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1.1
Introduction

First-principles studies of point defects and impurities in semiconductors, insulators,
and metals have become an integral part of materials research over the last few
decades [1–3]. Point defects and impurities often have decisive effects on materials
properties. A prime example is doping of semiconductors: the addition of minute
amounts (often at the ppm level) of donor or acceptor impurities renders thematerial
n type orp type, enabling the functionality of electronic or optoelectronic devices [4, 5].
Control of doping is therefore essential, and all too often eludes experimental efforts.
Sometimes high doping levels required for low-resistivity transport are limited by
compensation effects; such compensation can be due to point defects that form
spontaneously at high doping. In other cases, unintentional doping occurs. For
instance,manyoxidesexhibitunintentionaln-typedoping,whichdueto itsprevalence
has often been attributed to intrinsic causes, i.e., to native point defects. Recent
evidence indicates, however, that the concentration of native point defects may be
lower than has conventionally been assumed, and that, instead, unintentional
incorporation of impurities may cause the observed conductivity [6]. Last but not
least,manymaterials resist attemptsat ambipolardoping, i.e., theycanbeeasilydoped
one type but not the other. Again, the oxides (or more generally, wide-band-gap
semiconductors) that exhibit unintentional n-type doping often cannot be doped
p-type.Thequestion then iswhether this isdue toan intrinsic limitation that cannotbe
avoided, or whether specific doping techniques might be successful.

Aside from the issue of doping, the study of point defects is important because they
are involved in the diffusion processes and act to mediate mass transport, hence
contributing to equilibration during growth, and to diffusion of dopants or other
impurities during growth or annealing [7–9]. In addition, an understanding of point
defects is essential for characterizing or suppressing radiation damage, and
for analyzing device degradation.

Experimental characterization techniques are available, but they are often limited
in their application [10–12]. Impurity concentrations can be determined using
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secondary ion mass spectrometry (SIMS), but some impurities (such as hydrogen)
are hard to detect in low concentrations. Point-defect concentrations are even harder
to determine. Electron paramagnetic resonance is an excellent tool that can provide
detailed information about concentrations, chemical identity, and lattice environ-
ment of a defect or impurity, but it is a technique that requires dedicated expertise and
possibly for that reason has few practitioners [12]. Other tools, such as Hall
measurements or photoluminescence, can provide information about the effect of
point defects or impurities on electrical or optical properties, but cannot by them-
selves identify their nature or character. For all these reasons, the availability of first-
principles calculations that can accurately address atomic and electronic structure of
defects and impurities has had a great impact on the field.

Obviously, to make the information obtained from such calculations truly useful,
the results should be as reliable and accurate as possible. Density functional theory
(DFT) [13, 14] has proven its value as an immensely powerful technique for assessing
the structural properties of defects [1]. (In the remainder of this article, we will use
the term �defects� to generically cover both native point defects and impurities.)
Minimization of the total energy as a function of atomic positions yields the stable
structure, including all relaxations of the host atoms, and most functionals
[including the still most widely used local density approximation (LDA)] all yield
results within reasonable error bars [15]. Quite frequently, however, information
about electronic structure is required, i.e., the position of defect levels that are
introduced in the band gap of semiconductors or insulators. SinceDFT in the LDA or
generalized gradient approximation (GGA) severely underestimates the gap, the
position of defect levels is subject to large error bars and cannot be directly compared
with experiment [16–18]. In turn, this affects the calculated formation energy of the
defect, which determines its concentration. This effect on the energy is still not
generally appreciated, since it is often assumed that the formation energy is a
ground-state property for which DFT should give reliable results. However, in the
presence of gap levels that can be filled with varying numbers of electrons
(corresponding to the charge state of the defect), the formation energy becomes
subject to the same type of errors that would occur when trying to assess excitation
energies based on total energy calculations with N or N þ 1 electrons. Recently,
major progress has been made in overcoming these inaccuracies, and the
approaches for doing so will be discussed in Section 1.2.

