Contents

List of Contributors XIII

1 Advances in Electronic Structure Methods for Defects and Impurities in Solids 1
 Chris G. Van de Walle and Anderson Janotti
 1.1 Introduction 1
 1.2 Formalism and Computational Approach 3
 1.2.1 Defect Formation Energies and Concentrations 3
 1.2.2 Transition Levels or Ionization Energies 4
 1.2.3 Practical Aspects 5
 1.3 The DFT-LDA/GGA Band-Gap Problem and Possible Approaches to Overcome It 6
 1.3.1 LDA+U for Materials with Semicore States 6
 1.3.2 Hybrid Functionals 9
 1.3.3 Many-Body Perturbation Theory in the GW Approximation 12
 1.3.4 Modified Pseudopotentials 12
 1.4 Summary 13
 References 14

2 Accuracy of Quantum Monte Carlo Methods for Point Defects in Solids 17
 William D. Parker, John W. Wilkins, and Richard G. Hennig
 2.1 Introduction 17
 2.2 Quantum Monte Carlo Method 18
 2.2.1 Controlled Approximations 20
 2.2.1.1 Time Step 20
 2.2.1.2 Configuration Population 20
 2.2.1.3 Basis Set 20
 2.2.1.4 Simulation Cell 21
 2.2.2 Uncontrolled Approximations 22
 2.2.2.1 Fixed-Node Approximation 22
2.2.2.2 Pseudopotential 22
2.2.2.3 Pseudopotential Locality 23
2.3 Review of Previous DMC Defect Calculations 23
2.3.1 Diamond Vacancy 23
2.3.2 MgO Schottky Defect 25
2.3.3 Si Interstitial Defects 25
2.4 Results 25
2.4.1 Time Step 26
2.4.2 Pseudopotential 26
2.4.3 Fixed-Node Approximation 26
2.5 Conclusion 29
References 29

3 Electronic Properties of Interfaces and Defects from Many-body Perturbation Theory: Recent Developments and Applications 33
Matteo Giantomassi, Martin Stankovski, Riad Shaltaf, Myrta Grüning, Fabien Bruneval, Patrick Rinke, and Gian-Mario Rignanese
3.1 Introduction 33
3.2 Many-Body Perturbation Theory 34
3.2.1 Hedin’s Equations 34
3.2.2 GW Approximation 36
3.2.3 Beyond the GW Approximation 37
3.3 Practical Implementation of GW and Recent Developments Beyond 38
3.3.1 Perturbative Approach 38
3.3.2 QP Self-Consistent GW 40
3.3.3 Plasmon Pole Models Versus Direct Calculation of the Frequency Integral 41
3.3.4 The Extrapolar Method 44
3.3.4.1 Polarizability with a Limited Number of Empty States 45
3.3.4.2 Self-Energy with a Limited Number of Empty States 46
3.3.5 MBPT in the PAW Framework 46
3.4 QP Corrections to the BOs at Interfaces 48
3.5 QP Corrections for Defects 54
3.6 Conclusions and Prospects 57
References 58

4 Accelerating GW Calculations with Optimal Polarizability Basis 61
Paolo Umari, Xiaofeng Qian, Nicola Marzari, Geoffrey Stenuit, Luigi Giacomazzi, and Stefano Baroni
4.1 Introduction 61
4.2 The GW Approximation 62
4.3 The Method: Optimal Polarizability Basis 64
4.4 Implementation and Validation 68
4.4.1 Benzene 69
Calculations of Semiconductor Band Structures and Defects by the Screened Exchange Density Functional

S. J. Clark and John Robertson

5.1 Introduction 79
5.2 Screened Exchange Functional 80
5.3 Bulk Band Structures and Defects 82
5.3.1 Band Structure of ZnO 83
5.3.2 Defects of ZnO 85
5.3.3 Band Structure of MgO 89
5.3.4 Band Structures of SnO$_2$ and CdO 90
5.3.5 Band Structure and Defects of HfO$_2$ 91
5.3.6 BiFeO$_3$ 92
5.4 Summary 93
References 94

