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Introduction

In this chapter we shall provide a brief overview of a number of different basis sets to
classify molecular eigenstates and studymolecular dynamics. The basic procedure is
described in Section 1.1, where the solution of the Schr€odinger equation for the
molecular system is given by separating the electronic motion from the nuclear
motion in the molecule. This procedure, called the adiabatic description, represents
the basis set that most often describes the initially excited states in large molecules.
Alternatively, Section 1.1.3 introduces the crude Born–Oppenheimer (BO) basis, and
Section 1.1.4 gives a description of the Herzberg–Teller adiabatic approximation.
Sections 1.2 and 1.3 are devoted to the vibrational wavefunctions and their normal
coordinates aswell as to theDuschinsky effect. Section 1.4 concludes the chapterwith
a mathematical analysis of two strongly coupled adiabatic states, one of the funda-
mental and difficult problems of physics. The analysis is performed by using a
diabatic basis set, and as an application a formal and compact solution is derived for
the predissociation of a triatomic molecule via a conical intersection.

We assume that the reader is familiar with the basic notions of quantum theory.
However, tomake our study reasonably self-contained, we have included some of the
derivations in the appendices.

1.1
The Adiabatic Description of Molecules

1.1.1
Preliminaries

In the treatment of electronic states in large molecules, one usually neglects the
details concerning the rotation and translation motions and rather concentrates on
the dynamics of the electronic and vibrational motions. The starting point for the
description of thesemotions in amolecule consisting of electrons andK nuclei is the
completeHamiltonianH of themolecule. Towrite down theHamiltonian, the origin
of the molecular coordinate system is placed at the center of mass. It is assumed that
the positions of the K nuclei will deviate only by small amounts from some reference
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configuration. The molecules with large amplitude motions, such as internal
rotations, are therefore explicitly excluded. The nuclear inertia tensor is then
approximated by the inertia tensor of the reference configuration and the axes of
the internal coordinate system are directed along the principal axes of this reference
inertia tensor. If now the center of mass motion is removed, the nuclear motion can
be described by a vector of 3K� 6 dimensions for a (nonlinear) systemwithK atoms.
The latter are normally taken as linear combinations of mass-weighted vectors
describing the displacements from the reference configuration [1–3]. With this
approximation and, for the sake of simplicity, taking only the electrostatic Coulomb
interaction, the vibronic Hamiltonian can be written as

H ¼ TeðrÞþTNðqÞþUðr; qÞ: ð1:1Þ
Here the vector r¼ (r1; r2; . . . ; rn) where ri ¼ ðxi; yi; ziÞ denotes collectively all
electronic coordinates and the coordinates of the nuclei are specified by
q ¼ ðq1; q2; . . . ; qNÞ, where N ¼ 3K�6. In the following, we shall adopt the conven-
tion that the components of the vector q are labeled by Greek indices if they range
from 1 toN, and the Latin ones denote the components of the electronic coordinates.
The electronic kinetic energy operator TeðrÞ and the nuclear kinetic operator TNðqÞ
are presented in a diagonal form:

TeðrÞ ¼ �
X
i

�h2

2m

� �
q2

qr2i

� �
ð1:2Þ

and

TNðqÞ ¼ �
X
m

�h2

2

� �
q2

qq2m

 !
; ð1:3Þ

wherem is themass of the electron and qm aremass-weighted (dimensioned) nuclear
coordinates given by

R ¼ R0þM�1=2Aq;

where R and R0 are ð3K�6Þ-dimensional column vectors of the instantaneous and
equilibrium Cartesian coordinates, respectively, associated with the nonzero fre-
quency normal modes. M is the ð3K�6Þ � ð3K�6Þ mass-weighted matrix, A is the
orthogonal transformation that diagonalizes the mass-weighted Cartesian force
constant matrix, and q is the dimensioned normal coordinate vector. Uðr; qÞ in
Equation 1.1 is the total (internal) potential energy and includes all the electro-
n–electron, nucleus–nucleus, and electron–nucleus interactions. In spite of the
approximation already made, the exact molecular vibronic eigenstates Yðr; qÞ in a
stationary state satisfy the time-independent Schr€odinger equation

½TeðrÞþTNðqÞþUðr; qÞ�Yðr; qÞ ¼ E Yðr; qÞ: ð1:4Þ

Serious approximations become necessary when one tries to solve Equation 1.4. One
of these solutions is the adiabatic separation, which will be outlined below. This
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outline will serve as a guide to the possible classifications of molecular states and as
an aid to the solution of specific quantum mechanical problems.

1.1.2
The Born–Oppenheimer Approximation

The first step of the adiabatic description is the Born–Oppenheimer approximation,
according to which

the nuclear kinetic energy is neglected, and
the nuclear configuration is fixed at the position R.

The adiabatic approximation is based on the fact that typical electronic velocities
are much greater than typical nuclear (ionic) velocities. (The significant electronic
velocity is v ¼ 108 cm=s, whereas typical nuclear velocities are at most of order
105 cm=s.) One therefore assumes that, because the nuclei have much lower
velocities than the electrons, at any moment the electrons will be in their ground
state for that particular instantaneous nuclear configuration.

Under circumstances where TNðqÞ ¼ 0, and at particular arrangement of the ion
cores, we can separate electronic and nuclear motions. This can be accomplished by
selecting some basis set of electronic wavefunctions jaðr; qÞ, which satisfy the partial
Schr€odinger equation

½TeðrÞþUðr; qÞ� jaðr; qÞ ¼ EaðqÞ jaðr; qÞ; ð1:5Þ
where EaðqÞ corresponds to the electronic energy at this fixed nuclear configuration.
The configuration q is chosen arbitrarily, but for the solution of Equation 1.5 it
must be fixed. In other words, the electronic wavefunction jaðr; qÞ depends on
the electronic coordinate r and parametrically on the nuclear coordinates. For any
value of q, the ja are assumed to be orthonormal and complete (i.e., span the
subspace defined by the electronic coordinates r). They are also assumed to vary in a
continuous manner with q. The total (molecular) wavefunction Yðr; qÞ can be
expanded in terms of the electronic basis function [4, 5]