Another type of error that may occur in defect calculations is related to the
geometry in which the calculations are performed. Typically, one wishes to address
the dilute limit in which the defect concentration is low and defect–defect interac-
tions are negligible. Green�s functions calculations would in principle be ideal, but in
practice have proven quite cumbersome and difficult to implement. Another
approach would be to use clusters, but surface effects are almost impossible to
avoid, and quantum confinement effects may obscure electronic structure. Nowa-
days, point defect calculations are almost universally performed using the supercell
geometry, in which the defect is embeddedwithin a certain volume ofmaterial which
is periodically repeated. This has the advantage of maintaining overall periodicity,
which is particularly advantageous when using plane-wave basis sets which rely on

2j 1 Advances in Electronic Structure Methods for Defects and Impurities in Solids



Fast Fourier Transforms to efficiently move between reciprocal- and real-space
representations. The supercells should be large enough to minimize interactions
between defects in neighboring supercells. This is relatively straightforward to
accomplish for neutral defects, but due to the long-range nature of the Coulomb
interaction, interactions between charged defects are almost impossible to eliminate.
This problem was recognized some time ago, and a correction was suggested based
on a Madelung-type interaction energy [19]. It had been observed, however, that in
many cases the correction was unreliable or �overcorrected,� making the result less
accurate than the bare values [20]. Recently, an approach based on a rigorous
treatment of the electrostatic problem has been developed that outlines the condi-
tions of validity of certain approximations and provides explicit expression for the
quantities to be evaluated [21]. Issues relating to supercell-size convergence are
addressed in detail in the article by Freysoldt et al. [22] in this volume.

We note that it is not the intent of the present paper to provide a comprehensive
review of the entirety of this large and growing field. Rather, we attempt to introduce
the main concepts of present-day defect calculations illustrated with a few select
examples, anddonot aspire to cover the countless important contributions to thefield
by many different research groups.

1.2
Formalism and Computational Approach

The key quantities that characterize a defect in a semiconductor are its concentration
and the position of the transition levels (or ionization energies) with respect to the
band edges of the host material. Defects that occur in low concentrations will have a
negligible impact on the properties of the material. Only those defects whose
concentration exceeds a certain threshold will have observable effects. The position
of the defect transition levels with respect to the host band edges determines the
effects on the electrical and optical properties of the host. Defect formation energies
and transition levels can be determined entirely from first principles [1], without
resorting to any experimental data for the system under consideration.

1.2.1
Defect Formation Energies and Concentrations

In the dilute limit, the concentration of a defect is determined by the formation
energy Ef through a Boltzmann expression:

c ¼ Nsitesexpð�Ef=�Ef kBTÞ: ð1:1Þ

Nsites is the number of sites (including the symmetry-equivalent local configura-
tions) on which the defect can be incorporated, kB is the Boltzmann constant, and T
the temperature. Note that this expression assumes thermodynamic equilibrium.
While defects could also occur in nonequilibrium concentrations, in practicemost of
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the existing bulk and epitaxial film growth techniques operate close to equilibrium
conditions. Equilibration of defects is actually unavoidable if the diffusion barriers
are low enough to allow easy diffusion at the temperatures of interest. In addition,
even if kinetic barriers would be present, Eq. (1.1) is still relevant because obviously
defects with a high formation energy are less likely to form.

Defect formation energies can bewritten as differences in total energies, and these
can be obtained from first principles, i.e., without resorting to experimental para-
meters. The dependence on the chemical potentials (atomic reservoirs) and on the
position of the Fermi level in the case of charged defects is explicitly taken into
account [1, 5]. This is illustrated here with the specific example of an oxygen vacancy
in a 2þ charge state in ZnO. The formation energy of V2þ

O is given by:

Ef ðV2þ
O Þ ¼ EtotðV2þ

O Þ�EtotðZnOÞþ mO þ 2EF; ð1:2Þ

whereEtotðVq
OÞ is the total energyof the supercell containing thedefect, andEtotðZnOÞ

is the total energy of the ZnO perfect crystal in the same supercell. EF is the energy of
the reservoirwithwhichelectrons are exchanged, i.e., theFermi level. TheOatomthat
is removed is placed in a reservoir, the energy ofwhich is givenby the oxygenchemical
potential mO. Note that mO is a variable, corresponding to the notion that ZnO can in
principle be grown or annealed under O-rich, O-poor, or any other condition in
between. It is subject to an upper bound given by the energy of an O atom in an O2

molecule. Similarly, thezinc chemicalpotentialmZn is subject to anupperboundgiven
by the energy of a Zn atom in bulk Zn. The sum of mO and mZn corresponds to the
energy of ZnO,which is the stability condition of ZnO.Anupper bound onmZn, given
by the energy of bulk Zn, therefore leads to a lower bound on mO, and vice versa. The
chemical potentials thus vary over a range given by the formation enthalpy of the
material being considered. Formation enthalpies are generally well described byfirst-
principles calculations. For instance, the calculated formation enthalpy of �3.50 eV
for ZnO [8] is in a good agreement with the experimental value of �3.60 eV [23].

Note that it is, in principle, the free energy that determines the defect concentration,
and one should in principle take into account vibrational entropy contributions in
Eq. (1.1). Such contributions are usually small, on the order of a few kB, and there is
often a significant cancellation between vibrational contributions in the solid and in
the reservoir [1]. In rare instances, inclusion of vibration entropy has a distinct impact
on which configuration ismost stable for a given defect or impurity [24], but it hardly
ever has a significant effect on the overall concentration. The reader is referred to
Ref. [1] for a detailed discussion on the calculation of defect formation energies from
first principles.

1.2.2
Transition Levels or Ionization Energies

Defects in semiconductors and insulators can occur in different charge states. For
each position of the Fermi level, one particular charge state has the lowest energy for a
given defect. The Fermi-level positions at which the lowest-energy charge state
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changes are called transition levels or ionization energies. The transition levels are
thus determined by formation energy differences:

eðq=q0Þ ¼ Ef ðDq; EF ¼ 0Þ�Ef ðDq 0
;EF ¼ 0Þ

ðq0�qÞ ; ð1:3Þ

where Ef ðDq;EF ¼ 0Þ is the formation energy of the defect D in the charge state q for
the Fermi level at the valence-band maximum (EF¼ 0). These are thermodynamic
transition levels, i.e., atomic relaxations around the defect are fully included; for
Fermi-level positions below eðq=q0Þ the defect is stable in charge state q, while for
Fermi-level positions above eðq=q0Þ, the defect is stable charge state q0. The thermo-
dynamic transition levels are not to be confused with the single-particle Kohn–Sham
states that result from band-structure calculations for a single charge state. They are
also not to be confused with optical transition levels derived, for example, from
luminescence or absorption experiments. In this case, the final state may not be
completely relaxed, and the optical transition levels may significantly differ from the
thermodynamic transition levels, as discussed in Ref. [1].

For a defect to contribute to conductivity, it must be stable in a charge state that is
consistent with the presence of free carriers. For instance, in order to contribute to n-
type conductivity, the defectmust be stable in a positive charge state and the transition
level from the positive to the neutral charge state should occur close to or above the
conduction-band minimum (CBM). A defect is a typical shallow donor when the
transition level for a positive to the neutral charge state [e.g., the eðþ =0Þ level], as
definedbasedonformationenergies, lies above theCBM.In this case, aneutral charge
state inwhich the electron is localized in the immediate vicinity of thedefect cannot be
maintained if thecorrespondingelectronic level is resonantwith theconductionband;
instead, theelectronwill be transferred toextendedstates, butmaystill bebound to the
positive core of the defect in a hydrogenic effective-mass state. Similarly, shallow
acceptors aredefects inwhich the transition level fromanegative to theneutral charge
state [e.g., the eð�=0Þ level] is near or below the VBM. If the latter, the hole can be
bound to the negative core of the defect in a hydrogenic effective-mass state [1, 25].