Accurate Treatment of Solids with the HSE Screened Hybrid

Thomas M. Henderson, Joachim Paier, and Gustavo E. Scuseria

6.1 Introduction and Basics of Density Functional Theory 97
6.2 Band Gaps 100
6.3 Screened Exchange 103
6.4 Applications 104
6.5 Conclusions 107
References 108

Defect Levels Through Hybrid Density Functionals: Insights and Applications

Audrius Alkauskas, Peter Broqvist, and Alfredo Pasquarello

7.1 Introduction 111
7.2 Computational Toolbox 112
7.2.1 Defect Formation Energies and Charge Transition Levels 113
7.2.2 Hybrid Density Functionals 114
7.2.2.1 Integrable Divergence 115
7.3 General Results from Hybrid Functional Calculations 117
7.3.1 Alignment of Bulk Band Structures 118
7.3.2 Alignment of Defect Levels 120
8 Accurate Gap Levels and Their Role in the Reliability of Other Calculated Defect Properties 139
Peter Deák, Adam Gali, Bálint Aradi, and Thomas Frauenheim

8.1 Introduction 139
8.2 Empirical Correction Schemes for the KS Levels 141
8.3 The Role of the Gap Level Positions in the Relative Energies of Various Defect Configurations 143
8.4 Correction of the Total Energy Based on the Corrected Gap Level Positions 146
8.5 Accurate Gap Levels and Total Energy Differences by Screened Hybrid Functionals 148
8.6 Summary 151
References 152

9 LDA + U and Hybrid Functional Calculations for Defects in ZnO, SnO₂, and TiO₂ 155
Anderson Janotti and Chris G. Van de Walle

9.1 Introduction 155
9.2 Methods 156
9.2.1 ZnO 158
9.2.2 SnO₂ 160
9.2.3 TiO₂ 161
9.3 Summary 163
References 163

10 Critical Evaluation of the LDA + U Approach for Band Gap Corrections in Point Defect Calculations: The Oxygen Vacancy in ZnO Case Study 165
Adisak Boonchun and Walter R. L. Lambrecht

10.1 Introduction 165
10.2 LDA + U Basics 166
10.3 LDA + U Band Structures Compared to GW 168
10.4 Improved LDA + U Model 170
10.5 Finite Size Corrections 172
10.6 The Alignment Issue 173
10.7 Results for New LDA + U 174
10.8 Comparison with Other Results 176
10.9 Discussion of Experimental Results 178
10.10 Conclusions 179
References 180

11 Predicting Polaronic Defect States by Means of Generalized Koopmans Density Functional Calculations 183
Stephan Lany
11.1 Introduction 183
11.2 The Generalized Koopmans Condition 185
11.3 Adjusting the Koopmans Condition using Parameterized On-Site Functionals 187
11.4 Koopmans Behavior in Hybrid-functionals: The Nitrogen Acceptor in ZnO 189
11.5 The Balance Between Localization and Delocalization 193
11.6 Conclusions 196
References 197

12 SiO₂ in Density Functional Theory and Beyond 201
L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M.J. Caldas
12.1 Introduction 201
12.2 The Band Gap Problem 202
12.3 Which Gap? 204
12.4 Deep Defect States 207
12.5 Conclusions 209
References 210

13 Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors 213
Su-Huai Wei and Yanfa Yan
13.1 Introduction 213
13.2 Method of Calculation 214
13.3 Symmetry and Occupation of Defect Levels 217
13.4 Origins of Doping Difficulty and the Doping Limit Rule 218
13.5 Approaches to Overcome the Doping Limit 220
13.5.1 Optimization of Chemical Potentials 220
13.5.1.1 Chemical Potential of Host Elements 220
13.5.1.2 Chemical Potential of Dopant Sources 222
13.5.2 H-Assisted Doping 223
13.5.3 Surfactant Enhanced Doping 224
13.5.4 Appropriate Selection of Dopants 226
13.5.5 Reduction of Transition Energy Levels 229
13.5.6 Universal Approaches Through Impurity-Band Doping 232
14 Electrostatic Interactions between Charged Defects in Supercells
Christoph Freysoldt, Jörg Neugebauer, and Chris G. Van de Walle

