Contents

List of Contributors XIII

1	Advances in Electronic Structure Methods for Defects and Impurities in Solids 1 Chris G. Van de Walle and Anderson Janotti
1.1	Introduction 1
1.2	Formalism and Computational Approach 3
1.2.1	Defect Formation Energies and Concentrations 3
1.2.2	Transition Levels or Ionization Energies 4
1.2.3	Practical Aspects 5
1.3	The DFT-LDA/GGA Band-Gap Problem and
	Possible Approaches to Overcome It 6
1.3.1	LDA+U for Materials with Semicore States 6
1.3.2	Hybrid Functionals 9
1.3.3	Many-Body Perturbation Theory in the GW Approximation 12
1.3.4	Modified Pseudopotentials 12
1.4	Summary 13
	References 14
2	Accuracy of Quantum Monte Carlo Methods
	for Point Defects in Solids 17
2.4	William D. Parker, John W. Wilkins, and Richard G. Hennig
2.1	Introduction 17
2.2	Quantum Monte Carlo Method 18
2.2.1	Controlled Approximations 20
2.2.1.1	Time Step 20
2.2.1.2	Configuration Population 20
2.2.1.3	Basis Set 20
2.2.1.4	Simulation Cell 21
2.2.2	Uncontrolled Approximations 22
2.2.2.1	Fixed-Node Approximation 22

VI	Contents	
	2.2.2.2	Pseudopotential 22
	2.2.2.3	Pseudopotential Locality 23
	2.3	Review of Previous DMC Defect Calculations 23
	2.3.1	Diamond Vacancy 23
	2.3.2	MgO Schottky Defect 25
	2.3.3	Si Interstitial Defects 25
	2.4	Results 25
	2.4.1	Time Step 26
	2.4.2	Pseudopotential 26
	2.4.3	Fixed-Node Approximation 26
	2.5	Conclusion 29
		References 29
	3	Electronic Properties of Interfaces and Defects from Many-body
		Perturbation Theory: Recent Developments and Applications 33
		Matteo Giantomassi, Martin Stankovski, Riad Shaltaf, Myrta Grüning,
	2.4	Fabien Bruneval, Patrick Rinke, and Gian-Marco Rignanese
	3.1	Introduction 33
	3.2	Many-Body Perturbation Theory 34
	3.2.1 3.2.2	Hedin's Equations 34 GW Approximation 36
	3.2.2	GW Approximation 36 Beyond the GW Approximation 37
	3.3	Practical Implementation of GW and Recent
	5.5	Developments Beyond 38
	3.3.1	Perturbative Approach 38
	3.3.2	QP Self-Consistent GW 40
	3.3.3	Plasmon Pole Models <i>Versus</i> Direct Calculation
		of the Frequency Integral 41
	3.3.4	The Extrapolar Method 44
	3.3.4.1	Polarizability with a Limited Number of Empty States 45
	3.3.4.2	Self-Energy with a Limited Number of Empty States 46
	3.3.5	MBPT in the PAW Framework 46
	3.4	QP Corrections to the BOs at Interfaces 48
	3.5	QP Corrections for Defects 54
	3.6	Conclusions and Prospects 57
		References 58
	4	Accelerating GW Calculations with Optimal Polarizability Basis 61
		Paolo Umari, Xiaofeng Qian, Nicola Marzari, Geoffrey Stenuit,
		Luigi Giacomazzi, and Stefano Baroni
	4.1	Introduction 61
	4.2	The GW Approximation 62
	4.3	The Method: Optimal Polarizability Basis 64
	4.4	Implementation and Validation 68
	4.4.1	Benzene 69

4.4.2	Bulk Si 70
4.4.3	Vitreous Silica 70
4.5	Example: Point Defects in a-Si ₃ N ₄ 72
4.5.1	Model Generation 72
4.5.2	Model Structure 73
4.5.3	Electronic Structure 74
4.6	Conclusions 77
	References 77
5	Calculation of Semiconductor Band Structures
	and Defects by the Screened Exchange Density Functional 79
	S. J. Clark and John Robertson
5.1	Introduction 79
5.2	Screened Exchange Functional 80
5.3	Bulk Band Structures and Defects 82
5.3.1	Band Structure of ZnO 83
5.3.2	Defects of ZnO 85
5.3.3	Band Structure of MgO 89
5.3.4	Band Structures of SnO ₂ and CdO 90
5.3.5	Band Structure and Defects of HfO ₂ 91
5.3.6	BiFeO ₃ 92
5.4	Summary 93
	References 94
6	Accurate Treatment of Solids with the HSE Screened Hybrid 97
	Thomas M. Henderson, Joachim Paier,
	and Gustavo E. Scuseria
6.1	Introduction and Basics of Density Functional Theory 97
6.2	Band Gaps 100
6.3	Screened Exchange 103
6.4	Applications 104
6.5	Conclusions 107
	References 108
7	Defect Levels Through Hybrid Density
	Functionals: Insights and Applications 111
	Audrius Alkauskas, Peter Broqvist, and Alfredo Pasquarello
7.1	Introduction 111
7.2	Computational Toolbox 112
7.2.1	Defect Formation Energies and Charge Transition Levels 113
7.2.2	Hybrid Density Functionals 114
7.2.2.1	Integrable Divergence 115
7.3	General Results from Hybrid Functional Calculations 117
7.3.1	Alignment of Bulk Band Structures 118
732	Alignment of Defect Levels 120