1.2.3
Practical Aspects

The total energies in Eq. (1.2) are often evaluated by performing DFT calculations
within the LDA or its semi-local extension, the GGA [26, 27]. Defects are typically
calculated by using a supercell geometry, inwhich the defect is placed in a cell that is a
multiple of the primitive cell of the crystal. The supercell is then periodically repeated
in three-dimensional space. The use of supercells also has the advantage that the
underlying band structure of the host remains properly described, and integrations
over the Brillouin zone are replaced by summations over a discrete and relatively
small set of special k-points. Supercell-size corrections for charged defects are
addressed in Refs. [21] and [22]. Convergence with respect to the supercell size,
number of plane waves in the basis set, and the number of special k-points should
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always be checked, tomake sure that the quantities that are derived are representative
of the isolated defect.

The number of atoms or electrons in the calculations is limited by the available
computerpower.For typicaldefect calculations, supercells containing32,64,128,216,
and 256 atoms are used for materials with the zinc-blende structure, whereas super-
cells containg 32, 48, 72, and 96 atom cells are used for materials in the wurtzite
structure. These fairly large cell sizes call for efficient computational approaches.
Ultrasoft pseudopotential [28–30] and projector-augmented-wave [31] methods to
separate the chemically active valence electrons from the inert core electrons have
proven ideal for tackling such large systems. First-principlesmethods based onplane-
wave basis sets have been implemented in many codes such as the Vienna Ab initio
Simulation Program (VASP) [32–34], ABINIT [35, 36], and Quantum Expresso [37].

1.3
The DFT-LDA/GGA Band-Gap Problem and Possible Approaches to Overcome It

The LDA and the GGA in the DFT are plagued by the problem of large band-gap
errors in semiconductors and insulators, resulting in values that are typically less
than 50%of the experimental values [38–42]. It has often been assumed that the band-
gap problem is not an issue when studying defects in semiconductors, since each
individual calculation for a specific charge state of the defect could be considered to be
a ground-state calculation. However, this notion is not correct, in the same way that
the assumption that LDA calculations could yield reliable total-energy differences
between N-electron versus (N þ 1)-electron systems is not correct [16]. Indeed, the
change in the number of electrons elicits the issue of the lack of a discontinuity in the
exchange-correlation potential, which is at the root of the band-gap problem [38–42].
Similarly, the formation energy expressed in Eq. (1.2) involves changes in the
occupation of defect-induced states. In other words, if a specific charge state of a
defect involves occupying a state in the band gap, and the band gap is incorrect in
DFT–LDA/GGA, then the position of the defect state and hence the calculated total
energy will suffer from the same problem [8, 16]. Careful practitioners have always
been aware of this problem and refrained from drawing conclusions that might be
affected by these uncertainties. The problem is exacerbated, of course, in the case of
wide-band-gap semiconductors in which the band-gap errors can be particularly
severe; for example, in ZnO the LDA band gap is only 0.8 eV, compared to an
experimental value of 3.4 eV.

In the remainder of this section we address several approaches that have been, or
are being, developed to overcome these problems.

1.3.1
LDAþU for Materials with Semicore States

Many of the wide-band-gap materials of interest have narrow bands, derived from
semicore states, that play an important role in their electronic structure [43]. For
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example, in ZnO narrow bands derived from the Zn 3d states occur at �8 eV below
the valence-band maximum (VBM) and strongly interact with the top of the valence
band derived from O 2p states. Inclusion of the Zn d states as valence states (as
opposed to treating them as core states) is therefore important for a proper
description of the electronic structure of ZnO, as it affects structural parameters,
band offsets, and deformation potentials [44, 45]. The DFT–LDA/GGA does not
properly describe the energetic position of these narrow bands due to their higher
degree of localization, as compared to themore delocalized s and p bands. Oneway to
overcome this problem is to use an orbital-dependent potential that adds an extra
Coulomb interaction U for these semicore states, as in the LDAþU (or GGAþU)
approach [46, 47].

In the LDAþU the electrons are separated into localized electrons for which the
Coulomb repulsion U is taken into account via a Hubbard-like term in a model
Hamiltonian, and delocalized or itinerant electrons that are assumed to be well
described by the usual orbital-independent one-electron potential in the LDA.
Although this approach had been developed and applied for materials with partially
filled d bands [46, 47], it has been recently demonstrated that it significantly improves
the description of the electronic structure of materials with completely filled d bands
such as GaN and InN, as well as ZnO and CdO [44, 45].

