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Introduction

A plasma is a many body system consisting of a huge number of interacting
(charged and neutral) particles. More precisely, one defines a plasma as a quasineu-
tral gas of charged and neutral particles which exhibits collective behavior. In many
cases, one considers quasineutral gases consisting of charged particles, namely
electrons and positively charged ions of one species. Plasmas may contain neutral
atoms. In this case, the plasma is called partially or incompletely ionized. Other-
wise the plasma is said to be completely or fully ionized. The term plasma is not
limited to the most common electron–ion case. One may have electron–positron
plasmas, quark-gluon plasmas, and so on. Semiconductors contain plasma con-
sisting of electrons and holes.

Most of the matter in the universe occurs in the plasma state. It is often said that
99% of the matter in the universe is in the plasma state. However, this estimate
may not be very accurate. Remember the discussion on dark matter. Nevertheless,
the plasma state is certainly dominating the universe.

Modern plasma physics emerged in 1950s, when the idea of thermonuclear re-
actor was introduced. Fortunately, modern plasma physics completely dissociated
from weapons development. The progression of modern plasma physics can be
retraced from many monographs, for example, [1–15].

In simple terms, plasmas can be characterized by two parameters, namely,
charged particle density n and temperature T. The density varies over roughly 28
orders of magnitude, for example, from 106 to 1034 m�3. The kinetic energy kB T ,
where kB is the Boltzmann constant, can vary over approximately seven orders, for
example, from 0.1 to 106 eV.

The notation “plasma” was introduced by Langmuir, Tonks, and their collabo-
rators in the 1920s when they studied processes in electronic lamps filled with
ionized gases, that is, low-pressure discharges. The word “plasma” seems to be
a misnomer [16]. The Greek πλ Kασμα means something modeled or fabricated.
However, a plasma does not tend to generally conform to external influences. On
the contrary, because of collective behavior, it often behaves as if it had a mind of
its own [16].

Plasmas appear in space and astrophysics [17–19], laser–matter interaction [20,
21], technology [22], fusion [14, 23–26], and so on. Technical plasmas, magnetic
fusion plasmas, and laser-generated plasmas represent the main applications of
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2 1 Introduction

plasma physics on earth. Space plasmas, as they appear, for example, in the magne-
tosphere of the earth are very important for our life on earth. A continuous stream
of charged particles, mainly electrons and protons, called the solar wind impinges
on the earth’s magnetosphere which shields us from this radiation. Typical solar
wind parameters are n D 5 � 106 m�3, kB Ti D 10 eV, and kB Te D 50 eV. How-
ever, also temperatures of the order kB T D 1 keV may appear. The drift velocity is
approximately 300 km/s.

We could present numerous other examples of important plasmas, for example,
stellar interiors and atmospheres which are hot enough to be in the plasma state,
stars in galaxies, which are not charged but behave like particles in a plasma, free
electrons and holes in semiconductors which also constitute a plasma. However,
before discussing some of these objects in more detail, let us concentrate first on
basic theoretical tools for their description.

1.1
Quasineutrality and Debye Shielding

Negative charge fluctuations δ� D �eδn (e is the elementary charge) generate
electrostatic potential fluctuations δφ (we use SI units; see Appendix A)

r2δφ D 1
ε0

eδn . (1.1)

A rough estimate gives

r2δφ � δφ
l2 , (1.2)

where l is the characteristic fluctuation scale. Thus,

δφ � 1
ε0

eδnl2 . (1.3)

On the other hand, the characteristic potential energy �eδφ cannot be larger than
the mean kinetic energy of particles which we roughly approximate by kB T (we
measure the temperature in kelvin, kB is the Boltzmann constant, and we ignore
numerical factors). Thus,

δn
n

. ε0kB T
ne2 l2 . (1.4)

We recognize that a typical length appears, namely, the Debye length (more details
will be given within the next chapters)

λD D
s

ε0kB T
ne e2 , (1.5)
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1.1 Quasineutrality and Debye Shielding 3

such that

δn
n

. λ2
D

l2 . (1.6)

A plasma is quasineutral on distances much larger than the Debye radius. If the
plasma size is comparable with λD , then it is not a “real” plasma, but rather just a
heap of charged particles.