VIII	Contents	
	7.3.3	Effect of Alignment on Defect Formation Energies 122
	7.3.4	"The Band-Edge Problem" 124
	7.4	Hybrid Functionals with Empirically Adjusted Parameters 125
	7.5	Representative Case Studies 129
	7.5.1	Si Dangling Bond 129
	7.5.2	Charge State of O ₂ During Silicon Oxidation 131
	7.6	Conclusion 132
		References 134
	8	Accurate Gap Levels and Their Role in the Reliability
		of Other Calculated Defect Properties 139
		Peter Deák, Adam Gali, Bálint Aradi,
	0.4	and Thomas Frauenheim
	8.1	Introduction 139
	8.2	Empirical Correction Schemes for the KS Levels 141
	8.3	The Role of the Gap Level Positions in the Relative Energies of Various Defect Configurations 143
	8.4	Correction of the Total Energy Based on the Corrected Gap
		Level Positions 146
	8.5	Accurate Gap Levels and Total Energy Differences
		by Screened Hybrid Functionals 148
	8.6	Summary 151
		References 152
	9	LDA $+$ $m{\textit{U}}$ and Hybrid Functional Calculations for Defects
		in ZnO, SnO ₂ , and TiO ₂ 155
		Anderson Janotti and Chris G. Van de Walle
	9.1	Introduction 155
	9.2	Methods 156
	9.2.1	ZnO 158
	9.2.2	SnO ₂ 160
	9.2.3	TiO ₂ 161
	9.3	Summary 163
		References 163
	10	Critical Evaluation of the LDA $+$ \emph{U} Approach for Band Gap
		Corrections in Point Defect Calculations: The Oxygen
		Vacancy in ZnO Case Study 165
		Adisak Boonchun and Walter R. L. Lambrecht
	10.1	Introduction 165
	10.2	LDA + U Basics 166
	10.3	LDA + U Band Structures Compared to GW 168
	10.4	Improved LDA + U Model 170
	10.5	Finite Size Corrections 172
	10.6	The Alignment Issue 173

10.7	Results for New LDA $+ U$ 174
10.8	Comparison with Other Results 176
10.9	Discussion of Experimental Results 178
10.10	Conclusions 179
	References 180
11	Predicting Polaronic Defect States by Means of Generalized
	Koopmans Density Functional Calculations 183
	Stephan Lany
11.1	Introduction 183
11.2	The Generalized Koopmans Condition 185
11.3	Adjusting the Koopmans Condition using Parameterized
	On-Site Functionals 187
11.4	Koopmans Behavior in Hybrid-functionals: The Nitrogen
	Acceptor in ZnO 189
11.5	The Balance Between Localization and Delocalization 193
11.6	Conclusions 196
	References 197
12	SiO ₂ in Density Functional Theory and Beyond 201
	L. Martin-Samos, G. Bussi, A. Ruini,
	E. Molinari, and M.J. Caldas
12.1	Introduction 201
12.2	The Band Gap Problem 202
12.3	Which Gap? 204
12.4	Deep Defect States 207
12.5	Conclusions 209
	References 210
13	Overcoming Bipolar Doping Difficulty in Wide
	Gap Semiconductors 213
	Su-Huai Wei and Yanfa Yan
13.1	Introduction 213
13.2	Method of Calculation 214
13.3	Symmetry and Occupation of Defect Levels 217
13.4	Origins of Doping Difficulty and the Doping Limit Rule 218
13.5	Approaches to Overcome the Doping Limit 220
13.5.1	Optimization of Chemical Potentials 220
13.5.1.1	Chemical Potential of Host Elements 220
13.5.1.2	Chemical Potential of Dopant Sources 222
13.5.2	H-Assisted Doping 223
13.5.3	Surfactant Enhanced Doping 224
13.5.4	Appropriate Selection of Dopants 226
13.5.5	Reduction of Transition Energy Levels 229
13.5.6	Universal Approaches Through Impurity-Band Doping 232