An important issue in the LDAþU approach is the choice of the parameter U. It
has often been treated as a fitting parameter, with the goal of reproducing either the
experimental band gap or the experimentally observed position of the d states in the
band structure. Neither approach can be justified, because (a) LDAþU cannot be
expected to correct for other shortcomings of DFT-LDA, specifically, the lack of a
discontinuity in the exchange-correlation potential, and (b) experimental observa-
tions of semicore states may include additional (�final state�) effects inherent in
experiments such as photoemission spectroscopy. An approximate but consistent
and unbiased approach has been proposed in which the calculatedU for the isolated
atom is divided (screened) by the optical dielectric constant of the solid under
consideration [44]. Tests on a number of systems have shown that applying LDAþU
effectively lowers the energy of the narrowd bands, thus reducing their couplingwith
the p states at the VBM; simultaneously, it increases the energy of the s states that
compose the CBM, due to the improved screening by the more strongly bound d
states, leading to further opening of the band gap. Such improvements have been
described in detail in the case of ZnO, CdO, GaN, and InN [44, 45].

One can take advantage of the partial correction of the band gap by the LDAþU to
study defects. Based on an extrapolation of LDA and LDAþU results, one can obtain
transition levels and formation energies that can be directly compared with experi-
ments. Such extrapolation schemes have been applied in other contexts as well; they
are based on evaluation of defect properties for two different values of the band gap
followed by a linear extrapolation to the experimental gap. A number of empirical
extrapolation approaches were described by Zhang et al. [48], for instance based on
use of different exchange and correlation potentials or different plane-wave cutoffs.
Such extrapolation schemes are most likely to be successful if the calculations that
produce different band gaps are physically motivated, ensuring that the shifts in
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defect states that give rise to changes in formation energies reflect the underlying
physics of the system.

An extrapolation based on LDA and LDAþU calculations, as described in Refs. [8]
and [17], has been shown to be particularly suitable for describing defect physics in
materials with semicore d states. The LDAþU produces genuine improvements in
the electronic structure related to the energetics of the semicore states; one of these
effects is an increase in the band gap. The shifts in defect-induced states between
LDA and LDAþU reflect their relative valence- and conduction-band character, and
hence an extrapolation to the experimental gap is expected to produce reliable results.
Such an approach has led to accurate predictions for point defects in ZnO, InN, and
SnO2 [8, 49, 50]. Figure 1.1(a) shows the result of this extrapolation scheme for the

Figure 1.1 (online color at: www.pss-b.com)
Formation energy as a function of Fermi level for
an oxygen vacancy (VO) in ZnO. (a) Energies
according to the LDA/LDAþU scheme
described in Section 1.3.1. (b) Energies
according to the HSE approach [51].
The lower curve in each plot indicates

Zn-rich conditions, and the upper curve O-rich
conditions. The position of the transition level
e(2þ /0) is also indicated. (c) Charge density of
the V0

O gap state, which is occupied with two
electrons. The isosurface corresponds to 10%of
the maximum.
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case of oxygen vacancy in ZnO. The success of this approach can be attributed to the
fact that the defect states can in principle be described as a linear combination of host
states, under the assumption that the latter forma complete basis. Adefect state in the
gap region will have contributions from both valence-band states and conduction-
band states. The shift in transition levels with respect to the host band edges upon
band-gap correction reflects the valence- versus conduction-band character of the
defect-induced single-particle states. In the case of a shallow donor, the related
transition level is expected to shift with the conduction band, i.e., the variation of the
transition level is almost equal the band gap correction. For a shallow acceptor, the
position of the transition level with respect to the valence band is expected to remain
unchanged.

1.3.2
Hybrid Functionals

The use of hybrid functionals has been rapidly spreading in the study of defects in
solids. In particular, hybrid functionals have proven reliable for describing the
electronic and structural properties of defects in semiconductors. The method
consists of mixing local (LDA) or semi-local (GGA) exchange potentials with the
non-local Hartree–Fock exchange potential. The correlation potential is still
described by the LDAorGGA.Hybrid functionals have been successful in describing
structural properties and energetics of molecules in quantum chemistry, with
Becke�s three-parameter exchange functional (B3) with the Lee, Yang, and Parr (LYP)
correlation (B3LYP) being the most popular choice [52]. However, the use of B3LYP
for studying defects in solids has been limited due to its shortcomings in describing
metals and narrow-gap semiconductors [53]. This issue is particularly important
since formation enthalpies of metals usually enter the description of the chemical
potential limits in the defect-formation-energy expressions (cf. Eq. (1.2)).

