegant description of the dynamics can be obtained by separating
the evolution into regular advection along the 2D level sets of the Al between singular
manifolds, and fast passages through the singular manifolds. During the motion near
the singular manifolds, the value of the AI typically experiences a change thatis much
larger than the magnitude of the oscillations of the AI during the motion far from the
singular manifolds. As the time of the passage near the singular manifolds is much
shorter than the characteristic time of motion between them, the changes in the Al
can be treated as instantaneous jumps in describing the evolution of the Al For every
set of initial conditions, the magnitude of the jump in the Al can be calculated exactly.
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However, a small change in the initial conditions produces in general a large
change in the jump magnitude [9, 10]. Hence, for weak perturbations, in
computing the statistical properties of many consequent jumps, it is possible
to treat the jump magnitude as a random variable with statistical properties
obtained from the dependence of the jump magnitude on initial conditions. The
dynamics in the vicinity of singular manifolds (separatrices or resonance sur-
faces) can be described using a different perturbation expansion, where the small
parameters are not just the perturbation strength but also the distance to the
singular manifold. For resonant surfaces, this approach was first introduced
in[11, 12] and further developed in [10, 13] in the context of Hamiltonian systems
and subsequently applied to 3D volume-preserving autonomous (such as flows of
incompressible fluids) in [14] and nonautonomous [4] systems. A theory for
systems with separatrix crossings was proposed in [15, 16] and later developed
in [17-19] for Hamiltonian systems and in [9, 20] for 3D volume-preserving
autonomous systems.

If allowed by the geometry of the system, the streamline keeps coming to the
singular surface(s) again and again and the process of jumps repeats itself.
Accumulation of jumps at multiple crossings results in destruction of the adiabatic
invariance (i.e., the Al changes by a value of the order 1) and leads to chaotic
dynamics in the system. Therefore, the physical space becomes partitioned into the
domains of chaotic and regular dynamics filled, respectively, by the streamlines that
do, or do not, cross the singular manifold(s). In the chaotic domain, the jumps of
the Al associated with separatrix or resonance crossings lead to the destruction of
adiabatic invariance and transport across the level sets of the AI. Over long
timescales, accumulation of small jumps coupled with the divergence of initially
close streamlines lead to effective diffusion of the Al and mixing. This dynamical
picture allows one to compute the size and shape of the chaotic and regular domains
and to estimate the rate of mixing.

The theory of long-time transport in volume-preserving flows in the presence of
chaotic advection and regular diffusion is by no means limited to mixing in fluid
flows [21-25]. Such a description of long-time transport in near-integrable Hamil-
tonian and volume-preserving systems is crucial for long-term predictions of, for
example, the dynamics of comets and asteroids [26-28], customizing transport to
achieve selective segregation in electromagnetic diverters in plasma confinement
devices [29-31], energy exchange between coupled oscillators [32-34], chaotic
billiards [35], arrays of Josephson junctions [36, 37], and the drift of charged particles
in the Earth magnetosphere [38-42].

In this chapter, we describe destruction of Als at separatrices and resonances and
use several examples studied earlier [4, 14, 43, 44] to illustrate different aspects of the
complete picture. We refer the reader to the corresponding chapter for details of
derivations and additional discussions. General properties are discussed in Sec-
tion 1.2. Separatrix crossings are discussed in Section 1.3, and passages through
resonances in autonomous and nonautonomous flows are considered in Sections 1.4
and 1.5, respectively.
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1.2
General Properties of Near-Integrable Flows and Different Types
of the Resonance Surfaces

The motion of passive tracers advected by the flow can be described by a volume-
preserving system of ODE in R*® depending on a small parameter, 0 < & < 1:

x =v(x) +ew (x,t,¢€), divv =divw =0 (1.1)

Velocity field vin (1.1) defines an unperturbed (base) flow; wis a perturbation and is
supposed to be a smooth function of ¢. We restrict our discussion to 3D autonomous
base flows, while the perturbation may be autonomous or nonautonomous. Sys-
tem (1.1) at e = 0 corresponds to the unperturbed system. In a sense, passive tracers
in the flows are equivalent to phase points in generic dynamical systems.

The effects of the small perturbation in (1.1) start manifesting themselves on time
intervals of order at least e ~1. A function of phase variables is called an Al if its value
along a phase trajectory of (1.1) has only small (with ¢) variations on time intervals of
such length. In other words, an Al is an approximate first integral of the system.
Perpetual conservation of Al presents a barrier for complete mixing.

Let unperturbed system (1.1) be integrable and of the action—action-angle type.
Then, almost the entire phase space is filled with closed streamlines. Denote the two
independent integrals of motion as I and J. Every joint level of the two integrals
I =i, ] =j defines a closed unperturbed phase trajectory I'; ;. Introduce on I'; ; an
angular variable ¢ mod 27t changing at a constant rate in the unperturbed motion.

The perturbation in (1.1) causes the values of I and J to change at a rate of order ¢ in
the motion along a perturbed streamline. In terms of the variables i, j, ¢, perturbed
system (1.1) can be written as

di

. dj .. d . .
=g P=elioe) L=0jtehiipe (2

The functions f, g, h are 2zr-periodic in ¢. In (1.2), the variables i, j are “slow,” and
the variable ¢ is “fast.” Define the averaged system:
di

SR I .
afeF(l,J) a—&G(l,]) (1.3)

where functions F and G are obtained by averaging f and g, respectively, over ¢:

Fij) = %Jr (grad Lw)dp G(ij) = er(grad J,w) dgp (1.4)

In (1.4), w is calculated at € = 0, parentheses denote the scalar product, and the
integration is performed along I'; ;. Far from the singular surfaces (described below),
solutions of the averaged system describe variations of i,j in complete system (1.1)
with the accuracy of order ¢ on time intervals of order ¢! [45, 46].

Let (i, j) be the flux of the perturbation through a surface spanning I'; ;. Due to the
preservation of the volume, the value of @ (i, j) does not depend on a particular choice
of the surface. A remarkable fact is that averaged system (1.3) is Hamiltonian, and
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®(i,j) is a Hamiltonian function (see, e.g., [9, 20]):

di € oP(ij) dj € 0D (i,)) (1)
dt - w@)TGC)) o db o w())T(j) O '
where u(i,j) is a certain function of i and j, determined by the base flow and
T(i,j) = 2m/Q2(i, ) is the period of the unperturbed motion along I';;. In almost all
the systems we studied recently, u(i,j) = 1. Moreover, it is always the case when the
base flow has axial symmetry and the two invariants are the streamfunction and the
azimuthal angle. It follows from (1.5) that @ (i, ) is an integral of the averaged system.
Standard assertions about the accuracy of the averaging method (see, e.g., [8, 45, 46])
imply that @ is an approximate integral of the motion in exact system (1.1), thatis, ®
is an adiabatic invariant (see Figure 1.1a below).