X	Contents	
•	13.6	Summary 237
		References 238
	14	Electrostatic Interactions between Charged Defects in Supercells 241 Christoph Freysoldt, Jörg Neugebauer,
		and Chris G. Van de Walle
	14.1	Introduction 241
	14.2	Electrostatics in Real Materials 243
	14.2.1	Potential-based Formulation of Electrostatics 245
	14.2.2	Derivation of the Correction Scheme 246
	14.2.3	Dielectric Constants 249
	14.3	Practical Examples 250
	14.3.1	Ga Vacancy in GaAs 250
	14.3.2	Vacancy in Diamond 252
	14.4	Conclusions 254
		References 257
	15	Formation Energies of Point Defects at Finite Temperatures 259 Blazej Grabowski, Tilmann Hickel, and Jörg Neugebauer
	15.1	Introduction 259
	15.2	Methodology 261
	15.2.1	Analysis of Approaches to Correct for the Spurious Elastic Interaction in a Supercell Approach 261
	15.2.1.1	The Volume Optimized Aapproach to Point Defect Properties 262
	15.2.1.2	Derivation of the Constant Pressure and Rescaled Volume Approach 264
	15.2.2	Electronic, Quasiharmonic, and Anharmonic Contributions to the Formation Free Energy 266
	15.2.2.1	Free Energy Born–Oppenheimer Approximation 266
	15.2.2.2	Electronic Excitations 269
	15.2.2.3	Quasiharmonic Atomic Excitations 271
	15.2.2.4	Anharmonic Atomic Excitations: Thermodynamic Integration 272
	15.2.2.5	Anharmonic Atomic Excitations: Beyond the Thermodynamic Integration 274
	15.3	Results: Electronic, Quasiharmonic, and Anharmonic
	15.4	Excitations in Vacancy Properties 278 Conclusions 282
	13.4	References 282
	16	Accurate Kohn-Sham DFT With the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modelling 285
		Patrick R. Briddon and Mark J. Rayson
	16.1	Introduction 285

16.2	The AIMPRO Kohn–Sham Kernel: Methods and Implementation 286
16.2.1	Gaussian-Type Orbitals 286
16.2.2	The Matrix Build 288
16.2.3	The Energy Kernel: Parallel Diagonalisation and Iterative
10.2.5	Methods 288
16.2.4	Forces and Structural Relaxation 289
16.2.5	Parallelism 289
16.3	Functionality 290
16.3.1	Energetics: Equilibrium and Kinetics 290
16.3.2	Hyperfine Couplings and Dynamic Reorientation 291
16.3.3	D-Tensors 291
16.3.4	Vibrational Modes and Infrared Absorption 291
16.3.5	Piezospectroscopic and Uniaxial Stress Experiments 291
16.3.6	Electron Energy Loss Spectroscopy (EELS) 292
16.4	Filter Diagonalisation with Localisation Constraints 292
16.4.1	Performance 294
16.4.2	Accuracy 296
16.5	Future Research Directions and Perspectives 298
16.5.1	Types of Calculations 299
16.5.1.1	Thousands of Atoms on a Desktop PC 299
16.5.1.2	One Atom Per Processor 299
16.5.2	Prevailing Application Trends 299
16.5.3	Methodological Developments 300
16.6	Conclusions 302
	References 302
17	Ab Initio Green's Function Calculation of Hyperfine Interactions
	for Shallow Defects in Semiconductors 305
	Uwe Gerstmann
17.1	Introduction 305
17.2	From DFT to Hyperfine Interactions 306
17.2.1	DFT and Local Spin Density Approximation 306
17.2.2	Scalar Relativistic Hyperfine Interactions 308
17.3	Modeling Defect Structures 311
17.3.1	The Green's Function Method and Dyson's Equation 311
17.3.2	The Linear Muffin-Tin Orbital (LMTO) Method 313
17.3.3	The Size of The Perturbed Region 315
17.3.4	Lattice Relaxation: The As _{Ga} -Family 317
17.4	Shallow Defects: Effective Mass Approximation
	(EMA) and Beyond 319
17.4.1	The EMA Formalism 320
17.4.2	Conduction Bands with Several Equivalent Minima 322
17.4.3	Empirical Pseudopotential Extensions to the EMA 322
17.4.4	Ab Initio Green's Function Approach to Shallow Donors 324

XII	Contents	
	17.5 17.5.1 17.5.2 17.6 17.7	Phosphorus Donors in Highly Strained Silicon 328 Predictions of EMA 329 Ab Initio Treatment via Green's Functions 330 n-Type Doping of SiC with Phosphorus 332 Conclusions 334 References 336
	18	Time-Dependent Density Functional Study on the Excitation
		Spectrum of Point Defects in Semiconductors 341 Adam Gali
	18.1	Introduction 341
	18.1.1	Nitrogen-Vacancy Center in Diamond 342
	18.1.2	Divacancy in Silicon Carbide 344
	18.2	Method 345
	18.2.1	Model, Geometry, and Electronic Structure 345
	18.2.2	Time-Dependent Density Functional Theory with Practical
		Approximations 346
	18.3	Results and Discussion 351
	18.3.1	Nitrogen-Vacancy Center in Diamond 351
	18.3.2	Divacancy in Silicon Carbide 353
	18.4	Summary 356
		References 356
	19	Which Electronic Structure Method for The Study of Defects:
		A Commentary 359
		Walter R. L. Lambrecht
	19.1	Introduction: A Historic Perspective 359
	19.2	Themes of the Workshop 362
	19.2.1	Periodic Boundary Artifacts 362
	19.2.2	Band Gap Corrections 367
	19.2.3	Self-Interaction Errors 370
	19.2.4	Beyond DFT 372
	19.3	Conclusions 373
		References 375

Index 381