Contents

Preface IX

1 Introduction 1 1.1 The Adiabatic Description of Molecules 1 1.1.1 Preliminaries 1 1.1.2 The Born–Oppenheimer Approximation 3 1.1.3 The Crude Born–Oppenheimer Basis Set 6 1.1.4 Correction of the Crude Adiabatic Approximation 7 Normal Coordinates and Duschinsky Effect 9 1.2 1.3 The Vibrational Wavefunctions 13 The Diabatic Electronic Basis for Molecular Systems 14 1.4 1.4.1 Preliminaries 14 Conical Intersection Between the States $\tilde{B}^2 B_2 / A'$ 1.4.2 and $\tilde{A}^2 A_1/2 A'$ of H₂O⁺ 16 1.4.3 The Linear Model for Conical Intersection 18 2 Formal Decay Theory of Coupled Unstable States 21 2.1 The Time Evolution of an Excited State 21 2.1.1 Some Remarks About the Decay of a Discrete Molecular Metastable State 26 2.2 The Choice of the Zero-Order Basis Set 27 3 Description of Radiationless Processes in Statistical Large Molecules 3.1 Evaluation of the Radiationless Transition Probability 31 3.2 The Generating Function for Intramolecular Distributions I_1 and I_2 3.2.1 The Generating Function $G_2(w_1, w_2, z_1, z_2) = 36$ 3.2.2 $\label{eq:properties} \text{Properties of } \delta_{\mu_1\mu_2,\ \nu_1\nu_2,}\ a_{\mu_1\mu_2,\ \nu_1\nu_2,} \text{ and } b_{\mu_1\mu_2,\ \nu_1\nu_2} \quad 41$ Case $w_1 = w_2 = 0$ 42 3.2.3 3.2.4 Case $w_1 \neq w_2 \neq 0$ 42 3.2.5 Symmetry Properties of I_2 45

۷

31

36

3.2.6 Case $\phi = 0$ 47

Transitions in Molecular Systems. Hans J. Kupka Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-41013-2

VI Contents

3.3	Derivation of the Promoting Mode Factors $K_{\eta}(t)$ and $I_{\eta}(t)$ 48	
3.4	Radiationless Decay Rates of Initially Selected Vibronic States	
	in Polyatomic Molecules 52	
4	Calculational Methods for Intramolecular Distributions	
	I ₁ , I ₂ , and I _N 57	
4.1	The One-Dimensional Distribution $I_1(0, n; a, b)$ 57	
4.1.1	The Addition Theorem 60	
4.2	The Distributions $I_1(m, n; a, b)$ 61	
4.2.1	Derivation of $I_1(m, n; a, b)$ 61	
4.2.2	The Addition Theorem for $I_1(m, n; a, b)$ 65	
4.2.3	The Recurrence Formula 65	
4.2.4	Case $b = 0$ 67	
4.2.5	Case $b \neq 0$ 68	
4.2.6	Numerical Results 69	
4.3	Calculation of the Multidimensional Distribution 71	
4.3.1	Preliminary Consideration 71	
4.3.2	Derivation of Recurrence Equations 75	
4.3.3	The Calculation Procedure 78	
4.3.3.1	Some Numerical Results 79	
4.4	General Case of <i>N</i> -Coupled Modes 82	
4.4.1	The Generating Function G_N 82	
4.4.2	Properties of $\delta_{\mu,\nu}$, $a_{\mu,\nu}$, and $b_{\mu,\nu}$ 87	
4.4.3	The Distribution and its Properties 89	
4.4.3.1	Symmetry Property of I_N 91	
4.4.4	A Special Case 92	
4.4.5	Concluding Remarks and Examples 93	
4.4.6	Recurrence Relations 94	
4.4.7	The Three-Dimensional Case 96	
4.4.8	Some Numerical Results 97	
4.5	Displaced Potential Surfaces 102	
4.5.1	The Strong Coupling Limit 102	
4.5.2	The Weak Coupling Limit 106	
4.6	The Contribution of Medium Modes 107	
5	The Nuclear Coordinate Dependence of Matrix Elements 111	
5.1	The <i>q</i> -Centroid Approximation 111	
5.2	Determination of the q-Centroid 123	
6	Time-Resolved Spectroscopy 129	
6.1	Formal Consideration 129	
6.2	Evaluation of the Radiative Decay Probability of a Prepared State 13	1
6.3	The Sparse Intermediate Case 137	
6.3.1	Preliminary Consideration 137	
6.3.2	The Molecular Eigenstates 139	