However, the averaging method breaks down in a neighborhood of 2D singular
surfaces. These surfaces can be of one of three types:

1) Separatrix surfaces containing nondegenerated hyperbolic fixed points of the
unperturbed system and filled by heteroclinic trajectories connecting them. A
systems of this type is considered in Section 1.3.

2) Separatrix surfaces containing a line of degenerate singular points (this case
occurs, in particular, in 1 d.o.f. Hamiltonian systems depending on a slowly
varying parameter or a no-autonomous flows with axial symmetry, and it is
considered elsewhere [15, 16, 47]).

3)  Resonance surfaces, corresponding to closed curves filling a surface. In autono-
mous systems with one angle variable, the function Q(3,§) in (1.2) is identically
zero everywhere on such a surface. A system of this type is considered in
Section 1.4. In nonautonomous systems in which time appears as an additional
fast phase with a frequency w, on resonance surface Q(i,j)/w is a rational
number (see Section 1.5). The major difference between separatrix and reso-
nance surfaces is that near separatrix surfaces the base flow slows down only in
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Figure 1.1 Adiabatic invariants (a) away from the singular surfaces and (b) when a streamline
crosses them. The model from [14].
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the immediate vicinity of fixed points of the base system. In comparison, a linear
combination (with integer coefficients) of the phase of the base flow and the time
variable slows down everywhere near a resonance surface.

Let us just briefly note that the problem of jumps of Als at separatrix crossings in
volume-preserving systems cannot be reduced to similar problems in Hamiltonian
systems depending on a slowly varying parameter [15, 16, 47], or in slow—fast
Hamiltonian systems [48]. Although ideologically close to them, this problem needs
an independent study. Similar phenomena were also observed in 3D volume-
preserving maps [7].

A complete description of chaotic advection in these problems starts with a
description of a single crossing of a resonance or a separatrix surface. Let a phase
point (passive tracer) i(t), j(t) closely follow a trajectory of the averaged system. The
quantity ® (i, ) along the streamline oscillates with an amplitude of order ¢ around a
certain constant value, say, ®;. When the streamline crosses a small neighborhood of
a singular surface, ® changes by a value A® ~ &%, 0 < a < 1, which is in general
much greater than e. In the case of scatterings on resonance and almost all the
separatrix crossings, a = 1/2. After this neighborhood is crossed, the value of ®
along the trajectory oscillates near a new constant value, ®; = ®; + A®. As the main
change occurs in a narrow neighborhood of a singular surface, we shall call this
change a jump of the Al In every particular problem, an asymptotic formula (in the
limit of small values of &) for this change of the AI can be obtained following a
standard procedure which was reported in several publications [4, 9, 20, 43, 44, 49].
An example of such a dynamics is illustrated in (see Figure 1.1b). In the case of
crossing a resonance when there is the possibility of capture into resonance, the
captured dynamics can be also described.

The magnitude of a jump turns out to be very sensitive to variations of initial
conditions. Therefore, the jump is in a sense random. If allowed by the geometry of
the system, the streamline comes to the separatrix again and the process repeats
itself. Accumulation of jumps at multiple crossings results in destruction of the
adiabatic invariance (i.e., the Al changes by a value of the order 1) and leads to chaotic
dynamics in the system. Based on the equations for a single passage, we can describe
statistical properties of jumps and use them to study the long-time dynamics on time
intervals that include many crossings.

1.2.1
Metrics of Mixing

Two different (and generally unrelated) metrics should be used to describe chaotic
advection in a bounded flow such as the one considered here: the size of the chaotic
domain and the characteristic rate of mixing inside the chaotic domain.

The first of these two metrics is the volume of the chaotic domain, V.. We define the
volume and the dimensionality of mixing as the properties of the domain occupied
(after along time) by the tracers that originate in a small ball (say, size €). For ¢ = 0, the
whole interior is almost completely regular for any kind of perturbation. Actually, any
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however minuscule perturbation (e.g., molecular diffusion) leads to 1D mixing: the
dependence of Q(i,j) in (1.2) on the values of I and/or J results in stretching of the
original ball along I';;. This happens over order O(1) times. In perturbed systems
without singular surfaces, the tracers stay forever in the vicinity of the original surface
of constant Al (see Figure 1.1a), eventually covering the whole surface ® = const.
Thus we say that the adiabatic invariancy leads to 2D mixing.

In the presence of singular surfaces, a 3D chaotic domain of a finite size appears as
soon as & becomes nonzero. This is due to the fact that while the resonance
phenomena are themselves local events (they are only affected by the dynamics in
the vicinity of a corresponding surface), their effect is global, extending the chaotic
domain to the scale of the entire flow. As a result, V, depends on parameters of the
base flow but not on the magnitude of perturbation, ¢ (for infinitesimal €). Depending
on parameters of the base flow (e.g., g in Section 1.3), the flow domain can be
completely regular, partially regular and partially chaotic, or completely chaotic. The
size of the chaotic domain is, to leading order, determined by the shape of its
boundary —the torus 7;, tangential to the singular surface — which is independent of ¢.
However, for any finite ¢, the boundary between the two domains is more complex.
The chaotic domain penetrates inside 7, adding a small layer (most often with
thickness of order /¢, see [50] and Section 1.4 below for details). Further, small
islands of stability may appear inside the mixing domain. As a result there are small
corrections to V..

The second metric, the rate of mixing D, on the other hand, strongly depends on ¢.
Assuming statistical independence of consecutive crossings (see below), we can
describe the evolution of the AI by a random walk with a characteristic step size of
order ¢% 0 < a < 1. Hence, after N crossings, the value of the Al changes by a
quantity of the order /N x &% The mixing can be considered complete when a typical
chaotic streamline samples the entire chaotic domain. The difference between the
values of the Al that bound the chaotic domain in our problem is of order unity.
Therefore, it takes on the order of N ~ £72% separatrix crossings for diffusion to cover
the whole domain. As the typical time between successive crossings is of the order
1/, we find the characteristic time for mixing to be Tyy = O(¢~172%). This charac-
teristic time diverges for &¢—0, so the rate of mixing, defined as
D = 1/Ty = O(e* " 2*), vanishes for ¢ — 0.