Yvðr; qÞ ¼
X
b

jbðr; qÞxbvðqÞ; ð1:6Þ

where the nuclear wavefunctions xbvðqÞ are initially treated as coefficients in the
series (1.6). These coefficients are selected such that Equation 1.4 is satisfied.Wehave
to substitute Equation 1.6 for Yðr; qÞ in Equation 1.4. Remarking that

q2ðjbxbvÞ
qq2m

¼ q2jb

qq2m

 !
xbvþ 2

qjb

qqm

qxbv
qqm
þjb

q2xbv
qq2m

 !
ð1:7Þ

and

q2ðjbxbvÞ
qr2i

¼ xbv
q2jb

qr2i

� �
;
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we find according to Equation 1.6 that

H
X
b

jbxbv ¼
X
b

(
EbðqÞjbðr; qÞxbvðqÞþTNðqÞjbðr; qÞxbvðqÞ

�2
X
m

�h2

2

� �
qjbðr; qÞ

qqm

qxbvðqÞ
qqm

þjbðr; qÞTNðqÞxbvðqÞ
)

¼ E
X
b

jbðr; qÞxbvðqÞ:

In deducing this result, we have used Equation 1.5 and the fact that the wavefunction
jb is an eigenfunction of Equation 1.5.Multiplying from the left byj�a and integrating
over the electronic coordinates, we obtain the usual set of coupled equations for the
xav [4, 5] (see also Ref. [6] with modifications given by McLachlan [7] and Kolos [8]):

TNðqÞþEaðqÞþ hja TNj jjai�E½ �xavðqÞ

þ
X
b 6¼a

�
hja TNðqÞj jjbir�2

X
m

ð�h2=2Þhja q=qqm
�� ��jbirq=qqm

�
xbvðqÞ ¼ 0:

ð1:8aÞ
The restriction b 6¼ a in Equation 1.8a is a consequence of the orthonormality of the
jb; hjbjjair ¼ dab. Here and in Equation 1.8a, angle brackets indicate integration
over the electronic coordinates only. To avoid confusion resulting from numerous
subscripts, it is often convenient to adopt a matrix notation, writing Equation 1.8a as

TNðqÞþEaðqÞþ hja TNðqÞj jjai�E½ �xav ¼
X
b6¼a

Xabxbv; ð1:8bÞ

where Xab ¼ �hja TN;jb½ �ir
�� and ½A;B� ¼ AB�BA. The adiabatic approximation (or

BO adiabatic approximation in the nomenclature of Ballhausen and Hansen) is
obtained by neglecting the coupling term inEquation 1.8a (the expression in the curly
brackets). The molecular wavefunction now reduces to the simple product

Yavðr; qÞ ¼ jaðr; qÞxavðqÞ ð1:9Þ

and the corresponding equation for the nuclear function xavðqÞ in this approximation
has the form

½TNðqÞþEaðqÞ�xavðqÞ ¼ EavxavðqÞ; ð1:10Þ

where Eav is the eigenvalue for the nth vibrational level in the ath electronic state.
Thus, from Equations 1.5 and 1.10, we see that, in the BO approximation, the nuclei
move in an effective potential EaðqÞ generated by the electron distribution, while the
electron distribution is a function of the nuclear configuration q. EaðqÞ is designated
as the adiabatic potential surface of ja. The additional diagonal term hja TNðqÞj jjair
in Equation 1.8 is omitted in theBOapproximation, aswehave done inEquation1.10.
Alternatively, if this term (designated as the adiabatic correction to the potential
energy surface) is taken into account,we speak of theBorn–Huang approximation [5].
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From numerical calculations of the low-lying electronic states of H2
þ and H2, it is

known that this correction is invariably small [9, 10] and can usually be neglected.
The approximate wavefunctions of the adiabatic approximation are characterized

by the following off-diagonalmatrix elements between different electronic states [11]:

hYav Hj jYav0 irð Þq ¼ Eavdvv0 ð1:11Þ
(i.e., the adiabatic basis set is diagonal within the same electronic configuration) and

Yav Hj jYbv0h ir
� �

q ¼ xav ja TNj jjbh irxbv0
� �

q

��h2
X
m

xav ja q=qqm
�� ��jb

� 	
r
qxbv0=qqm


 �
q
: ð1:12Þ

In Equation 1.12, we have indicated convenient abbreviations for the two integrals:
hj ji for the integral over electronic coordinates and j jð Þ for the integral over nuclear
coordinates. Equation 1.12 represents the so-called Born–Oppenheimer coupling,
which promotes transitions between potential energy surfaces via the nuclear kinetic
energy operator. If these terms in the basis defined by Equation 1.9 are small relative
to the separation of vibronic states Eav�Ebv0 , the BO approximation will give a very
good approximation and will lead to tremendous simplification. In the case of
close lying vibronic states belonging to different electronic configurations
Eav � Ebv0 , the adiabatic approximation can fail. The interaction of nuclear vibrations
with the electronicmotion inmolecules gives rise to interesting effects that have been
attributed to linear and quadratic terms in the nuclear displacements from the
equilibrium configuration. Linear vibronic coupling terms lead to vibrational bor-
rowing, an effect that appearsmost clearlywith forbidden electronic transitionsmade
allowed through the simultaneous excitation of certain asymmetric vibrations. The
other physical situations associated with linear displacements along certain asym-
metric normal coordinates lead to the Jahn–Teller [12–25] and the pseudo-Jahn–Teller
effects (see Appendix K). The effect of quadratic nuclear displacement terms is
manifested in the Renner effect [26]. Although the study of these effects is of
considerable interest, their observation is limited to systems of high symmetry that
have degenerate or nearly degenerate electronic states.