The introduction of a screening length in the exchange potential byHeyd, Scuseria,
and Ernzerhof (HSE) [54, 55] and its implementation in a plane-wave code [56] have
been instrumental in enabling the use of hybrid functionals in the study of defects in
semiconductors. In the HSE the exchange potential is divided in short- and long-
range parts. In the short-range part, the GGA exchange of Perdew, Burke, and
Ernzerhof (PBE) [27] potential is mixed with non-local Hartree–Fock exchange
potential in a ratio of 75/25. The long-range exchange potential as well as the
correlation is described by the PBE functional. The range-separation is implemented
through an Error function with a characteristic screening length set to�10A

�
[55], the

variation of which can also affect band gaps [57]. The screening is essential for
describing metals and insulators on the same footing. The HSE functional has been
shown to accurately describe band gaps for many materials [56, 58]. We should note,
however, that since the Hartree–Fock potential involves four-center integrals its
implementation in plane-wave codes results in a high computational cost, and
currently hybrid functional calculations take at least an order of magnitude more
processing time than standard LDA calculations for systems with the same number
of electrons.
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As an example of hybrid functional calculations for defects in semiconductors, we
show in Figure 1.1(b) the formation energy as a function of Fermi level for the oxygen
vacancy (VO) in ZnO using the HSE functional [51]. These calculations were
performed by setting the mixing parameter to 37.5% so to reproduce the experi-
mental value of the band gap of ZnO.We note that the position of the transition level
e(2þ /0) with respect to the band edges is in remarkably good agreement with the
value obtained using the LDA/LDAþU approach inFigure 1.1(a).On the other hand,
the absolute values of the formation energies are quite different, with theHSE results
being more than 2 eV lower than the LDA/LDAþU results. This difference can be
attributed to the effects of theHSEon the absolute position of theVBM inZnO. In the
LDA/LDAþU approach,U is applied only to the d states and the gap is corrected due
to the effects of the coupling between the O 2p Zn d states, and the improved
screening of the Zn 4s by the d states. Within this approach, it was assumed that the
LDAþU would result in a correct position of the VBM. The HSE results show,
however, that the position of the VBM on an absolute energy scale is affected by the
inclusion of Hartree–Fock exchange [59]. That is HSE also corrects (at least in part)
the self-interaction error in the LDA or GGA, which is still present in the LDAþU
results, and this correction is significant for the O 2p bands thatmake up the VBM in
ZnO. In Ref. [59] it was found that the VBM in ZnO is shifted down by 1.7 eV inHSE
calculations, compared to PBE.

Other examples of the use of HSE include calculations for Si and Ge impurities in
ZnO, which revealed that these impurities are shallow double donors when substi-
tuting on theZn sites inZnO,with relatively low formation energies [59]. Si can occur
as a background impurity in ZnO, and these results indicate that it may give rise to
unintentional n-type conductivity. Another example relates to p-type doping in ZnO.
It has been long believed that incorporatingN on theO site would lead to p-type ZnO.
However, the effectiveness of N as a shallow acceptor dopant has never been firmly
established. Despite many reports on p-type ZnO using N acceptors, the results have
been difficult to reproduce, raising questions about the stability of the p-type doping
and the position of the N ionization energy. Recent calculations for N in ZnO have
shown that N is actually a very deep acceptor with a transition level at 1.3 eVabove the
VBM [60]. Therefore, it has been concluded that N cannot lead to p-type ZnO. For
comparison and as a benchmark,HSE calculations correctly predicted that N inZnSe
is a shallow acceptor when substituting on Se sites, in agreement with experimental
findings.