The Debye length is the shielding length in a plasma (at the moment, we will not
discuss which species, electrons or ions are dominating in the shielding process).
Let us again start from the Poisson equation

r2φ D 1
ε0

e (ne � ni ) . (1.7)

Assuming Boltzmann distributed electrons and ions (let us assume with the same
temperature T which we measure in eV, that is, kB T ! T ), we have

ne D ne0eeφ/ T � ne0

�
1C e

φ
T

�
, ni D ne0e�eφ/ T � ne0

�
1 � e

φ
T

�
.

(1.8)

Anticipating spherical symmetry, we obtain

r2φ D d2φ
dr2 C

2
r

dφ
dr
D 2e2ne0

ε0T
φ . (1.9)

This is a homogeneous linear differential equation. The amplitude parameter is
free. It is easy to check that for r ¤ 0, a solution is

Φ D e
r

e�p
2r/λD . (1.10)

Thus, the potential in a plasma is exponentially shielded with the Debye length as
the shielding distance.

However, the calculation is not yet complete. Thus far, the central charge q, which
creates the shielding cloud, is missing. This is reflected in the fact that the ampli-
tude is still free. It is obvious that instead of Eqs. (1.7) and (1.9), we should solve
the following inhomogeneous linearized Poisson–Boltzmann equation, that is,

r2φ D � 1
ε0

qδ(r) � 1
ε0

X
sDe,i

q s ns

� �2φ � 1
ε0

qδ(r) , (1.11)

where the index s denotes the species, electrons and ions, the test charge q is sitting
at r D 0, and

�2 D
X

s

ns q2
s

ε0T
OD 2

λ2
D

. (1.12)
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4 1 Introduction

Its solution is the screened Debye potential of the test charge q, that is,

φ D 1
4πε0

q
r

e�� r , (1.13)

as expected. The easiest direct way for finding the solution is by Fourier transfor-
mation (see Appendix B)

φk D
Z

d3r e�i k�r φ(r) (1.14)

which immediately leads to

φk D 1
ε0

q
k2 C �2

. (1.15)

Back-transformation gives

φ(r) D 1
(2π)3

Z
d3 k ei k�r φk D 1

4πε0

1
π

1Z
�1

dx

1Z
0

dkk2 q
k2 C �2 e i k r x

D 1
4πε0

2
π

1Z
0

dkk
q

k2 C �2

sin(k r)
r
D 1

4πε0

q
r

e�� r , (1.16)

since
1Z
0

x2mC1 sin(ax )
(x2 C z)nC1

dx D (�1)nCm

n!
π
2

d n

dz n

�
z m e�a

p
z
�

, (1.17)

which we applied for n D m D 0, a D r , x D k, and z D �2.
In conclusion, let us calculate the induced space charge. We decompose the po-

tential

φ(r) D 1
4πε0

q
r

e�� r D φC b C φ i nd , (1.18)

where

φ i nd D 1
4πε0

q
r

(e�� r � 1) . (1.19)

The induced space charge �i nd , which is responsible for the shielding (compared
to the “naked” Coulomb potential φC b) follows from

r2φ i nd � 1
r2

d
dr

 
r2 dφ i nd

d r

!
D � 1

ε0
�i nd . (1.20)

A straightforward calculation leads to

�i nd D � q�2

4π r
e�� r . (1.21)
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1.1 Quasineutrality and Debye Shielding 5

Integrating the induced space charge density, which expresses the polarization, we
obtain the expected resultZ

d3r�i nd D �q . (1.22)

The sign of the shielding charge distribution is opposite to the sign of the test
charge q. Shielding causes a redistribution of charges compared to the ideal plasma
situation (in the latter, the interaction potential is neglected).