Contents VII

6.4	Radiative Decay in Internal Conversion by Introduction of Decay Rates
	for $\{\psi_1\}$ 142
6.5	Dephasing and Relaxation in Molecular Systems 145
6.5.1	Introduction 145
6.5.2	Interaction of a Large Molecule with a Light Pulse 146
6.5.3	Free Induction Decay of a Large Molecule 149
6.5.4	Photon Echoes from Large Molecules 151
7	Miscellaneous Applications 155
7.1	The Line Shape Function for Radiative Transitions 155
7.1.1	Derivation 155
7.1.2	Implementation of Theory and Results 160
7.1.2.1	Excited-State Geometry 169
7.2	On the Mechanism of Singlet–Triplet Interaction 171
7.2.1	Phosphorescence in Aromatic Molecules with Nonbonding
,	Electrons 171
7.2.2	Radiative T_1 ($\pi\pi^*$) $\rightarrow S_0$ Transition 172
7.2.3	Nonradiative Triplet-to-Ground State Transition 178
7.2.3.1	Theory and Application 179
7.2.4	Remarks on the Intersystem Crossing in Aromatic Hydrocarbons 183
7.3	Comment on the Temperature Dependence of Radiationless
,	Transition 184
7.4	Effect of Deuteration on the Lifetimes of Electronic Excited States 186
7.4.1	Partial Deuteration Experiment 186
7.5	Theory and Experiment of Singlet Excitation Energy Transfer
	in Mixed Molecular Crystals 191
7.5.1	Transport Phenomena in Doped Molecular Crystals 191
7.5.2	The System Pentacene in <i>p</i> -Terphenyl 191
7.5.3	Techniques 194
7.5.4	Nature of the Energy Transfer: Theory 198
7.5.5	Time Evolution of the Guest Excitations 201
7.5.6	The Decay of the Transient Grating Signal 208
7.6	Electronic Predissociation of the ${}^{2}B_{2}$ State of H ₂ O ⁺ 211
7.6.1	Evaluation of the Nonadiabatic Coupling Factor 211
7.6.2	The Basis State Functions 216
7.6.2.1	The Initial-State Wavefunction χ_i 216
7.6.2.2	The Final Vibrational Wavefunction χ_f : The Closed Coupled
	Equations 217
8	Multidimensional Franck–Condon Factor 225
8.1	Multidimensional Franck–Condon Factors and Duschinsky
	Mixing Effects 225
8.1.1	General Aspects 225
8.1.2	Derivation 228
8.2	Recursion Relations 238

VIII Contents

- 8.3 Some Numerical Results and Discussion 241
- 8.4 Implementation of Theory and Results 244
- 8.4.1 The Resonance Raman Process and Duschinsky Mixing Effect 244
- 8.4.2 Time-Delayed Two-Photon Processes: Duschinsky Mixing Effects 247

8.5 The One-Dimensional Franck–Condon Factor (N = 1) 255

Appendices 259

Appendix A: Some Identities Related to Green's Function 261

- A.1 The Green's Function Technique 261
- A.2 Evaluation of the Diagonal Matrix Element of G_{ss} 264

Appendix B: The Coefficients of the Recurrence Equation 267

Appendix C: The Coefficients of the Recurrence Equations 271

Appendix D: Solution of a Class of Integrals 273

Appendix E: Quantization of the Radiation Field 277

Appendix F: The Molecular Eigenstates 281

Appendix G: The Effective Hamiltonian and Its Properties 285

Appendix H: The Mechanism of Nonradiative Energy Transfer 287

- H.1 Single-Step Resonance Energy Transfer 287
- H.2 Phonon-Assisted Energy Transfer 289

Appendix I: Evaluation of the Coefficients $b_{\mu\nu}$, $c_{\mu\nu}$, and b_{μ} in the Recurrence Equations 8.28 and 8.29 293

I.1 Application 294

Appendix J: Evaluation of the Position Expectation Values of $\chi_{sm}(q^s)$ 299

Appendix K: Vibronic Coupling Between Two Electronic States: The Pseudo-Jahn–Teller Effect 301

References 313

Index 327

^{8.4.3} Results 249