Going back to expression (1.12) for the coupling term, we shall now elucidate the
situation that occurs when the potential energy surfaces belonging to different
electronic states cross. This is easily obtained on introducing the following expres-
sions [27]:

½EbðqÞ�EaðqÞ� ja q=qqm
�� ��jb

� 	 ¼ ja qU=qqm
�� ��jb

� 	 ð1:13Þ

and

½EbðqÞ�EbðqÞ� ja q2=qq2m
��� ���jb

D E
¼ ja q2U=qq2m

��� ���jb

D E
þ2 ja ðqU=qqmÞq=qqm

�� ��jb

� 	
:

ð1:14Þ
In the region where the two potential energy surfaces do not cross, EaðqÞ 6¼EbðqÞ;
Equation 1.13 may obviously be rewritten as

ja q=qqm
�� ��jb

� 	¼ ja qU=qqm
�� ��jb

� 	
=½EbðqÞ�EaðqÞ� ð1:15Þ

1.1 The Adiabatic Description of Molecules j5



and relation (1.15) is well behaved. At the surface intersections EaðqÞ¼EbðqÞ,
relation (1.15) is not as such without further ado valid. To see this, we differentiate
the general expression (1.13) with respect to qm and then evaluate the result at the
surface intersection to yield

ja q=qqm
�� ��jb

� 	¼ q ja qU=qqm
�� ��jb

� 	
=qqm

� 
= qEb=qqm�qEa=qqm
� 

; ð1:16Þ

where we have assumed, for simplicity, that the intersection surface results from the
variation of a single coordinate qm and that ðqEb=qqmÞc 6¼ ðqEa=qqmÞc at the intersec-
tion point c. This means that hjajq=qqmjjbi is well behaved over the whole range of
values of qm. Indeed, Equation 1.16 can be rederived directly from Equation 1.15 by
applying l�Hospital�s rule. Expression (1.15) should likewise be well behaved (non-
singular) in the more general case of multidimensional surface intersections, where
qm in Equation 1.16 denotes the coordinate normal to the intersection surface defined
by EaðqÞ¼EbðqÞ. The property of hjajq2=qq2mjjbi and its nonsingularity clearly follow
in a completely analogous way.

The behavior of hjajq=qqmjjbi and hjajq2=qq2mjjbi has been examined in Ref. [28]
for H2

þ as a function of the internuclear distance R. Both these quantities were
shown to vary smoothly with R. Subsequently, Nitzan and Jortner [29] have used
Equation 1.15 in the whole range of values of qm, including the region of the
intersection of the adiabatic surfaces by assuming the principal value for
½EaðqÞ�EbðqÞ��1 at the intersection point. This leads to a finite but peaked value
of (1.15) at the surface intersection. A representative example of a similar situation
will be shown inSections 1.6 and 7.6, where the nonadiabatic coupling (1.15) near the
conical intersection between states 2B2 and

2A1 of H2Oþ is shown.

1.1.3
The Crude Born–Oppenheimer Basis Set

In this and the following sections, wewill discuss ways of selecting the basis function
ja by separating the nuclear and electronic motions in a manner different from that
in the previous section. In the present approach, the electronic Hamiltonian is
assumed to be

Helec ¼ TeðrÞþUðr; q0ÞþDUðr; qÞ; ð1:17Þ
where q0 is a reference configuration and DU ¼ Uðr; qÞ�Uðr; q0Þ is taken as a
perturbation. In what follows, we will first briefly discuss the crude approximation
and then the improvement of the crude BO basis set by using the Herzberg–Teller
approximation. In addition to its practical utility, the Herzberg–Teller approximation
provides an instructiveway of viewing the (improved) crudeBObasis complementary
to that of the adiabatic basis derived in Section 1.1, permitting a reconciliation
between the apparently contradictory features of both the crude BO basis set and the
BO adiabatic basis set. The situation we have in mind occurs in the case of widely
separated electronic states, which when mixed with each other give rise to vibroni-
cally induced allowed electronic transitions [30, 31] (see, for example, the mixing of
odd parity states with the even parity states of transition metal complexes).
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In the crude adiabatic (CA) approximation [1, 32–40], the electronic wavefunctions
jCA
a ðr; qÞ defined at a specific nuclear configuration q0 satisfy the following Schr€odin-

ger equation:

½TeðrÞþUðr; q0Þ� jCA
a ðr; q0Þ ¼ ECA

a jCA
a ðr; q0Þ; ð1:18Þ

where ECA
a is the ath eigenvalue and q0 implies all the nuclear coordinate positions of

the reference configuration. Since these wavefunctions form a complete set (which
span the Longuet–Higgins space), the eigenstate of the total Hamiltonian Yvðr; qÞ
may be expanded (analogous to Equation 1.6) in terms of jCA

a ðr; q0Þ:

Yvðr; qÞ ¼
X
b

jCA
b ðr; q0Þ xbvðqÞ: ð1:19Þ

As before, xbvðqÞ are initially treated as expansion coefficients, which must be
determined. Inserting Equation 1.19 in Equation 1.4 results in the usual infinite
set of coupled equations for the xbvðqÞ:�

TNðqÞþECA
a þ jCA

a ðr; q0Þ DUj j jCA
a ðr; q0Þ

� 	�Et

xavðqÞ

þ
X
b 6¼a

jCA
a ðr; q0Þ DUj j jCA

b ðr; q0Þ
� 	

xbv0 ðqÞ ¼ 0: ð1:20Þ

The functions xavðqÞ are therefore determined by the set of coupled equations (1.20).
The potential functions jCA

a DUj jjCA
b

� 	
are usually represented as power series

expansions in the normal coordinates qm around q0, where q0 is usually chosen at
the minimum of the ground state.

Provided that

jCA
a DUj jjCA

b

� 	 ¼ 0 ð1:21Þ

for a 6¼ b, Equation 1.19 is simply written as a product

YCA
av ðr; qÞ ¼ jCA

a ðr; q0ÞxCAav ðqÞ; ð1:22Þ
where the coefficient xCAav is the eigenstate of the following equation:

TNðqÞþECA
a þ jCA

a DUj jjCA
b

� 	� 
xCAav ðqÞ ¼ ECA

av x
CA
av ðqÞ: ð1:23Þ

The diagonal matrix elements jCA
a DUj jjCA

a

� 	
are the effective potential energy

surface that governs nuclear motion. From Equations 1.10 and 1.23, it is evident
that the vibrational wavefunction xCAav differs from the adiabatic wavefunction xBOav :As
long as the basis set jCA

a ðr; q0Þ is complete in the electronic space, the CA basis is
perfectly adequate (independent of the choice of q0). The two matrix representa-
tions 1.8 and (1.20) are merely two different representations of the same operator.