Hybrid functional calculations have also been performed for oxygen vacancies in
TiO2. Despite the fact that oxygen vacancies have frequently been invoked in the
literature on TiO2, their identification in bulk TiO2 has remained elusive. First-
principles calculations based on LDAorGGA suffer fromband-gap problems and are
unable to describe the neutral or the positively charged vacancy (Vþ

O ) in TiO2 [61, 62].
In LDA or GGA, the Kohn–Sham single-particle states related to VO are above the
CBM, causing the electron(s) from V0

O or Vþ
O to occupy the CBM. Calculations based

on theHSE, on the other hand, show that locally stable structures of V0
O andVþ

O exist,
in which the occupied single-article states lie within the band gap and the defect wave
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functions are localized within the vacancy. However, the formation energies of V0
O

and Vþ
O are always higher in energy that of V2þ

O [62] as shown in Figure 1.2(a); The
atoms around V2þ

O relax outward as indicated in Figure 1.2(b). Thus, oxygen
vacancies are predicted to be shallow donors in TiO2. This is in contrast to GGAþU
calculations which indicate that VO is a deep donor with transition levels in the
gap [63]. The problem with GGAþU calculations for TiO2 is that the conduction
band in TiO2 is derived from the Ti d states. The LDA/GGAþU approach was
designed to be applied to narrow bands with localized electrons; hence its success
when applied to semicore d states. The d states that constitute the conduction band of
TiO2, in contrast, are fairly delocalized, as evidenced by the high conductivity of this
material. Applying LDA/GGAþU will always lead to an energy lowering of the
occupied states, since that was what the approach was designed to do. Therefore,
when the LDA/GGAþU approach is applied to a case in which electrons occupy the
conduction band of TiO2, localization will result. However, it is hard to distinguish
whether this is a real physical effect or an artefact due to the nature of the
LDA/GGAþU approach. We therefore feel that LDA/GGAþU should not
be applied in cases where the states are intrinsically extended states, such as the
d states that make up the conduction band of TiO2.

An important issue regarding the use of hybrid functionals is the amount of
Hartree–Fock exchange potential that ismixedwith theGGAexchange [64]. Although
a value of 25%was initially proposed, there is no a priori justification for this amount
and this single value is not capable of correctly describing all semiconductors and
insulators. For instance, in ZnO the experimental value of the band gap is obtained
withHSE only when amixing parameter of 37% is used. InGaN, amixing parameter
of 31% is necessary, and for MgO 32%. Since the position of transition levels in the
band gap depends on the band-gap value, quantitative predictions require that the
functional accurately describes band gaps, and an adjustment of the mixing param-
eter is the most straightforward way to achieve this.

Figure 1.2 (online color at: www.pss-b.com) (a) Formation energy as a function of Fermi level for
an oxygen vacancy (VO) in TiO2 in the Ti-rich limit, according to Ref. [62]. (b) Local lattice relaxations
around V2þ

O . The positions of the atoms in the perfect crystal are also indicated (faded).
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1.3.3
Many-Body Perturbation Theory in the GW Approximation

Quasiparticle calculations in theGWapproximation produce band structures that are
in close agreement with experiments [65]. However, at present the calculation of total
energies within the GW formalism [66] is still a subject of active research and
currently not available for studying defects in solids. We note that the GW quasi-
particle energies are defined as removal and addition energies. In the case of defects,
the GW quasiparticle energies that appear in the band gap correspond to the
transition levels, provided that the geometry of the defects remains unchanged. For
instance, the highest occupied quasiparticle state in a calculation for a defect in
charge state q represents the e(q þ 1/q) level, and the lowest unoccupied state
represents the e(q/q� 1) level for a fixed geometry of the defect. It is possible to
combine these transition levels determined from GW calculations with relaxation
energies from LDA or GGA calculations to extract thermodynamic transition levels
for defects in semiconductors and insulators. Recent GW calculations for the self-
interstitial in Si have demonstrated the effectiveness of this approach [67].