14.1 Introduction 241
14.2 Electrostatics in Real Materials 243
14.2.1 Potential-based Formulation of Electrostatics 245
14.2.2 Derivation of the Correction Scheme 246
14.2.3 Dielectric Constants 249
14.3 Practical Examples 250
14.3.1 Ga Vacancy in GaAs 250
14.3.2 Vacancy in Diamond 252
14.4 Conclusions 254

15 Formation Energies of Point Defects at Finite Temperatures
Blazej Grabowski, Tilmann Hickel, and Jörg Neugebauer

15.1 Introduction 259
15.2 Methodology 261
15.2.1 Analysis of Approaches to Correct for the Spurious Elastic Interaction in a Supercell Approach 261
15.2.1.1 The Volume Optimized Approach to Point Defect Properties 262
15.2.1.2 Derivation of the Constant Pressure and Rescaled Volume Approach 264
15.2.2 Electronic, Quasiharmonic, and Anharmonic Contributions to the Formation Free Energy 266
15.2.2.1 Free Energy Born–Oppenheimer Approximation 266
15.2.2.2 Electronic Excitations 269
15.2.2.3 Quasiharmonic Atomic Excitations 271
15.2.2.4 Anharmonic Atomic Excitations: Thermodynamic Integration 272
15.2.2.5 Anharmonic Atomic Excitations: Beyond the Thermodynamic Integration 274
15.3 Results: Electronic, Quasiharmonic, and Anharmonic Excitations in Vacancy Properties 278
15.4 Conclusions 282

16 Accurate Kohn–Sham DFT With the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modelling
Patrick R. Briddon and Mark J. Rayson

16.1 Introduction 285
16.2 The AIMPRO Kohn–Sham Kernel: Methods and Implementation 286
16.2.1 Gaussian-Type Orbitals 286
16.2.2 The Matrix Build 288
16.2.3 The Energy Kernel: Parallel Diagonalisation and Iterative Methods 288
16.2.4 Forces and Structural Relaxation 289
16.2.5 Parallelism 289
16.3 Functionality 290
16.3.1 Energetics: Equilibrium and Kinetics 290
16.3.2 Hyperfine Couplings and Dynamic Reorientation 291
16.3.3 D-Tensors 291
16.3.4 Vibrational Modes and Infrared Absorption 291
16.3.5 Piezospectroscopic and Uniaxial Stress Experiments 291
16.3.6 Electron Energy Loss Spectroscopy (EELS) 292
16.4 Filter Diagonalisation with Localisation Constraints 292
16.4.1 Performance 294
16.4.2 Accuracy 296
16.5 Future Research Directions and Perspectives 298
16.5.1 Types of Calculations 299
16.5.1.1 Thousands of Atoms on a Desktop PC 299
16.5.1.2 One Atom Per Processor 299
16.5.2 Prevailing Application Trends 299
16.5.3 Methodological Developments 300
16.6 Conclusions 302

References 302

17 Ab Initio Green’s Function Calculation of Hyperfine Interactions for Shallow Defects in Semiconductors 305
Uwe Gerstmann
17.1 Introduction 305
17.2 From DFT to Hyperfine Interactions 306
17.2.1 DFT and Local Spin Density Approximation 306
17.2.2 Scalar Relativistic Hyperfine Interactions 308
17.3 Modeling Defect Structures 311
17.3.1 The Green’s Function Method and Dyson’s Equation 311
17.3.2 The Linear Muffin-Tin Orbital (LMTO) Method 313
17.3.3 The Size of The Perturbed Region 315
17.3.4 Lattice Relaxation: The AsGa-family 317
17.4 Shallow Defects: Effective Mass Approximation (EMA) and Beyond 319
17.4.1 The EMA Formalism 320
17.4.2 Conduction Bands with Several Equivalent Minima 322
17.4.3 Empirical Pseudopotential Extensions to the EMA 322
17.4.4 Ab Initio Green’s Function Approach to Shallow Donors 324