1.1.4
Correction of the Crude Adiabatic Approximation

The electronic wavefunction in the crude adiabatic approximation is defined accord-
ing to Equation 1.18 at a specific nuclear configuration q0 and therefore it does not
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depend on the nuclear coordinates fqmg. To calculate corrections to this extreme case,
we apply the Rayleigh–Schr€odinger (RS) perturbation calculation, taking DU as
perturbation operator. This leads to

jaðr; qÞ ¼ jCA
a ðrÞþ

X
b 6¼a

jCA
b ðrÞcbaðqÞ; ð1:24aÞ

where

cbaðqÞ ¼
jCA
b ðrÞ DUj jjCA

a ðrÞ
� 	

ECA
a �ECA

b

þ
X
c 6¼a;b

jCA
b ðrÞ DUj jjCA

c ðrÞ
� 	

jCA
c ðrÞ DUj jjCA

a ðrÞ
� 	

ECA
a �ECA

b

� �
ECA
a �ECA

c

� �
ð1:25Þ

and

ECA
a;b ¼ Ea;bðq0Þ:

The same procedure gives for the eigenvalues (in second order)

EaðqÞ ¼ ECA
a þðDUÞaaþ

X
b6¼a

ðDUÞabðDUÞba
ECA
a �ECA

b

; ð1:26Þ

where

ðDUÞab ¼
�
jCA
a ðrÞ DUj jjCA

b ðrÞ
	
: ð1:27Þ

Expansion of DU in the vicinity of q0 in terms of nuclear coordinates fqmg gives

DU ¼
X
m

qUðqÞ
qqm

� �
q0

qmþ 1
2

X
m;n

q2UðqÞ
qqmqqn

� �
q0

qmqnþ � � � : ð1:28Þ

After inserting (1.28) into (1.26), we have

EaðqÞ ¼ ECA
a þ

X
m

Uaa
m qmþ 1

2

X
m;n

qmqn Uaa
m;nþ 2

X
b 6¼a

Uab
m Uba

n

ECA
a �ECA

b

( )
ð1:29Þ

with

Uab
m ¼ jCA

a ðrÞ
qUðr; qÞ

qqm

� �
q0

�����
�����jCA

b ðrÞ
* +

ð1:30Þ

and quadratic terms in qm:

Uab
mn ¼ jCA

a ðrÞ
q2Uðr; qÞ
qqmqqn

����
����jCA

b ðrÞ
� �

: ð1:31Þ

In writing Equation 1.29, we have taken into account the linear terms from
Equation 1.28 in second order and quadratic terms in q in first order. Correspond-
ingly, the coefficients cbaðqÞ in (1.25) are expressed as (in second order)
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cbaðqÞ¼
X
m

Uba
m

ECA
a �ECA

b

qmþ
X
m;n

1
2

Uba
mn

ECA
a �ECA

b

þ
X
c 6¼a

Ubc
m Uca

n

ECA
a �ECA

b

� �
ECA
a �ECA

c

� �
" #

qmqn:

ð1:32Þ
The correction of the CA approximation performed above is known as �vibronic
coupling� and the wavefunction (1.24a) is sometimes designated as the Herzberg–
Teller approximation. In this approximation, the corrected molecular eigenfunction
can be written as

Yavðr;qÞ¼ jCA
a ðrÞþ

X
b 6¼a

jCA
b ðrÞcbaðqÞ

" #
xBOav ðqÞ ð1:33Þ

and is still (of product form) adiabatic. Ballhausen and Hansen [1] have introduced
the termHerzberg–Teller adiabatic approximation to emphasize the adiabatic nature
of Equation 1.33 [40].

An obvious generalization of Equation 1.24a results if we choose

jaðr; qÞ ¼
X
b

jCA
b ðrÞ�cbaðqÞ ð1:24bÞ

for an adiabatic electronic wavefunction jaðr; qÞ. Upon substituting Equation 1.24b
into Equation 1.6, we obtain

Yvðr; qÞ ¼
X
c

jCA
c ðrÞ

X
b

�ccbðqÞxBObv ðqÞ; ð1:34Þ

which can be compared with Equation 1.19 to yield the relation

xCAcv ðqÞ ¼
X
b

�ccbðqÞxBObv ðqÞ ð1:35Þ

between the vibrational wavefunction in the CA approximation and the vibrational
wavefunction in the BO approximation.

The classic cases of the Herzberg–Teller mechanism relate to coupling between
two electronic states of different symmetry. An important example of this case occurs
when electric dipole transitions of one of the two states are forbidden (e.g., the
Laporte-forbidden d–d and f–f transitions). In this case, the forbidden transitionmay
acquire absorption intensity by Herzberg–Teller mixing with an allowed transition
via a nontotally symmetric mode of appropriate symmetry (the irreducible repre-
sentation of the activemodemust be contained in the direct product of the irreducible
representations for the two states coupled by the Herzberg–Teller mechanism). We
shall illustrate our results in Chapter 7 by evaluating the vibronic induced d–d
transitions in transition metal complexes.

1.2
Normal Coordinates and Duschinsky Effect

Let us now return to Equation 1.29 for the potential energy surface of the ath
electronic state and reformulate it in a more suitable (canonical) form:
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EaðqÞ ¼ Eaðq0Þþ
X
m

lamqmþ
1
2

X
m;n

f amnqmqn ¼ E0
a þðIaÞtqþ

1
2
qtFaq; ð1:36Þ

with

lam ¼ Uaa
m

and

f amn ¼ Uaa
mn þ 2

X
b 6¼a

Uab
m Uba

n

ECA
a �ECA

b

: ð1:37Þ

In Equation 1.36, the boldface letters q and Fare column vector and squarematrix,
respectively. The superscript t indicates matrix transposition. Apart from the linear
terms in qm, the potential of the ath electronic state contains in the harmonic
approximation pure and mixed quadratic terms. The linear terms lm 6¼ 0, especially
for total symmetric vibrational modes m (see Equations 1.30 and 1.37) is closely
related to the geometrical displacement associated with the electronic transition
between the electronic ground state and the ath electronic state. The pure quadratic
force constant coefficients f amm describe the curvature of the potential energy surface of
the ath electronic state along the axes of the nuclear coordinate system, whereas the
mixed quadratic terms f amnðm 6¼ nÞ are responsible for the mixing of vibrational
coordinates (modes) upon electronic excitation (see later). Therefore, our first goal
is to transform them from the expression of EaðqÞ. Since Fa is a real and symmetric
square matrix, it can be diagonalized by the following transformation:

qa ¼ Aaqþ ka; ð1:38Þ

whereAa is an orthogonalmatrix that diagonalizes themass-weighted force constant
matrixF. Applying Equation 1.38 on the electronic ground state a ¼ 0 and noting that
ðABÞt ¼ BtAt for any two matrices, we have