For infinitesimal ¢, the consecutive jumps can be considered statistically inde-
pendent for most of the streamlines, so the accumulation of jumps can be described
as a random walk without memory, leading to the standard Fokker-Planck equation
for the probability density function (PDF) of the AI

0P = —0¢(U4P) + d¢(Dado P) (1.6)

where P(®, t)d® is defined as the probability that at time t the tracer resides between
the surfaces ®@ and @ + d®. The drift velocity U, and the diffusion coefficient D, are
determined by the first and the second moments of the distribution of the jumps,
respectively [51]. Since the jump magnitude distribution is a function of ®, so are its
moments. Moreover, since the dynamics between the jumps takes place on the
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surfaces of constant Al, the time between the jumps is also a function of ® [43].
Therefore, both Us(®) and D4 (P) should be computed by taking this dependence
into account.

1.2.2
Correlations of Successive Jumps and Ergodicity

Quantitative properties of the diffusion of the Al, in particular the validity of (1.6),
depend on whether consecutive crossings are statistically dependent or independent.
In volume-preserving systems, statistical independence (and, thus, the hypothesis of
ergodicity, at least up to a residual of a small measure) for vanishing value of & can be
deduced from the divergence of resonance phases (denoted by & in the following
sections) along streamlines. A similar problem for the Hamiltonian system was
discussed in [10, 52, 53]. For finite values of ¢ the consecutive jumps become
somewhat correlated, especially near the boundaries of the system. We discuss this in
more details in Section 1.3.

Consider statistical properties of the jumps in ® along one-phase trajectory of the
system. Let two successive separatrix crossings be characterized by values &; and &,.
A small variation 0, in &; produces a variation of the jump in ®@ by ~ £“0&;. In the
period of time ~ 7! before the next crossing, the value &, obtains a variation
0, ~ e*710&,. Thus 6&,/0&; ~ €*~! >> 1. Therefore, it is natural to suppose that &;
and &, are statistically independent and the successive jumps in @ are not correlated.

For many flows, it was verified numerically that inside the chaotic domain one does
indeed find a positive Lyapunov exponent for € > 0, confirming the divergence of
nearby streamlines. Furthermore, for small ¢, the flow possesses good ergodic
properties inside the mixing domain, as the Poincaré sections illustrate, indicating
very thorough mixing. Indeed, the chaotic domain is essentially devoid of regular
islands, so a single streamline densely fills the whole chaotic domain. For decreasing
¢, the regular islands (of size /) are expected to gradually disappear, resulting in
perfect mixing.

13
Separatrix Crossings in Volume-Preserving Systems

In this section, we consider a flow where the presence of separatrix crossings results
in the destruction of adiabatic invariance to illustrate different aspects of the
evolution. The following problem was studied in details in [43].

Consider a microdroplet suspended at the free surface of a liquid substrate and
driven using the thermocapillary effect with a constant speed in a straight line along
the substrate surface [3, 54]. Experiments found the mixing to be very poor in this
regime [54]. However, a numerical study of the simplified model of the flow
constructed in [3] shows that the mixing efficiency can be improved dramatically
by appropriately choosing the parameters such as the magnitude of the temperature
coefficients of surface tension at different fluid interfaces, the ratio A = uy,, /1o, Of
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the fluid viscosities inside and outside the droplet, and the curvature of the
temperature field driving the flow.

To simplify the mathematical description of the problem, we follow [3, 43]
assuming that the droplet is suspended below the free surface of the liquid substrate
and consider the limit of small capillary numbers such that the droplet can be
considered spherical. Under these assumptions, in nondimensional units (with
distances scaled by the droplet radius and the origin located at the center of the drop),
there are three component flows: the dipole flow v,

%g = 14+ x2—-2r?

Yo =%y (1.7)
24 = xZ

the quadrupole flow v,

g = 25(1 + x*—2r%)
Vg = 97 +2x° 1) (1.8)
zq = z(r* +2x2—1)

and the Taylor flow v;

%, = z(B(5r2—3—4x?) +2)
Ve = —4Pxyz (1.9)
2 = x(B(5r*—3—42%)-2)

where 2 = x? +y>+2?, = 1/(1+A) (the value 8 = 0.5 is used in all numerical
calculations), the x axis points in the direction of the thermal gradient, and the z axis
is vertical. The components v, and v, are caused by the thermocapillary effect at the
droplet surface, while v, arises due to the thermocapillary effect at the surface of the
liquid substrate. The complete flow inside the droplet can be written as a linear
superposition of the dipole, Taylor, and quadrupole flows

V= Vg+ev,+qvg (1.10)

The parameters ¢ and g determine the relative strengths of the three components
which depend on the temperature coefficients of surface tension at the droplet
surface and the free surface of the substrate fluid and on the nonuniformity of the
imposed temperature gradient [3]. As the dipole component is present in almost any
setting, it is convenient to set its magnitude to unity by an appropriate choice of the
timescale. In what follows, we will restrict our attention to the case of |q| = O(1) and
0 < & <« 1. This will allow us to describe the mixing process quantitatively using
perturbation theory [8].

Flows (1.7)—(1.10) are volume preserving and bounded by the droplet surface
r = 1, which represents an invariant set. Moreover, the plane y = 0is an invariant set
for each flow. Since the flow for y < 0is a mirror image of the flow for y > 0 and there
is no transport across the y = 0 plane, we will restrict our attention to the flow inside
the hemisphere characterized by positive values of y.

13
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Figure 1.2 A sketch of the unperturbed flow for |g| > 0.5.

For ¢ = 0, flow (1.10) reduces to a superposition of the dipole and quadrupole flows
and possesses two invariants: the azimuthal angle ¢ (around the x axis) and the
streamfunction :

¢ = arctan(z/y), = % (1+2gx)0°(1-77)

where we have defined ¢? = y? + z2. The flow structure of the unperturbed system
depends on the value of q. Note that the dynamics for g > 0isthe sameasforg < Oup
to the reflection with respect to the plane x = 0. There is always a pair of hyperbolic
fixed points at the poles x = 1, o = 0 and, for |g| > 0.5, two circles of degenerate
elliptic fixed points, accompanied by a hyperbolic fixed point x = x, = —1/(2q),
0 = 0 and a circle of degenerate hyperbolic fixed points on the surface at x = x,,
r = 1. The plane x = x; (denoted S below) is a separatrix (see Figure 1.2). Away from
the separatrix, the axis, and the surface of the sphere, each joint level of the two
integrals ¢ and v defines a closed unperturbed phase trajectory I, ,,. The motion on
Ty, is periodic with frequency Q(v). Note that if the base flow possesses axial
symmetry, its frequency is naturally independent on azimuthal angle.