The picture of the Debye shielding is valid only if there are enough particles in
the charge cloud. We can compute the number ND of particles in a Debye sphere,

ND D n
4
3

πλ3
D I (1.23)

effective shielding over a Debye length requires

ND � 1 . (1.24)

A plasma with characteristic dimension L can be considered quasineutral, provided

λD � L . (1.25)

It is easy to show that the largest spherical volume of a plasma that spontaneously
could become depleted of electrons has the radius of a few Debye lengths. Let us
consider a sphere of uniformly distributed ions with density ni (r) D const. Starting
from the center of the sphere, the radial coordinate r is being introduced. The
charge Q D 4π ni er3/3 is enclosed up to r, and the electric field only has a radial
component

Er D 1
4πε0

Q
r2
D ni er

3ε0
. (1.26)

From here, we find the electrostatic field energy W in the sphere of radius r as

W D ε0

2

rZ
0

E 2
r 4π r2dr D 2π r5n2

i e2

45ε0
. (1.27)

Let us now discuss the scenario that the ion-filled sphere has been created by
evacuating electrons. Before leaving the sphere, the electrons had the kinetic ener-
gy

Ek i n D 3
2

ne Te � 4
3

π r3 . (1.28)

The electrostatic energy W did not exist when (neutralizing) electrons were initially
in the sphere to balance the ion charge. In other words, W must be equivalent to the
work done by electrons on leaving the sphere. Ek i n was available to the electrons.
By equating

W D Ek i n, (1.29)
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6 1 Introduction

we find the maximum radius or the largest spherical volume that could sponta-
neously become depleted of electrons. A short calculation leads to

r2
max D 45ε0

Te

ne e2
(1.30)

or

rmax � 7λD e . (1.31)

1.2
Degree of Ionization

A plasma may be partially or full ionized, respectively. The degree of ionization
depends on several parameters. Let us first estimate the degree of ionization on the
basis of thermal ionization in a system consisting of hydrogen (H) atoms, electrons
(e), and protons (p) (ions).

1.2.1
The Saha Equation

The Saha equation gives a relationship between the free particles (for example, elec-
trons and protons) and those bound in atoms (H). To derive the Saha equation, we
assume thermodynamic equilibrium and collisional ionization. We choose a consis-
tent set of energy levels. Let us choose E D 0 when the electron is free (unbound)
and has velocity zero, and E D En < 0 when the electron is in a bound state of
the hydrogen atom (Z D 1). Using the simple Bohr energy formula for n D 1, we
ignore the higher n levels,

En D Z
n2 � (�13.6 eV) . (1.32)

The first excited state is already close to the bound-free-limit when compared to
the ground state. When sufficient energy is available to excite an electron from the
ground state n D 1 to n D 2, only a little bit more (one third) is needed to directly
ionize.

For independent particles, we first calculate the single particle partition functions
for electrons, protons, and hydrogen atoms which have the form1) [27]

Z D
X

n

e�E(n)/ kB T . (1.33)

Here, the sum is over all states (bound and free) with energies E(n). The sums in
the partition functions are actually integrals for the free particles since the particles
have a continuous momentum distribution. The degeneracy of states (or statistical

1) We keep the Boltzmann constant kB as it is done in most books on statistical physics.
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1.2 Degree of Ionization 7

weights) gi with ge D g p D 2 and gH D 4 (for hydrogen) has to be taken into
account. Therefore, for free electrons and free protons (ions), we have

Z j D 1
h3

Z
g j e[�p 2/(2m j )]/(kB T j )d3r d3 p for j D e, p . (1.34)

Because of isotropy, d3 p D 4πp 2d p , the integrals can be performed, that is,

Ze D 2V
h3

(2π me kB Te)
3/2 , (1.35)

Zp D 2V
h3

�
2π m p kB Tp

�3/2 . (1.36)

Here, me and m p are the electron and proton masses, respectively. For the temper-
ature, we have in equilibrium T D Te D Tp D TH . A similar calculation leads for
freely moving hydrogen atoms consisting of a bound electron–proton pair (in the
ground state) to

ZH D 4V
h3

(2π mH kB TH )3/2 eEi / kB TH (1.37)

with E0 D �13.6 eV � �Ei , where Ei is the ionization energy.
Let Z be the total partition function of the system (do not mix with Z for the

atomic number) consisting of Ne � Np free electrons (and protons) out of N D
NH C Np atoms in a given ensemble. For indistinguishable particles, we have

Z
�
V, T, Ne, Np , NH

� D Z Ne
e

Ne !
Z

Np
p

Np !
Z NH

H

NH !
. (1.38)

From here, we get the free energy

F D �kB T ln Z . (1.39)

The actual particle densities which are realized in nature are the ones that give a
minimum of the free energy.