E0ðqÞ ¼E0ðq0Þþ ðl0ÞtðA0Þ�1q0�ðl0ÞtðA0Þ�1k0

þ 1
2
½ðA0Þ�1ðq0�k0Þ�t F0½ðA0Þ�1ðq0�k0Þ�

¼E0ðq0Þþ ðl0ÞtðA0Þ�1q0þ 1
2
ðq0ÞtA0F0ðA0Þ�1q0� 1

2
ðq0ÞtA0F0ðA0Þ�1k0

� 1
2
ðk0ÞtA0F0ðA0Þ�1q0�ðl0ÞtðA0Þ�1k0þ 1

2
ðk0ÞtA0F0ðA0Þ�1k0

¼ E0ðq0Þþ ððl0ÞtðA0Þ�1�ðk0ÞtA0F0ðA0Þ�1Þq0þ 1
2
ðq0ÞtA0F0ðA0Þ�1q0

�ðl0ÞtðA0Þ�1k0þ 1
2
ðk0ÞtA0F0ðA0Þ�1k0: ð1:39Þ

In deriving (1.39), we havemade use of the relationA�1 ¼ At forA being orthogonal.
(The inverse of the matrix is its transpose AtA ¼ E.) The linear term in q in
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Equation 1.39 vanishes, if

ðl0ÞtðA0Þ�1�ðk0ÞtA0F0ðA0Þ�1 ¼ 0

and hence

ðl0ÞtðA0Þ�1k0 ¼ ðk0ÞtA0F0ðA0Þ�1k0: ð1:40Þ
Inserting (1.40) into (1.39) yields

E0ðqÞ ¼ E0ðq0Þþ
1
2
ðq0ÞtL0q0� 1

2
ðk0ÞtL0k0; ð1:41Þ

where L0 ¼ A0F0ðA0Þ�1 ¼ diag ðl01; l02; . . . ; l0NÞ is composed of diagonal elements
lm, which arises from the nonzero frequency normal modes. Thus, Equation 1.41
represents the potential surface of the ground electronic state in the diagonal
(canonical) form in mass-weighted ground-state normal coordinates. The last term
in Equation 1.41 is a constant and can be included in E0ðq0Þ. Thus, the transfor-
mation (1.38) that diagonalizes the potential energy for the nuclear motion is
determined uniquely by the coefficients l0m and f 0mn of the respective electronic state.

Equation 1.41 pertains to the normal coordinates in the ground electronic state; an
analogous expression holds for any electronic state a, where againLa ¼ AaFaðAaÞ�1
¼ diag ðla1; la2; . . . ; laNÞ and Aa is the transformation matrix to mass-weighted
coordinates, defined by

qa ¼ Aaqþ ka: ð1:42Þ
It can be proved that

Ea ¼ E0
a þ

1
2
ðqaÞtLaqa: ð1:43Þ

Combining (1.42) for a 6¼ 0 and (1.38) leads to

qa ¼ AaðA0Þ�1q0þ ka�AaðA0Þ�1k0;
which we abbreviate to

qa ¼Wq0þ k0a; ð1:44Þ
where W ¼ AaðA0Þ�1 thus formed is known as the Duschinsky rotation matrix
associated with the 0! a electronic transition and k0a is related to the geometrical
displacement vector between these states. (To simplify notation, we shall henceforth
drop the 0a superscript on k.)

According to Equation 1.44, the normal coordinates of an excited electronic state qa

relative to those of the ground electronic state q0 are rotated (rotation matrixW) and
displaced by the vector k. This rotation is called the Duschinsky rotation or
Duschinsky mixing effect [41–44] (of the vibrational modes among each other).
This mixing effect is subject to symmetry rules of the molecular symmetry group.
Since in the most common instances vibrational modes of the same symmetry are
mixed with each other (Equations 1.29–1.31 and 1.37), the matrix W assumes the
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quasi-diagonal form indicated below:

W ¼
=====

==== 0
0 ===

==

��������

��������
;

where the elements outside the shaded area are zero, since they correspond tomodes
of different symmetry. Simple symmetry arguments show that Uaa

mn 6¼ 0 if qm qn
transform as the totally symmetric transformation andUab

m Uba
n 6¼ 0 if qm qn transform

as the direct product of ja and jb. Rotations of normal coordinates in an excited
electronic state relative to the ground-state normal coordinate space can therefore be
expected for such amolecule if it possesses at least two differentmodes transforming
as the same irreducible representation [41]. Cross-terms, and hence rotations in
totally symmetric modes, are generated by the Uaa

mn term in Equation 1.29, whereas
rotations in the nontotally symmetric modes are generated by the terms in the
summation over b 6¼ a. As we shall see, this feature plays a crucial role in the
derivation of transition probabilities. Vibrational modes of the same symmetry
species assigned to the same shading fields in the matrix W cannot be represented
as single separable modes and are said to be mixed or nonseparable modes.

A very thorough survey of the Duschinsky effect is given in Refs [45–57]. A 8� 8
Duschinsky matrix W has been determined by quantum mechanical calculation of
the potential energy surfaces to interpret the vibronic structure of the 1Bu 1Ag

transition of trans,trans-1,3,5,7-octatetraene in alkane matrices at 4.2 K [45]. The
mixedmodes are of a1g symmetry. Supersonic jet excitation and single vibronic level
dispersedfluorescence spectra ofa- andb-methyl naphthalene (S1 state) presented in
Ref. [46] reveal that modemixing of the ground-state normal coordinates and energy
redistribution appear to be active in the S1 state. The vibronic spectra and related
phenomena such as fluorescence–absorption mirror symmetry breakdown are
found in azulene and certain azaazulenes [47–49]. On the basis of an analysis of
vibronic spectra and calculation of normal vibrations, a complete assignment of the
vibrational frequencies of s-tetrazine-d0 and s-tetrazine-d8 in the 1B3u excited state is
given in Ref. [50]. In this connection, the rotation matrixW calculated from the data
on the intensities of the vibronic band is used to estimate the force field in the excited
electronic state. In Ref. [51], a Duschinsky effect that results from two nontotally
symmetric vibrations involved in the vibronic coupling in the S1--S0 systems of
benzonitrile and phenyl acetylene is reported. An ab initio calculation of multidi-
mensional FC (MFC) factors used to analyze the vibronic spectrum of ethylene
corresponding to thep–p� excitationwas presented inRef. [52] taking into account 12
normal coordinates of ethylene among which 4 totally symmetric modes are mixed.
Recently, in a study of the photoelectron spectra of H2Oþ ð~B2