TheLDAorGGAunderestimates the formationenergyof the self-interstitial inSi by
more than 1 eV compared to values extracted from self-diffusion experiments.
Calculations based on Quantum Monte Carlo can yield more accurate formation
energies but are very expensive computationally. Calculating removal and addition
energies for Si self-interstitials in GW and combining with relaxation energies from
LDAcalculations lead to formationenergies that are ingood agreementwithQuantum
Monte Carlo results [69]. The only assumption was that LDA gives correct formation
energies for charge state configurations with no occupied states above the VBM, such
as the 2þ charge state of the Si self-interstitial in the tetrahedral configuration. A
similar approach has been used to study oxygen-related defects in SiO2 [68].

As a drawback in the GW approach, it has been recently argued that for systems
with semicore d states such as ZnO a very large number of unoccupied bands is
necessary for a proper description of the band structure [70]. This result, if confirmed,
indicates that GW calculations for defects in these systems may be prohibitivly
expensive in practice. This unusually large number of unoccupied states required is
likely related to the underbinding of the semicore d states which, as discussed in
Section 1.3.1, can make a significant contribution to the band-gap error.

1.3.4
Modified Pseudopotentials

In the pseudopotential formalism, once a separation between valence electrons and
the inert core electrons is adopted, there is still some flexibility in constructing the
ionic cores. Indeed, within this approach, there is no unique scheme for generating
pseudopotentials, and anumber of different generation schemeshave beenproposed
over the years, often aimed at creating computationally efficient, �softer� potentials
which can be described with a smaller plane-wave basis set. This flexibility can in
principle be exploited to generate potentials that produce a more accurate band
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structure. However, past attempts did not succeed in producing such improvements
while still maintaining a proper description of atomic structure and energetics [71].

A new approach was recently proven to be remarkably successful in describing
nitride semiconductors [72, 73]. It was based on a proposal by Christensen, first
implemented within the linearized muffin-tin orbital method [74], to add a highly
localized (delta-function-like) repulsive potential centered on the atomic nucleus of
each atom. Such a potential only affects s states, and since the CBM in compound
semiconductors has largely cation s character one expects an upward shift of the
corresponding eigenstates. At the same time, the highly localized character of the
added potential leads one to expect only minimal changes in other aspects of the
pseudopotential. These expectations were indeed borne out in the case of GaN and
InN, where the modified pseudopotentials produced atomic structures and ener-
getics that are as reliable as those obtained with standard potentials, but simulta-
neously producing band structures in very good agreement with experiment [73].
Even though the fitting procedure only aimed to produce the experimental value of
the direct gap, the modified potentials actually produced improvements for other
aspects of the band structure as well, including the position of higher-lying indirect
conduction-band minima as well as the position of semicore d states [73]. This leads
us to believe that the seemingly ad hoc modifications introduced by the repulsive
potential are capturing some essential physics, justifying the expectation that
similarly good results can be obtained for other materials. An application of the
modified pseudopotentials to the calculation of the electronic structure of nitride
surfaces produced results in very good agreement with experiment [72, 75].

1.4
Summary

We have discussed recent progress in first-principles approaches to study defects in
semiconductors and insulators. Emphasis was given to methods that overcome the
band-gap problem in traditional DFT in the LDA; such approaches include LDAþU,
hybrid functionals, GW, and modified pseudopotentials. While the LDAþU
approach is very efficient computationally, it should be limited to systems with
semicore states for which LDA provides a poor description. Furthermore, the
LDAþU only partially corrects the band gap, and futher extrapolation is needed.
The HSE hybrid functional on the other hand is general and has been demonstrated
to be a reliable method that result in accurate band gaps and seems to be describing
the properties of defects correctly. The HSE functional contains two parameters, the
Hartree–Fock mixing ratio and the screening length, which offer some flexibility in
obtaining correct band gaps; however, the consequences of changes in these para-
meters on the physics of the system has not been fully explored yet. TheGWmethod
offers a formal approach for describing excited-state properties and defect physics,
but its applicability is limited by the lack of an efficient way to extract total energies.
Combining GW excitation energies with LDA/GGA relaxation energies offers a
promising way to address thermodynamic transition levels. Finally, modified pseud-
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potentials is an ad hoc but remarkably reliable approach, which has been demon-
strated very effective at describing the properties of nitride semiconductors.
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