To find the most probable state, we should differentiate Eq. (1.39). For large num-
bers N, we use the Stirling formula

ln N ! � N ln N � N , (1.40)

leading to

� F
kB T

� Ne ln Ze C Np ln Zp C NH ln ZH � Ne ln Ne

C Ne � Np ln Np C Np � NH ln NH C NH . (1.41)

Making use of NH D N � Np and Np D Ne, we find from the vanishing of the
derivative

@F
@Ne
� ln Ze C ln Zp � ln ZH � ln Ne � ln Ne C ln(N � Ne) D 0 . (1.42)
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8 1 Introduction

This results into

Ze Zp

ZH
D N 2

e

N � Ne
. (1.43)

With the expressions for the partition functions and mH � m p , we arrive at

V
h3

(2π me kB T )3/2 e�Ei / kB T D N 2
e

N � Ne
. (1.44)

Introducing particle densities Ne/V D ne , Np /V D n p , and NH/V D nH � nn ,
the Saha (equilibrium) equation can be written in the form

ni ne

nn
D 2g1

g0

�me

2π

�3/2 „�3(kB Te)3/2e�Ei / kB Te � K(Te)

� 2.4 � 1015 (Te [K])3/2 e�Ei /(Te [eV]) [cm�3]

� 3 � 1021 (Te [eV])3/2 e�Ei /(Te [eV]) �
cm�3	 . (1.45)

Once again, ne is the electron density, nn is the neutral particle (hydrogen) density,
ni is the density of single ionized particles (protons), gν is the statistical weight
(g1 D 2 for electrons and protons, g0 D 4 for hydrogen), kB D 1.3807�10�16 erg/K
is the Boltzmann constant, Te is the electron temperature, me is the electron
mass, and Ei D 13.6 eV is the ionization energy. 1 eV OD 1.6022 � 10�12 erg,
1 eV OD 1.1605 � 104 K.

The Saha formula for hydrogen may be written in the form

α i α e

αn
D 2g1

ng0

1
λ3

e
e�Ei / kB Te (1.46)

where the ionization degrees

α e D Ne

N
, α i D Ni

N
, αn D NH

N
, (1.47)

and the thermal de Broglie wavelength

λ e D
s

h2

2π me kB T
(1.48)

have been introduced. Note that

N D NH C Ni � NH C Ne , Ne � Ni , n D N
V

. (1.49)

Thus, the Saha equation determines the degree of ionization in terms of T � Te

and n. When, besides the temperature T, the pressure p is given, we should use an
equation of state, that is,

p V D
X

μ

Nμ kB Tμ D (1C α e) N kB T . (1.50)
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1.2 Degree of Ionization 9

We can then replace

n D p
(1C α e) kB T

, (1.51)

leading to

α i α e

αn (1C α e)
D 2g1

g0

kB T
p λ3

e
e�Ei / kB Te . (1.52)

Noting

αn � αH D 1 � α e , α i � α e (1.53)

for hydrogen, we may write

α2
e

(1 � α e) (1C α e)
D kB T

p λ3
e

e�Ei / kB T � 1
pKp (T )

. (1.54)

The solution of this quadratic equation is

α e D 1p
1C pKp (T )

, Kp (T ) D λ3
e

kB T
eEi / kB T . (1.55)

This formula allows one to determine the degree of ionization α e for a given gas
pressure p as a function of temperature T. The numerical evaluation is straightfor-
ward. Note

me � 9.109 � 10�31 kg , h � 6.626 � 10�34 J s

1 eV � 1.602 � 10�19 J , 1 bar D 105 N/m2

Ei � 13.6057 eV , kB � 1.3807 � 10�16 erg/deg(K) .