B2Þ and D2Oþ , Jia-Lin
Chang has calculated MFC integrals including the Duschinsky effect. He found that
the photoelectron spectra were mainly composed of v2 progressions and combina-
tion bands of v1 and v2 vibrations [53]. The idea that the Duschinsky effect plays a
crucial role in the identification of band structures is also confirmedby the vibrational
assignment for the ~A

1
B2--~X

1
A1 transition in tropolone. This molecule possesses an
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intramolecular hydrogen bond and the hydroxyl proton tunnels from one oxygen
atom to the other. Spectroscopic studies indicate that tropolone exhibits a double
minimum energy potential along the tunneling coordinate and tunneling doublings
have been detected in many vibronic bands in the absorption and laser excitation
spectra [54–56]. However, the band structure is exceedingly complex and some of the
complexity in the vibrational bands around the 0–0 band is due to strong Duschinsky
mixing involving the two lowest b1 modes v25 and v26.

The importance of determining the potential energy surfaces ofmolecular states is
clear. The shape of these BO surfaces of themolecular states is intimately involved in
the electronic transitions between vibronic states belonging to crossing BO surfaces.
This was applied by Paluso et al. to the dynamics of electronic transfer in neutral
mixed valence monoradicals, using the diabatic representation (as will be illustrated
in Section 1.4) and by considering a significant Duschinsky effect [57]. Generally, a
significant Duschinsky effect might be expected when the change in equilibrium
geometry upon excitation has components of large and comparablemagnitude along
two or more totally symmetric (ground-state) coordinates. This point will be clarified
in detail in Chapter 3 and also in our subsequent consideration, where the
Duschinsky effect will play an important role.

1.3
The Vibrational Wavefunctions

The introduction of mass-weighted normal coordinates fqmg obtained by diagonal-
izing the mass-weighted force constant matrix F in the respective electronic states
allows us to solve Equation 1.10 for the vibrational wavefunctions in these states in a
very convenient manner. Indeed, writing the kinetic operator (1.3) in mass-weighted
coordinates qm and taking the diagonalized form (1.43) of the potential energy surface
EaðqaÞ, Equation 1.10 is written as

� �h2

2

� �X
m

q2

qqa2m
þ 1

2

X
m

lamq
a2
m

" #
xavðqaÞ ¼ EavxavðqaÞ; ð1:45Þ

where the superscript a denotes the respective electronic state to which xav is
assigned. In our formulation of Equation 1.45, we have made use of the fact that
the kinetic energy operator remains invariant under the transformation (1.44). The
Hamiltonian of the nuclear motion in Equation 1.45 separates now into parts, each
of which is represented by an individual harmonic oscillator Hm with

Hm ¼ � �h2

2

� �
q2

qqa2m
þ 1

2
lamq

a2
m : ð1:46Þ

For local stable molecules, lam > 0 (m ¼ 1; 2; . . . ;N), and we can set lam ¼ va2
m , where

va
m is the vibrational frequency of the mth oscillator. The eigenfunctions and

eigenvalues of (1.46) are known and given by
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Hmxanm
�
ba

1=2

m qam
� ¼ Eanmxanm

�
ba

1=2

m qam
�
; ð1:47Þ

where

Eanm ¼ �hva
mðnmþ 1=2Þ; nm ¼ 0; 1; 2; . . . ð1:48Þ

and

xanm
�
ba

1=2

m qam
� ¼ ba

1=2

mffiffiffi
p
p

2nmnm!

 !1=2

exp � 1
2
bamq

a2
m

� �
Hnm ba

1=2

m qam

 �

: ð1:49Þ

Here Hnm is the Hermite polynomial of the degree nm:

HnðxÞ ¼
X
k¼0

ð�1Þkn!
k!ðn�2kÞ! ð2xÞ

n�2k

and bam ¼ ðva
m=�hÞ. The qam�s are dimensioned mass-weighted normal coordinates

and the transformation to dimensionless normal coordinates is accomplished by
the corresponding frequency factors of the vibrationalmodes m in the electronic state
a, ba

1=2

m ¼ ðva
m=�hÞ1=2. The eigenfunction and eigenvalue of the total HamiltonianP

mHm are

xan1n2 ...nN ðqa1; qa2; . . . ; qaNÞ ¼ xan1
�
ba

1=2

m qa1
�
xan2

�
ba

1=2

m qa2
� � � � xanN �ba1=2m qaN

�
and

Ean1n2...nN ¼ Ean1 þEan2 þ � � � þEanN ; ð1:50Þ
where the vibrational quantum numbers n1; n2; . . . ; nN assume in mutual indepen-
dence of one another the values nm ¼ 0; 1; 2; . . ..

1.4
The Diabatic Electronic Basis for Molecular Systems

1.4.1
Preliminaries

The Born–Oppenheimer adiabatic approximation derived in Section 1.1 is very
useful in classifying molecular eigenstates and calculating molecular dynamics. As
long as adiabatic potential energy surfaces remain well separated, it is generally a
good approximation to consider the nuclear motion to be confined to one such
surface.When two ormore surfaces intersect or pass close to one another, it becomes
necessary to consider more than one surface in the calculation of nonradiative
transition probabilities. When more than one surface must be considered, the
adiabatic function is not necessarily more advantageous than various possible linear
combinations of these functions. In particular, if the combination is taken over a
small number of electronic states presumed to be of interest for a particular problem,
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they can be chosen by means of a proper transformation such that the nuclear
derivative coupling terms (e.g., in Equation 1.12) vanish with respect to the new basis
functions. The coupling for the new so-called diabatic basis occurs then as a potential
operator.