1.3.1
Flow Structure

For ¢ # 0, system (1.10) is no longer integrable. Integrals 1 and ¢ are not preserved.
Streamlines are not closed and cross the separatrix S. Figure 1.3a represents a result
of long integration of one perturbed-phase trajectory.

The structure of the phase portrait on the slow (¢, i) plane depends on the values
of g. For |q] < 0.5, there is no separatrix, so the averaging procedure is valid
everywhere and hence the Al is constant, if one ignores small bounded oscillations
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Figure 1.3 Dynamics of the perturbed system over one long period. The parameters are g = —0.7

and = 1072, (a) A perturbed streamline. (b) Phase portrait of the averaged system. The thick line in
(b) shows the boundary of chaotic domain, I,.

with amplitude of order e. Therefore, the entire drop is a regular domain: all
streamlines reside on the tori that are levels sets of the AL

For |g| > 0.5, the separatrix plane defined by x = x;, = —1/(2¢q) in the physical
space (or ¥ = 0 in the slow plane) appears inside the drop. For 0.5 < |g| < gy, the
interior of the drop is divided between the regular domain and the chaotic domain.
Numerically, we find g;, =~ 0.96. The regular domain corresponds to streamlines lying
on the level sets of @ that do not cross the separatrix (see Figure 1.3b), whereas the
rest of the streamlines belong to the chaotic domain. To the leading order in ¢, the
boundary between the regular and the chaotic domain is a torus 7, tangential to S. On
the (¢, ) plane, 7, corresponds to a closed curve I, passing through the origin (see
Figure 1.3b). Thus, we conclude that it is the level set ® = ®(0,0) of the Al that
serves as the boundary between the regular and the chaotic domains. Note that the
level set @ = P(0, 0) is not a sharp boundary: for any finite ¢ there are (although very
few) regular trajectories inside the chaotic domain and vice versa. We will return to
the discussion of the boundary between the domains in Section 1.4.

13.2
Dynamics Near the Separatrix Surface

For streamlines that cross the separatrix, the value of ® may change significantly. Itis
shown in [43] that the jump of Al during a single passage of the exact system through
the vicinity of S is

AT = \/56(1—62)1/4f(§) (1.11)

where f(&) describes the dependence of the jump magnitude on the distance
between the crossing point and the axis, parameterized by variable §&,
@ = ®/P(0,0) is the normalized value of the AI. We refer the reader to [43] for
the explicit definitions of €, f (£), and ®(0, 0). The values of £ and ® (and hence A®)
can be calculated exactly for any initial condition. However, a small change of order ¢
in the initial conditions produces, in general, a large (order 1) change in &. Hence, for
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Figure1.4 JumpsofAl: (a) theplotoff (£).The g = —1, = 107>. (b) The distribution of the
solid line was obtained using analytical sizes of the jumps A® versus the values of ®
result (1.17) and the dots show the values before the crossings.

obtained numerically from (1.10) for § = 0.5,

small ¢ it is possible to treat & as a random variable uniformly distributed on the unit
interval [10].

Equation (1.11) was verified numerically for various values of parameters (3, ¢, and
e. Atypical plot of f (£) is presented in Figure 1.4a. The function f (£) —and hence A®
— has singularities at both § = 0 and & = 1. Thus, there is a possibility (albeit quite
small) of large changes in @ associated with a separatrix crossing. By direct
calculation, the ensemble average of A® can be shown to vanish regardless of the
value of @:

1

(AD) — L AB(E,B)dE = 0 (1.12)

1.3.3
Finite Perturbations

In most of the studies of resonance-induced chaotic diffusion, only infinitesimal
perturbations were considered. To the best of our knowledge, the only papers that
address, in any significant detail, the case of finite ¢ are [43, 53]. However, the
dynamics in the presence of small but finite perturbations differs in several
important ways from that with an infinitesimally small perturbation.

First, the very applicability of the method of averaging for larger ¢ is somewhat
questionable as the ratio of the characteristic frequencies (e.g., Q() and €) may not
be very large. Numerical simulations, however, indicate that the main result of the
averaging method, that ® changes most significantly near the separatrix, holds for a
wide range of ¢. Moreover, this problem can be somewhat addressed by implement-
ing the improved adiabatic invariants, see Section 1.4 below.

The second effect is that for finite values of ¢, there is a finite probability that the
jump size can become comparable to the range of the AI. Consequently, the
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boundaries of the system start playing an important role in the statistics of the jumps.
While magnitudes of most of the jumps are still given by (1.11) and satisfy the zero-
average statement, the distribution of large jumps differs from the original predic-
tion. Indeed, (1.11) breaks down when the value of @ either before or after the
separatrix crossing is close to one of the domain boundaries. Take, for example,
& =10"3and q = —1. Then, approximately 0.1% of the jumps feel the presence of the
boundaries. While the influence of the boundaries on the properties and statistics of
single crossings (albeit for a different system) was discussed in details in [53], here we
are interested in necessary modifications to the long-time dynamics of the system
and, in particular, the rate of mixing.

Figure 1.4b presents the distribution of the sizes of the jumps A® versus the
values of ® before the corresponding crossing. There are three types of jumps. Most
of the jumps are small and concentrate near the ® axis (the densely covered region).
These jumps are well described by (1.11). In particular, the average value of these
jumps is zero. The second type are jumps corresponding to points that lie between
thelines ®,,; = ®, +A®, = +1, but outside of the densely covered region. These
jumps happen when streamlines pass through the vicinities of the singularities of
AD (&), given by (1.11). Such jumps were studied in detail in [53]. Finally, there are
jumps that lie on either of the lines ®, | = ®, + A®, = 1and @, = 1. They were
called “axis crossings” in [55].