In a similar way, one can derive the degree of ionization for a prescribed total
density n D N/V by

α e D 1
2nKn (T )

hp
1C 4nKn(T )� 1

i
, Kn(T ) D Kp (T )

kB T
. (1.56)

The dependence of ni/nn on temperature for a fixed pressure p is shown in Fig-
ure 1.1. Another form of the Saha equation starts from the partition functions Zi

and ZiC1 for the atom in its initial and final stages of ionization. The ratio of the
number of atoms in stage i C 1 to the number of atoms in stage i is

NiC1

Ni
D 2ZiC1

ne Zi

�
2π me kB T

h2

�3/2

e�
 i / kB T , (1.57)

where 
 i is the ionization energy needed to remove an electron from ionization
stage i to i C 1. Because a free electron is produced in the ionization process, the
number density of free electrons appears on the right-hand side. As ne increases,
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Figure 1.1 Evaluation of the Saha equation (1.55) for hydrogen (Ei D 13.6 eV) with pressure
p D 1 bar.

the number of atoms in the higher stage of ionization decreases since there are
more electrons with which the ion may recombine. Sometimes, the abbreviated
form

Zi

Ni
D ZiC1Ze

NiC1Ne
(1.58)

is said to be the most useful form. Convince yourself that all forms presented here
are equivalent.

The Saha equation can also be seen as a restatement of the equilibrium condition
for the chemical potentials (note the definition of the chemical potential in terms
of a derivative of the free energy and compare with the previous derivation of the
most probable state),

μ i D μ iC1C μ e . (1.59)

This equation states that the potential of an atom of ionization state i to ionize is
the same as the sum of the potentials of an electron and an atom of ionization state
i C 1. The potentials are equal and therefore the system is in equilibrium and no
net change of ionization will occur.

The Saha equation named after the Indian astrophysicist Meghnad Saha who
first derived it in 1920 [28].

1.2.2
Thomson Cross Section and Rate Equation

The cross section for the collisional ionization process can be easily estimated. The
following estimate treats the collision process on the atomic scale (Bohr radius) in
a (in principle not valid) classical model. Nevertheless, the results are close to the
exact quantum-mechanical calculation.
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1.2 Degree of Ionization 11

When an electron approaches an H-atom on atomic dimension, we consider the
scattering from the nucleus. Let us assume large velocities such that the scattering
angle is small. The electron is accelerated in the Coulomb field of a proton. If � is
the transverse distance being approximated by the constant scattering parameter �,
the strength of the force is approximately proportional to e2/(�2 C v2

e t2), where ve

is the characteristic velocity. The closest approach is at t D 0. The perpendicular
component requires an additional factor, which is one for the closest approach and
decays approximately as �/(�2 C v2

e t2)1/2 for larger t. Thus, the transverse (to the
initial velocity) velocity change is

dv?
d t
� 1

4πε0

e2

me

��
�2 C v2

e t2
�3/2 . (1.60)

Figure 1.2 shows some definitions of angles during the scattering, where θ is called
the scattering angle, and α has been introduced to calculate the perpendicular com-
ponent of the Coulomb force. The velocity of the electron is v OD ve . Integrating, we
get the perpendicular velocity

v? � 1
4πε0

e2

me

1Z
�1

��
�2 C v2

e t2
�3/2 d t D 1

4πε0

2e2

meve�
. (1.61)

The energy difference

ΔE? �
mev2

?
2
� 1

(4πε0)2

e4

E�2 � ε , E D mev2
e

2
, (1.62)

is available for collisional ionization. Rewriting the last relation as

�2 D 1
(4πε0)2

e4

E ε
, (1.63)

we obtain the relation between collision parameter �, initial energy E, and energy
change ε. The differential cross section for an energy change dε for given initial
energy E is

dσ D j2π�d�j D 1
(4πε0)2

πe4

E ε2
dε . (1.64)