Consider an example inwhich only two adiabatic states (sayj1 andj2) are strongly
coupled and assume that the coupling involving the other states can be safely
neglected. In this case, the nuclear derivative coupling term in Equation 1.12 is
given by the components

gm ¼ j2 q=qqm
�� ��j1

� 	 ð1:51Þ

of a nuclear momentum vector gðqÞ ¼ ðrqÞ21. Here rq stands for the vectorial
operator rq ¼ ðq=qq1; q=qq2; . . . ; q=qqNÞ. In this two-state approximation, it is
convenient to consider as an alternative a diabatic basis set ðw1;w2Þ defined by the
condition [58–65]

w2 rq

�� ��w1

� 	 ¼ 0: ð1:52Þ

In the diabatic representation, the nuclear coupling is eliminated or drastically
reduced. The new diabatic states ðw1;w2Þ are thereby allowed to move along with the
nuclei [7, 65]. They are not the fixed functions considered in Section 1.2 and referred
to as crude adiabatic.Hence, theywill be denoted bywiðr; qÞ to emphasize the fact that
rwi 6¼ 0. In this two-state approximation, it is always possible to transform the pair of
adiabatic functions ðj1;j2Þ by a q-dependent orthogonal transformation [7, 63, 65]:

j1

j2

 !
¼ cos qðqÞ sin qðqÞ
�sin qðqÞ cos qðqÞ

 !
w1

w2

 !
: ð1:53Þ

Substituting Equation 1.53 into Equation 1.52 now leads to

gðqÞ ¼ rqqðqÞþ w2 rq

�� ��w2

� 	
: ð1:54Þ

Note that Equation 1.54 is a vector equation. Thus, condition (1.52) implies that there
should exist an angle q such that

gðqÞ ¼ rqqðqÞ: ð1:55Þ
As discussed in Ref. [63], this can only be the case if

curl gðqÞ ¼ 0; ð1:56Þ
which means that if qm and qn are two of the nuclear coordinates, we can have a
solution only if

q
qqm

gn� q
qqn

gm ¼ 0: ð1:57Þ

As proved in Ref. [63], this follows trivially for a polyatomic molecule if one adopts as
diabatic functions a set of q-independent functions for which rwi ¼ 0. This can be
seen if we use Equation 1.53 to prove another very useful result [66, 67]:
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��rw1i ¼ ðgðqÞ�rqÞ
��w2iþ

X
a

cos q hjajrj1i�sin q hjajrj2i½ � jai;j ð1:58Þ

which follows from the fact that ðrqÞ21 ¼ �ðrqÞ12. Here ja are adiabatic eigenfunc-
tions ofHel other than j1 and j2. This is a most remarkable fact. It asserts that there
can be no solution if rw1 6¼ 0. Then, one must be either ðg�rqÞ 6¼ 0 or
ja rj jjih i 6¼ 0 (i ¼ 1; 2), or both of them. In the first case, this is in striking contrast
to the concept of a strictly diabatic basis (see Equation 1.55). In the second case, there
is an interaction with the other (higher) electronic states. The possibility remains,
however, that itmight be possible to eliminate the largest part of the coupling through
transformation, so that the remainder can be neglected and Equation 1.55 can be
replaced by the less stringent condition:

w2 rq

�� ��w1

� 	 � 0: ð1:59Þ

A particularly nice discussion to this subject can be found in Refs [7, 60, 63, 68, 69].
Let us now return to Equation 1.55. The angle qðqÞ; which depends on N internal

nuclear coordinates, can be obtained by a multidimensional integration of the
coupling matrix element gm [62]. For example, in a two-dimensional configuration
space ðqx; qyÞ; one has

qðqx; qyÞ ¼ qðqx0; qy0Þþ
ðqx
qx0

gxðx; qy0Þdxþ
ðqy
qy0

gyðqx0; yÞdy: ð1:60Þ

In the casewhere g is an irrotational vector andq a single-valued function, the value of
q should be independent of the integration path.

We shall return in Chapter 7 to a more extensive discussion of applications of the
approximation just described. Now we consider the coupling between two electronic
states, the potential energy surfaces of which cross in one point.

1.4.2
Conical Intersection Between the States B~ 2B2/

2A0 and A~ 2A1/
2A0 of H2O

þ

The method we have described for studying unimolecular decay of electronically
excited molecules may be applied to a variety of problems. These include, for
example, the study of properties of conical and Jahn–Teller intersections. Illustrative
calculations are presented for the H2Oþ ion, whose dissociation mechanisms are
controlled by a conical intersection between the states 2B2 and

2A1 ðC2vÞ, the potential
energy surfaces of which have been calculated in Refs [70, 71]. A schematic view of
these surfaces is given in Figure 1.1. The coordinates ðr;aÞ are defined as follows:
coordinate r is the asymmetric stretch r ¼ R1�R2, where R1 and R2 are the two OH
bond lengths and a is the valence angle between R1 and R2. When the two OH bond
lengths are equal (r ¼ 0; C2v point group) and q ¼ 1=2ðR1þR2Þ, the symmetric
stretching coordinate is equal to 1.15A

�
, the states ~A and ~B belong to the 2A1 and

2B2

representations. Their potential energy surfaces cross at ac ¼ 71:6� [70] and the
energy at the conical intersection is equal to 74.4385 hartree. The minimum of the
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potential function of the state 2B2 lies at an absolute energy of�75.4435 hartree and
the 2B2 state equilibrium conformation has an H�O�H bond angle of 55.7�. When
the antisymmetric stretching coordinate r differs fromzero, that is, when the twoOH
bond lengths are unequal, both electronic states then belong to the 2A0 representation
of theCs point group and therefore the corresponding potential energy surfaces repel
each other. As a result, a region of strong nonadiabatic interaction is centered around
the apex of the double cone. It is important to note that the two interacting states ~A
and ~B are well separated in energy from the remaining states. If it did, one is dealing
here with a two-state conical intersection problem (with the second term in Equa-
tion 1.58 having been omitted).