1.4
Passages Through Resonances in Autonomous Flows

In the current section, we will discuss another type of phenomena that occur at
singular surfaces: scattering on and capture into resonance in 3D autonomous flows
of the action—action—angle type. As an example, we consider a volume-preserving
kinematic model inspired by a Stokes Taylor—Couette flow between two infinite
counter-rotating coaxial cylinders (the “vertical” z axis is along the axis of the
cylinders, o is the distance from the axis, and 6 is an angle in the “horizontal”

plane, see [14] for a complete description). In the dimensionless units, the flow is
0 = éex(o—1) cos 6
z =¢(l+lng/ln
= #(1+Ingflnn) (1.13)
0 =w(o,z)— Z)sx(Zg—l) sin 6

The value of ¢ changes between ¢ = 1 (at the inner cylinder) and ¢ = 1/# (at the
outer cylinder). The frequency of the unperturbed flow, w(g, 2), is

Vi 11 Vi . ( 1)
w(0,2)=—0—"+—-——+ Osin (Az)| o—— 1.14
(0,2) 01, ooy iy (1z){ 0 0 (1.14)

where A =27 and 0 are the wavenumber and amplitude of oscillations of the
frequency of the outer cylinder, respectively. One can see that w =1 and
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Figure 1.5 (a) The flow structure. (b) Division of the flow domain for zmod 1. A chaotic domain is
between the vertical lines. A regular (KAM) domain consists of two parts at the left and at the right.
The wavy line in the middle is the resonance, 6 = 0.4, n = 0.2.

o = —1+0dsin (Az) on the inner and the outer cylinders, respectively. One can
imagine the outer cylinder to consist of rings, each of which rotates with its own speed
(see Figure 1.5a). The variables ¢ and z are the integrals of the unperturbed system.
The unperturbed streamlines are circles with the direction of the rotation depending
on the sign of w(g, 2).

The perturbation consists of two parts. The first is a vertical (in the axial direction)
shear-type flow (the z term). The second is an additional angular rotation due to a
slight noncircularity of the outer cylinder. In (1.13), 0 < ¢ < 1 is a small parameter,
while k ~ 1defines a characteristic ratio of the two perturbations. The axial velocity, z,
equals € at o = 1 and vanishes at o = 1/7.

For ¢ > 0, the variable 60 is fast and the variables ¢ and z are slow. Thus, we can
average (1.13) over one period of . The averaged trajectories (in the full 3D, (g, z, 6),
space) spiral around the cylinders of constant radius (¢ = const) with the direction of
the rotation depending on the sign of w. The quantity

D =p

is an integral of the averaged system and is an Al of the exact system. The averaging is
valid away from a resonance surface (in 3D), or a curve on the slow, (¢, z)-plane where
o = 0. We denote that surface by R. It follows from (1.14) that R is given by

11+ n—ndsin (A2)
2 - f ' =~ 7
0k(z) = 7 1+5—0sin (Az)
and located between g,;, and g,,,,. The division of the flow domain is shown in
Figure 1.5b (note that we plotted zmod 1). Trajectories to the left and to the right of
the corresponding vertical lines do not cross R.
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As a passive tracer approaches R, it can be either scattered at a resonance or captured
into resonance. While the scattering on resonance is somewhat similar to what happens
at the separatrix crossing, capture can occur only at a resonance. Qualitatively, the
difference between the two regimes can be described as follows. In the case of capture,
upon arrival into the resonant zone, the phase switches its behavior from rotation to
oscillation. The system drifts along the resonant surface for a long, of order £ 71, time.
As aresult, the value of the AI changes by A® = O(1). Among all the streamlines that
arrive to the resonant zone during a given time interval (of order 1), only a small,
O(+/¢€) part of streamlines are captured. In the case of scattering there is no phase
oscillation. The streamlines pass through the resonance zone inan O(1/¢) time and the
corresponding jumpinthe Alis A® = O(+/€). We describe these two processes below.

1.4.1
Scattering on Resonance

For most initial conditions, a tracer passes through the vicinity of R in a relatively
short time and without capture. In such a case, in the first approximation we can fix
the value of slow variables w and z at the resonance values, and the dynamics is
defined in terms of a forced-pendulum type of the second-order ODE for 6:

0" =a+Dbycos6 (1.15)

where

- 1_’7772 8. cos (12) (Qfé)(l+lng/1nn) b= 2

and the prime denotes the derivative with respect to the rescaled time t = /e t.
System (1.15) can be described by the resonance potential V = —a6—b; sin 6. The
shape of phase portraits for the motion in the potential V depends on the relation
between a and b;. If

|by| > |a (1.16)

the phase portrait looks like the one shown in Figure 1.6a, and vice versa for
Figure 1.6b.

In the process of scattering, the value of ® undergoes a jump, the magnitude of
which is (in the main approximation) given by

_1 (o

AD = —2s\/ex el J cos /2|52 + 0 + (b1 /a) sin 0] dO (1.17)
VialJs

where 6, is the value of 6 at the crossing, s=sign(a), and

E={V(6.)/(2n|a|)} € (0,1), where the curly brackets denote the fractional part.

If (1.16) holds, the ensemble average of A® is

oo

2
o°—1
AD) = —
< > S\/E 2 Sk
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Figure 1.6 Schematic phase portraits on the (6,6) plane.
Here Sg is the area under the separatrix loop, %, in Figure 1.6a:

Fg V2(V_V,)d#
0a

Sp=2

where V. is the value of V at the hyperbolic fixed pointin Figure 1.6a. If (1.16) does not
hold, (A®) = 0, as there is no separatrix, Sg = 0.

Equation (1.17) was checked numerically for various values of parameters &, k, and
¢. In Figure 1.7, the plots of Ag(&)/+/¢ are presented for (a) k = 2 (when (1.16) is
satisfied) and (b) k = 0.2 (when (1.16) is not satisfied). The solid lines in Figure 1.7
correspond to theoretical values of Ag(¢)/+/€ and the asterisks show values obtained
numerically from (1.13) for various values of &. When (1.16) is satisfied, Ag(&) has a
singularity.

1.4.2
Capture Into Resonance

The other phenomenon that affects the behavior of streamlines at a resonance

crossing is capture into resonance. See [14, 56] for additional details. Capture is
possible only if the phase portrait in the (6, 6)-plane looks like the one shown in

1.0

4 (a) : o b
0.5 ®)
o 2 o
% =0
a0 a
< < .05
-2
-1.0
-4
-1.5
-7 6 -5 4 -3 -2 -1 0 76 -5 4 -3 -2 -1 0
—2né, —ong

Figure 1.7 The plot of Ag/+/¢ as a function of &; (a) k =2 and (b) k =0.2. Note the difference in
scales.
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Figure 1.8 Captured motion. (a) A projection of a streamline on the slow, (g, z), plane; and (b) the
time evolution of w(o,2), € = 107, k=2.