Figure 1.2 The velocity v of an electron ap-
proaching a proton at collision parameter �

at two instances of time. On the left the ve-
locity at t D �1 is shown. At a later time t,

scattering occurred with scattering angle θ . F
designates the electrostatic force between the
electron and the proton at time t.
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12 1 Introduction

The hydrogen atom will be ionized if ε > Ei , where Ei is the ionization energy.
Integrating from Ei to E, we obtain the Thomson cross section

σT D 1
(4πε0)2

πe4

E 2Ei
(E � Ei ) . (1.65)

The maximum cross section occurs for E D 2Ei . It is

σT,max D 1
(4πε0)2

πe4

4E 2
i

� πa2
B � 10�16 cm2 , (1.66)

where aB is the Bohr radius. The latter is given by

aB D 4πε0„2

me e2 � 0.529 � 10�10 m , (1.67)

and the ionization energy is

Ei D me e4

8ε2
0h2

. (1.68)

At large energies, the cross section decays proportional to 1/E . More exact quantum
calculations lead to a decay proportional to ln(E )/E for E � Ei which better agrees
with experiments.

Multiplying the cross section with the velocity and the density of scatterers, we
obtain the probability of collisional ionization per time. Totally, the change is also
proportional to the density of incident particles. For collisional ionization and (triple)
recombination, the electron particle balance is then

dne

d t
D ne nH hσT vei � �n2

e n p , (1.69)

where we abbreviate hσTvei � α for the mean product of cross section with veloc-
ity. The recombination coefficient � can be found in the stationary state from

� D nH hσT vei
ne n p

� α
K(T )

, (1.70)

where in the last reformulation, we used the Saha equation; K(T ) is on the right-
hand side of the Saha formula.

1.2.3
The Corona Formula

When investigating all possible mechanisms for ionization and recombination in
a plasma, a modified ionization formula is often used for the intermediate range
of electron temperature and density which is of interest for laboratory experiments
and astrophysics. That formula portrays, under certain situations, the physical phe-
nomena better than previous calculations. In some hydrogen discharges, it may
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1.2 Degree of Ionization 13

yield the tenfold value for the neutral plasma component, as would be expected
from the Saha equation.

Let us give some arguments why, besides collisional ionization, other processes
are sometimes important. Thus far, we considered collisional ionization, for exam-
ple, of hydrogen. The process is

HC e� ! HC C e� C e� (1.71)

The inverse process is (triple) recombination

HC C e� C e� ! HC e� (1.72)

The Saha equation covers these processes in thermodynamic equilibrium.
Another ionization and recombination channel is photoionization

HC „ω ! HC C e� (1.73)

and photorecombination

HC C e� ! HC „ω (1.74)

We can combine all these processes in the rate equation

dne

d t
D αne nH � �n2

e n p C μnH � γ ne n p , (1.75)

with coefficients α (collisional ionization from the ground state), � (collisional
three-body recombination), μ (photoionization), and γ (electron–ion radiative re-
combination), respectively. At thermal equilibrium, assuming a detailed balance,
we should have

μ D γ
ne n p

nH
� γ K(T ) . (1.76)

Under laboratory conditions, the radiation can often leave the plasma. That is why
the photon density can be much lower than in equilibrium. For this reason, one
can often neglect the photoionization. When the plasma is rarefied, one can also
neglect the triple recombination. The corresponding condition is

μ
α
� ne � γ

�
. (1.77)

In this limit, the equilibrium electron concentration is given by the balance be-
tween photorecombination and collisional ionization, and we arrive at the Elwert
formula

n p

nH
D α

γ
. (1.78)

This relation is also called the corona equilibrium formula. In many astrophysical
situations, this balance is appropriate. The corona model is usually assumed to be
applicable if [29]

1012 t�1
I < ne

�
cm�3	 < 1016 Te [eV]7/2 , (1.79)
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14 1 Introduction

where tI is the normalized ionization time.
For the γ -coefficient, we may use the formula [30]

γ � 2.7 � 10�13 T �1/2
e



cm3

s

�
when 1 < Te [eV] < 15 . (1.80)

Collisional three-body recombination is often approximated by [29]

� � 8.75 � 10�27(Te [eV])�4.5



cm6

s

�
. (1.81)

The interested reader is referred to [31] for more details.