The ab initio calculations at the SCF level of the nonadiabatic coupling matrix
element ga ¼ qq=qa for different cross sections r¼ constant have shown [70] that ga
has a Lorentzian shapewith a uniquemaximumcentered at the crossing between the
two surfaces (e.g., atac ¼ 71:6�). Along the direction r, the function gr exhibits again a
unique maximum and a Lorentzian shape, although the two contributions gMO

r and
gCIr sometimes add and sometimes subtract. The resulting gr ¼ gMO

r þ gCIr is there-
fore found to be positive at values of a smaller than ac and negative for a larger than
ac, where ac denotes the value of the valence angle at the apex of the cone. The closer
the cross section lies to the apex of the cone, the narrower the g-function becomes. In
the case,where the cross section passes through the apex of the cone, the linearmodel
(which will be encountered later) predicts that the g-function should become a Dirac
delta function with an area close to the theoretical value of p=2 [70, 73–76].

Adiabatic surfaces are defined as the eigenvalues of the electronic Hamiltonian
(see Equation 1.5). In the diabatic representation defined above, the potential energy

Figure 1.1 The actual form of the ~B
2
B2 and ~A

2
A1 potential surfaces of H2Oþ in the adiabatic

representation. The upper adiabatic potential energy surface E2 consists of parts of the surfaces of
the states 2B2 and

2A1. (After Ref. [35].)
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surfaces are defined by the diagonal elementsH11 andH22. They can cross freely and
are coupled by an off-diagonal matrix elementH12. Adiabatic surfaces are related to
diabatic matrix elements Hii by the equation

EiðqÞ ¼ 1
2
ðH11þH22Þ � 1

2

�ðH11�H22Þ2þ 4H2
12

1=2
; i ¼ 1; 2: ð1:61Þ

This expression is the equation of a double cone with expansion of theHij functions
around the apex and retention of first-order terms only. The linear approximationwill
be discussed later in this section.

The unitary transformation (1.53) (of the Hamiltonian matrix in the diabatic basis
ðw1;w2ÞÞ leading to EiðqÞ is determined by the angle

q ¼ 1
2
arctan 2H12=ðH11�H22Þf g; ð1:62Þ

which depends on three internal nuclear coordinates q ¼ qðq; r;aÞ. Furthermore,
one has from (1.55)

gm ¼ qq=qqm; ð1:63Þ
with gm ¼ j2 q=qqm

�� ��j1

� 	
or equivalently (see Equation 1.60)

qðr;aÞ ¼
ðr
r0

drgrðr;aÞþ
ða
a0

da gaðr0;aÞ ð1:64Þ

if we restrict ourselves to an integration at fixed value of q (the symmetric stretching
coordinate). In the case of H2Oþ ; q ¼ 1:15A

�
, that is, the value of q at the apex of the

cone. The integration in Equation 1.64 of the ab initio calculated gm matrix elements
can be performed numerically. Before giving amore quantitative discussion, we first
note that Equation 1.64 defines generally a multivalued function (i.e., qðqÞ is of
modulusp). This behavior ofq is a result of the singularities of the functions ga and gr
at a ¼ 71:6� and r ¼ 0 (the apex of the cone). This problem is better understood
within the framework of the linear model of the conical intersection, which will be
dealt with later.

Once the angleq is known as a function of the internal coordinates, it is not difficult
to obtain the diabatic energiesH11 andH22 and the coupling matrix elementH12 by
inverting the orthogonal transformation (1.53). A schematic view of the diabatic
surfaces H11 and H22 is given in Figure 1.2.

1.4.3
The Linear Model for Conical Intersection

The linear model of a conical intersection [58, 66, 77–79] is obtained by neglecting
termsof order higher than one in the expansion of thematrix elementsHij around the
apex of the cone ðr ¼ 0; ac ¼ 71:6�Þ:

H11�H22 ¼ Faða�acÞ; ð1:65Þ
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H12 ¼ ð1=2Þ Fr r: ð1:66Þ
Note that ac depends on the value of q ¼ 1=2ðR1þR2Þ. The same applies to the
quantities Fa and Fr . This leads to a particular simple model of conical intersections,
the features of which are as follows.

Equation 1.61 can be cast in the convenient form

qða; rÞ ¼ 1
2
arctan Fr r=Faða�acÞ½ �: ð1:67Þ

The couplingmatrix elements ga and gr along cross sections parallel to the symmetry
lowering a and symmetry conserving r axes derived from Equation 1.63 have the
form

gaðaÞ ¼ qq
qa

� �
q;r
¼ �Fa=ð2FrrÞ

1þðFa=FrrÞ2ða�acÞ2
ð1:68Þ

and

grðrÞ ¼ qq
qr

� �
q;a
¼ Fr=½2Faða�acÞ�

1þ ½Fr=Faða�acÞ�2r2
:

The parameters Fa and Fr can be estimated directly from the shape of the adiabatic
potential energy surfaces. Fa can be read directly on a cross section along the axisa at
r ¼ 0. The result isFa ¼ 4:5� 10�3 hartree/deg, compared to the value of 4:2� 10�3

hartree/deg obtained from Refs [71, 72]. Fr can be determined from the shape of the
adiabatic curves along the axis r, via Equation 1.66 and DE ¼ �2H12=sin q, where
DE ¼ E2�E1 is the energy difference between the adiabatic curves. This leads to
Fr ¼ 0:045 hartree/bohr [70], compared to a value of 0.054 hartree/bohr obtained
from Refs [71, 72]. Hence, for any cross section obtained by varying only one nuclear
degree of freedom a or r, the nonradiative coupling elements are Lorentzians, which
is in accord with the ab initio prediction [70].

Figure 1.2 The diabatic representation of the ~B and ~A states. The thin line marks the seam.
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Equation 1.67 represents graphically in a coordinate system with the axes ða; rÞ a
series of straight lines around the apex of the cone for the locus of constant q in
conformity with the result of numerical integration of (1.64) [70]. In particular, the
line of intersection between diabatic states corresponds to the locus H11 ¼ H22 or
q ¼ p=4þ kp=2. It thus follows that as q!p=4, the intersection coincides precisely
with axis r at a ¼ 71:6�. At a complete rotation around the apex of the cone, the angle
q increases from 0 to p only. According to Equation 1.68, the closer the cross section
lies to the apex of the cone, the sharper the Lorentzian. Therefore, Equation 1.68
correctly describes the nonradiative coupling matrix elements gm well in accordance
with the numerical calculations of the g-function cited above.
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