Figure 1.6a, in other words, if there is a separatrixin the (8, §)-plane. Let I1(g,, ) be
a flux of resonance flow through the separatrix loop in Figure 1.6a. The value of
I(p,,z.) changes as a phase point moves along a streamline. If I1(p,,z.) is
decreasing, the capture is not possible. If IT increases and a streamline comes very
close to the hyperbolic fixed point, it may cross X and, as a result, be caught in the
oscillatory domain within the separatrix loop. In this case, a streamline starts
shadowing the resonant surface. The captured motion is integrable and Hamilto-
nian. Depending on the structure of resonance, a tracer can be released from
resonance (which is the case in the system under consideration) or reach the
boundary of the system.

The dynamics of a typical capture is shown in Figure 1.8 as a projection on the slow,
(0, 2), plane and the time evolution of w(g, z). A streamline comes from the bottom
in Figure 1.8a (from the left in Figure 1.8b), is captured near z = 0.05 (t = 100),
moves along the resonance, is released from the resonance near z = 0.45 (t = 1000),
and then proceeds along an adiabatic path.

As it was discussed in [10, 13, 39], capture can be considered as a probabilistic
phenomenon: initial conditions for streamlines that are or are not captured are
mixed. The probability of capture for the streamlines starting inside a small ball
centered at a certain point can be defined as a ration of the measure of the initial
conditions that are captured to the full measure of the ball. It was proved in [10] that
this probability is of the order of O(v/¢).

1.4.3
Improved Al

As the value of € increases, it becomes more and more difficult to distinguish between
the jumps of Al in the process if scattering, which are of the order O(/¢) from
oscillations of Al away from R, which are of the order O(¢). In this situation the notion
of improved Al becomes very useful. The improved AI ® is given by

o—1
w(z,0)

sin 6

ol = 0—¢K
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Figure 1.9 Comparison of improved Al with original Al (g).

It can be checked by the direct calculations that oscillations of @) away from the
resonance are of the order of &2, while its jumps due to scattering or still O(y/e).
However, there is no such a thing as free lunch: improved Al has a singularity at the
resonance (which is natural as it contains w in the denominator of the correction
term), while the original Al remains finite, see Figure 1.9.

1.4.4
Jump of Al Between First- and Second-Layer Boundaries

The numerical simulations show that there is large transport of particles between the
domain inside first-layer boundaries and the domain outside first-layer boundaries.
We find out that the jump of the Al also happens for particles in the domain outside
first-layer boundaries, where the resonance does not exist. The jump of Al happens at
Zin = 3/4and zot = 1/4 (near the inner and outer first-layer boundary, respectively).
Thus, the jump happens only once per slow period in the domain outside first-layer
boundaries, instead of twice per slow period in the domain between first-layer
boundaries.

The magnitude of Ag outside first-layer boundaries depends on both the value of 6
at the point of closest approach and the distance between the particle and the first-
layer boundary, shown in Figure 1.10a. When particles are close to the first-layer
boundaries, the magnitude of Ag is large, and w is relatively small (of order of \/¢) at
Zin close to the inner first-layer boundary, and at z, close to the outer first-layer
boundary. As particles move further from the first-layer boundaries, @ increases and
the magnitude of Ap decreases. Figure 1.10b represents the variance of the
distribution of Ap for uniformly distributed 6 as the function of ¢. The absolute
values of Ag and the variance of the distribution of Ag decrease as the distance
between particles and the first-layer boundaries increases. We can use the variance of
Ag to estimate the approximate position of the boundaries which the streamlines that
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Figure 1.10 (a) The plot of Ag as a function of v for different values of 0. (b) The variance of
distribution of Ag as a function of g.

start in the mixing domain do not penetrate. The second-layer boundaries are the last
invariant tori, and they are the actual boundaries of the chaotic domain.

1.4.5
Long-Time Dynamics and Adiabatic Diffusion

In many systems with random walks, the spreading of trajectories (or streamlines)
can be described using diffusion-type equation(1.6). The coefficients, U(p) and
D(p), are

Ua(e) = {A¢) Do) = j (Ao(E)—(Ao))dé (1.18)

Asitwas discussed above (and also illustrated below), for very small values of ¢, Uy,
averaged over a slow period, very often vanishes everywhere in the flow domain
except in the very vicinity of the boundaries. The boundary conditions for solving
diffusion equation (1.6) are von Neumann (no flux) at the outer boundary of the
second-layer domain.

To study the validity of the adiabatic diffusion approximation, we performed a set of
numerical simulations using the values of parameters specified above and e = 1073,
k = 0.2. We choose 1000 initial uniformly distributed in a small cubic box in the size
of & picked from the middle of the chaotic domain. Its size was
Om X Zin X Oin = [2.220,2.229] x [0.251,0.260] x [0.011, 0, 020]. We considered the
Poincaré sections located at z= N+ 0.25 and z = N+0.75, where N is a set of
integer numbers. Every trajectory crosses the resonance once between two conse-
cutive sections.

The results of our numerical simulations showed that the particles which initially
concentrated in those small boxes start to diffuse after multiple resonance crossings,
and in the end, the distribution of particles in the radius direction is quite uniform,
shown in Figure 1.11. The solid line in Figure 1.11 is the solution of diffusion
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Figure 1.11 The histogram of P(o, N) after different numbers of resonance crossings for Box 1.

equation (1.6) using the said box as the initial condition, and both results are
consistent with each other. The same results are also obtained for other initial
conditions, located in different parts of the flow domain.

The second moment of the distribution function P(g, N) of numerical simula-
tions, 02, is shown as the dash line in Figure 1.12. The constant slope of the solid line
in Figure 1.12 is the diffusion coefficient D() analytically calculated using Eq. (1.18)
for ({0o) = 2.225) (in the center of the box). The second moment of numerical
simulations ¢? is very close to D(p) in the beginning, before particles reaching the
first-layer boundaries. However, when particles start to cross the first-layer bound-
aries, 02 and D(p) start to diverge. In the end, ¢? comes to an asymptotic value with
small oscillations. That asymptotic value is the variance of uniformly distributed
particles in the chaotic domain, shown as horizontal lines in Figure 1.12.