1.3
Characteristic Parameters

Temperature and density are two characteristic parameters of plasmas. For the tem-
perature, the attributes hot and cold are, of course, relative. Similar is the situation
for the density when we talk about high and low densities. In this section, we want
to establish a better understanding for the relevant orders of magnitude.

In magnetic confinement, hot means high temperatures fulfill the Lawson crite-
rion. Then, we are in the temperature range

10 keV 	 kB T 	 20 keV , (1.82)

and the Lawson criterion [32] reads2)

nkB T τE 
 3 � 1021 m�3 keV s . (1.83)

Here, τE is the energy confinement time.
The first question we want to deal with is whether a relativistic treatment is re-

quired. As a rough estimate for the need of a relativistic treatment, we postulate

v2
t he

c2

 0.01 , (1.84)

with the electron thermal velocity

vt he D
�

kB Te

me

�1/2

. (1.85)

It is straightforward to find the temperature range for the necessity of a relativistic
treatment in the form

kB Te 
 0.01me c2 � 0.005 MeV D 5 keV O� 50 000 000 K . (1.86)

2) John D. Lawson, an engineer, was noted for his 1955 paper, published in 1957 [32].
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1.3 Characteristic Parameters 15

Here, we made use of the approximate values

me c2 � 0.5 MeV , 1 eV O� 10 000 K . (1.87)

More exact values can be obtained when using more precise constants; see, for
example, [29].

Quantum effects become important when the degeneracy parameter ne λ3
d B be-

comes larger than one. In the nonrelativistic case, we use the thermal de Broglie
wavelength

λd B � λ e D hp
2π me kB Te

. (1.88)

Then,

ne �
�

me kB Te

„2

�3/2

(1.89)

follows for the need of a quantum-mechanical description.
In the relativistic case, we use the energy expression

E 2 D c2 p 2 C m2
e c4 (1.90)

together with E � kB Te as well as λd B � h/p . In the ultrarelativistic case, from
p � kB Te/c,

ne �
�

kB Te

„c

�3

(1.91)

follows. For the general case Eq. (1.90), the generalization of the estimate Eq. (1.91)
is straightforward to obtain. In Figure 1.3, we have plotted the borderline between
the classical and the quantum-mechanical behaviors. The areas of applicability of
other model zones are also shown.

The ideal gas approximation proves to be good if the nonideality parameter
jEp otj/jEk i nj is small. Since

Ep ot � 1
4πε0

e2

λn
� n1/3

e (1.92)

and

Ek i n D 3
2

kB Te [classical] , (1.93)

we can express, with the electron Debye length λD e D (ε0kB Te/ne e2)1/2, the classi-
cal ideality condition as

ne λ3
D e � 1 . (1.94)
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16 1 Introduction

Figure 1.3 Overview over different model approximations in physical parameter space.

When a quantum-mechanical description is appropriate, the estimate is different.
Then, we approximate

Ek i n � p 2
F

2me
� h2n2/3

e

me
, (1.95)

with the Fermi momentum pF to find the quantum-mechanical ideality condition

λB � e2me

4πε0n1/3
e „2

� 1 . (1.96)

The expression λB on the left-hand side is called the Brueckner parameter. Note
the different conditions for ideality (in terms of the density) in the classical and
quantum-mechanical regimes, respectively. In the classical case, we have

EC oul omb

kB Te
� n1/3

e , (1.97)

whereas in the quantum case,

EC oul omb

p 2
F

2me

� n�1/3
e (1.98)

follows.
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1.3 Characteristic Parameters 17

A global overview over different model approximations in physical parameter
space is shown in Figure 1.3.