1.5
Passages Through Resonances in Nonautonomous Flows

The effect of resonances is quite richer in the multifrequency systems. An example of
such systems is nonautonomous flows, where the time appears explicitly as an
additional fast phase. In the present section we follow [4] and discuss the mixing
dynamics in such systems and, as an example, we consider an incompressible fluid
flow in a one-dimensional array of cubic cells described by the following equations:
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Figure 1.12 The variance of g, over 1000 trajectories as a function of the number of resonance
crossings for Box 1.

—cos (%) sin (7wy) + 7b sin (7x) sin (7ry) sin wt

€ sin (27x) sin (n2)

sin (7rx) cos (7ry) + b cos (7wx) cos (7wy) sin wt (1.19)
€ sin (27y) sin (72)

z 2¢ cos (mz)[cos (27x) 4 cos (27y)]

~.
+ 14+ 1

This is a linearization of a system introduced by Solomon and Mezic in [57] as a
qualitative model of a Lorenz-force driven cellular flow in a channel of rectangular
cross-section (—0.5 < y,z < 0.5). It is easy to check that the no-slip boundary
condition at the channel walls is not satisfied. However, the exact solution of the
Navier—Stokes equations satisfying the proper boundary conditions will lead us to
qualitatively the same conclusions while making the calculations unnecessarily
complicated. The terms proportional to € describe a weak correction to the main
recirculation flow caused by inertial effects (Eckman pumping). The time dependence
of the flow represents an external perturbation describing the shift, with amplitude
b, of the boundaries between the cells (planes x = n+1/2, n € Z). For nonzero
b, there is transport between the cells; however, our objective here is to understand
the transport properties of the flow inside each of the cells. Since the dynamics in
all the cells are identical, we will consider only the cell with —0.5 < x < 0.5.

1.5.1
Unperturbed Flow

First, consider the unperturbed (base) flow characterized by ¢ = 0 and b = 0. In this
case, (1.19) is reduced to

% = —cos (7x) sin (wy) p = sin (7x) cos (my) 2=0 (1.20)
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Figure 1.13  Unperturbed system: (a) typical streamlines in the z = const plane and (b) the
frequency Q(W).

This is a two-dimensional autonomous flow which possesses two invariants:
z=const W = cos (7x) cos (7ry) = const

with W proportional to the streamfunction of the unperturbed flow in the (x, y) plane.
All the streamlines I', y of the unperturbed flow are closed (see Figure 1.13a) with the
period of motion T(W¥). The corresponding frequency Q = 25/ T ranges from Q = 0
at the boundaries of the cell to Q = 7 in the center. On every I, y, we can introduce a
uniform phase y mod (27r) such thaty = 0 on the positive x-axisand y = Q(W). Due
to the dependence of 2 of W, the unperturbed flow is characterized by mixing in only
one dimension (along the streamlines I', w) at O(1) rate.

15.2
Two Perturbations and Averaging

Next, consider the effect of the Eckman pumping (¢ > 0), ignoring the time-
dependent shift for the moment (b = 0). In this limit, flow (1.19) is steady but
conserves neither z nor W. The dynamics is characterized by two different timescales:
the variable y is fast (changes on O(1) timescale), while the variables zand W are slow
(change on O(¢™') timescale). Averaging evolution equations for W and Z over the
quick oscillations in y over one period of the unperturbed motion, we obtain an
averaged system that possesses an Al ® defined as a flux of the vector field v, (the
e-dependent part of the perturbation in (1.19), through a surface S bounded by an
unperturbed streamline I', ). The averaged system can be written as

. T 0P | T 0P
Wﬁ_E_j“(lp)@ ZﬁS—T(q{)ﬁ (1.21)

The addition of the time-dependent perturbation makes the structure of the flow
much more complex if b and ¢ are of similar magnitude. Hence, in what follows we
assume f§ = b/e = O(1). Furthermore, we assume @ = O(Q) = O(1). The evolu-
tion equations for the slow variables are
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W = —27e sin (7z) W (sin? (x) + sin® (7p)) —e %Zﬂ(sin (27ty)sin (wt))

Zz = 2e cos (nz)[cos (27x) 4 cos (27y)]
(1.22)

If Q and w are incommensurate, then averaging over y and t can be performed
independently (see, e.g., [58]). In this case, the time-dependent terms in the equation
for W average out and we would expect the Al @ to be conserved as before. The
evolution over a longer time interval shows that the Al remains essentially constant
except for the short periods of time when Q ~ w, as Figure 1.14b illustrates. We
therefore find, as previous studies [7, 59-61] did, a clear indication of the fact that the
breakdown of adiabatic invariance is a consequence of processes occurring in the
vicinity of resonances.

1.5.3
Resonant Phenomena

As the value of W slowly drifts, so does Q(W). Hence, at certain values of ¥ a
resonance condition

nQ(¥)—w =0 (1.23)

is satisfied for some nonzero integer n. Note that (1.23) is a special case of a more
general resonance condition nQ = mw, which corresponds to a generic time-
periodic perturbation. The restriction to m = 1 in our case is a consequence of the
particular form of the time-dependent perturbation in (1.19), namely, that only the
first harmonic is present. Since Q is independent of z, all resonance surfaces R,
defined by W(x,y) = W, = Q' (w/n), are vertical cylinders in the physical space or
vertical lines W = W, in the slow plane (see Figure 1.14b).

In what follows we describe a quantitative description of the dynamics near
resonant surfaces based on the theory of resonance phenomena in multiple-fre-
quency systems [58]. Note that, unlike autonomous systems with resonance phe-
nomena (see, e.g., [14], and Section 1.4) where the fast (unperturbed) dynamics slows
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Figure 1.14 The complete flow with ¢ = b = 107* and w = 2.5: (a) projection of the averaged
system on the slow plane, the bold line is the 1: 1 resonance is shown; (b) plots of Q/w (dashed
line) and @ (solid line) versus time for complete flow (1.1).

27



28

1 Resonances and Mixing in Near-Integrable Volume-Preserving Systems

down near a resonance, for the flow studied here, near R, both the fast angle variable
% and the phase of the perturbation wt keep changing rapidly. It is only a particular
linear combination of these phases that slows down:

y = ny—wt (1.24)

Therefore, near every resonance surface there is just one fast variable, y, rather
than two far from the resonances. Of the three other variables, Q and z are slow and y
is semislow with characteristic rates of change of order O(e) and O(&'/?), respectively.
We can still average the exact equations of motion for all three slow and semislow
variables over y (perform the so-called partial averaging, see [58]) in order to obtain
equations of motion near a resonance surface:

QW z

/ 1 /I -
=—nQ-w) Q _\/Ealps z —\/—g (1.25)

V=

In (1.25), the prime denotes the derivative with respect to the rescaled time
t = /etand W, z were defined in (1.22). Equation (1.25) is very similar to the one
appearing in autonomous case (see (1.15)).

For most initial conditions, tracers pass through the vicinity of resonance in a
relatively short time and the value of @ undergoes a relatively small jump. In the first
approximation we can fix the value of slow variables Q and z at the resonance values,
which yields a forced pendulum-like equation for y:

/! L

y'=-"nQ =a,+b,cosy (1.26)
VE

In (1.26), a, and b, correspond to the average of the first and the second term
in (1.22) over the fast period T, = T(W,) = 27n/w, respectively:

27
a, = —nWsin (7z,) a—lg;J (sin® (7x) + sin’ (7ry))dy
0

T 0Q (* ,
b, = — 1 nﬁa—w Jo sin (2sty) sin (ny)dy
and z, is the value of z at which the crossing occurs. The average of ® over T, can be
computed using (1.21) and (1.22), yielding
(@) = ef c,cos (mz.)cos y (1.27)

where the coefficient ¢, is given by

27
Chn=— 5[ (cos (27x) + cos (27y) )sin (27y)sin (ny)dy.
0

Integrating over a time interval during which the resonance is crossed once, we
obtain in the leading order
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Cn r’(t*) cosy dy
V0an] ) s \/2]827E +y + (bu/an) siny|

where & is defined analogously to the previous section.
When |b,| > |ay|, (A®) is finite:

A® = —2\/¢ saf cos (7z,)

Cn

b,

(A®) = —sv/€ B cos (nz.)
where S is the area under the separatrix loop on the resonance plane (cf. Figure 1.6a).
In the opposite case |b,| < |a,|, there is no separatrix, S = 0, and hence (A®) = 0.
Generally, a nonzero ensemble average of A® results in a unidirectional drift of ®.
However, in the current problem, two successive crossings occur at almost the
opposite values of z. Thus, they cancel each other on average because of the change of
the sign of s, and the aggregate change of ®@ on one period of the slow motion has zero
mean. The second moment of AP

1
o - | (ao@-no) e
0
is finite for any value of ®. The dependence of A® on the order of the resonance is
determined by the scaling of a,, b,, and ¢,, which are the Fourier coefficients of
smooth functions. In particular, a, corresponds to the 0-th harmonic and increases
linearly with n. On the other hand, b, and ¢, correspond to higher harmonics and
decrease exponentially with n. As a consequence, the characteristic magnitude of the
jumps decays exponentially. Thus, only low-order resonances contribute significantly
to the change in the value of the AI. For high-order resonances, we have
AD ~ /e e, where a is some constant.

15.4
Volume of the Mixing Domain

On every period T,(®) of the slow motion along a given trajectory, the value of ¥
changes between Wi, and W oy If no (low-order) resonance W, falls in this interval,
then that trajectory (and all trajectories inside of it) remains regular. If, on the other
hand, the trajectory crosses a resonance surface, the Al experiences jumps and the
motion becomes chaotic.

In the & — 0 limit, the boundary between the chaotic and the regular domains is,
thus, given by the trajectory I'q+ that (i) touches a resonance surface and (ii) has the
largest value ® among all such trajectories on the (W,z) plane (bold line in
Figure 1.14a). Condition (ii) is necessary when multiple resonances are considered.
In the physical space, the boundary is formed by the corresponding torus 7¢+. The
Poincaré section of the complete flow by the plane z = 0 (see Figure 1.15a) confirms
that the space inside the torus 7¢- corresponds to the regular domain discovered
in [57], while the rest of the physical space belongs to the chaotic domain. Moving the
frequency o closer to the resonance with Q(W,) = 2.2 completely wipes out the
regular domain (see Figure 1.15b).
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Figure 1.15 Complete and partial mixing. z = 0 Poincaré section of a single streamline with
e=b=10"*and (a) w = 4.0, (b) = 2.5.

The width d of the regular domain can be computed easily for any value of w (see
Figure 1.16). For 0 < w < 1, all the resonances are located near ¥ = 0 (i.e., cell
boundary). As w is increased, the 1 : 1 resonance is the first to penetrate deeper into
the cell. For 0 < wu, I+ is tangent to the resonance W = W (see Figure 1.14a). As w
approaches 7, the 1 : 1 resonance is pushed out of the cell and the 1 : 3 resonance
becomes the most prominent for zw3x (recall that even resonances do not lead to
jumps in @ and thus do not contribute to adiabatic diffusion). Then the process
repeats itself: as w is increased further, low-order resonances are pushed out of the
cell and higher resonances become prominent. Finally, as w — oo, the cell becomes
uniformly covered by high-order resonances. However, the impact of the high
resonances is exponentially small and hence we can expect mixing to become
spatially uniform on exponentially long timescales. On finite timescales character-
istic of experiments (e.g., those reported in [57]), it would appear that no mixing is
taking place. We should also point out that, for the flow between concentric spheres
considered in [60, 61], complete mixing relies on high-order resonances and, while
conceptually possible, would similarly require exceedingly long times.

In our case, complete mixing on experimentally accessible timescales can be
achieved by eliminating the domain of regular dynamics via a proper placement of a
low-order resonance. This can be accomplished by setting the frequency w of the

0.4

1 3 5 ® 7

Figure 1.16  The width d of the regular domain as a function of the perturbation frequency, w for
&£ =b=10"* solid line — theoretical prediction, dots — numerical simulations.
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perturbation such that W, () = W, for some n. More precisely, the resonance must
be within the interval [¥,—W,| = O(y/¢), as the chaotic domain penetrates inside
I'e+ by an O(y/¢) distance [50]. This property, negligible in most similar problems, is
important here as the magnitude of the jumps vanishes at W,. Indeed, ® ~ %
according to (1.27), so A® =0 at ¥ = W, as z = 0 there. Since the width of the
regular domain d ~ |W,(w)—W¥,|, we find the width of the frequency intervals
yielding complete mixing (where d = 0) to scale as Aw ~ /¢ (see Figure 1.16).
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