We conclude this subsection by the quite surprising remark that “low” tempera-
tures in quantum-mechanically degenerate systems, that is,

kB Te � εF �
q

m2
e c4 C c2 p 2

F , (1.99)

may be extremely “high”, in the sense that relativistic effects are important. The
latter appear for

pF > me c (1.100)

with

pF D
�

3ne

8π

�1/3

h . (1.101)

Thus, for

ne �
�me c

h

�3
, (1.102)

we have to perform relativistic calculations even if the temperatures are “low.”
In the following, we discuss two important applications in more detail.

1.3.1
Typical Parameters of (Magnetic) Fusion Plasmas

When developing a theory, we have to specify the parameter regime to which it
should apply. In the following, we show typical parameters3) for a magnetic fusion
plasma,

T � 10 keV , B � 4 T OD 4 � 104 G , ne � ni WD n � 1014 cm�3 .

(1.103)

For these parameters, the Debye length is then of the order

λD � 7.43 � 102 T 1/2n�1/2 [cm] � 7 � 10�3 cm . (1.104)

Thermal de Broglie wavelength, mean particle distance and thermal velocity are

λd B � 2.76 � 10�8 T �1/2 [cm] � 3 � 10�10 cm , (1.105)

λn � n�1/3 [cm] � 10�5 cm , (1.106)

vt he � 4.19 � 107 T 1/2
h cm

s

i
� 4 � 109 cm

s
. (1.107)

3) Only within the next few formulas, should B be inserted in gauss units, as it is often done in
fusion applications [29]. Thus, when not stated otherwise, in this subsection, T is in electron volt
and B in gauss.
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18 1 Introduction

Larmor radii follow via the gyrofrequency Ω D qB/m (in SI units) divided by the
thermal velocity,

�i � 1.02 � 102 T 1/2
i B�1 [cm] � 0.2 cm , (1.108)

�e � 2.38T 1/2
e B�1 [cm] � 0.5 � 10�2 cm . (1.109)

A plasma is magnetized for δ � �/L � 1, that is,

δ i �
r

mi

me
δ e � 1 . (1.110)

The total collision cross section σ t o t � πR2 (see previous and following discus-
sions) is often estimated by making use of

1
4πε0

e2

R
� T . (1.111)

Then, the mean free path of a particle

λm f p � vt h ν�1 � 1
σ t o t n

[estimate] (1.112)

turns out to vary as

λm f p � T 2

n
. (1.113)

The more exact formula [29] leads, for example for electrons, to

λm f p � 106 cm . (1.114)

From the mean free paths, estimates of the collision frequencies also follow. Here,
we present the kinetic collision frequencies ν � λm f p /vt h as

ν e � 2.91 � 10�6 ne ln ΛT �3/2
e

�
s�1	 � 3 � 103 s�1 , (1.115)

ν i � 4.78 � 10�8 ni ln ΛT �3/2
i

�
s�1	 � 5 � 101 s�1 , (1.116)

where ln Λ is the Coulomb logarithm (see later chapters). The gyrofrequencies
have the orders of magnitude

jΩej � 1.76 � 107 B



rad
s

�
� 8 � 1011 rad

s
, (1.117)

Ωi � 9.58 � 103 rad
s
� 4 � 108 rad

s
. (1.118)

In a plasma, a collective electron plasma frequency also appears,

ω p e D
s

ne2

ε0me
� 5.64 � 104 n1/2

e



rad
s

�
� 5 � 1011 rad

s
. (1.119)

Similarly, an ion plasma frequency exists, that is,

ω p i � 1.32 � 103 n1/2
i



rad
s

�
� 1010 rad

s
. (1.120)
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1.3 Characteristic Parameters 19

1.3.2
Parameters of the Sun

In our opinion, the most important burning star is the sun which provides us with
the necessary energy for life. Thermonuclear fusion in gravitational confinement is
its energy source. Geological observations do not show any indications for signifi-
cant changes in the behavior of the sun during the last million years. Thus, we may
assume that the sun is in hydrostatic equilibrium. The gravitational energy can be
estimated by (we assume an approximately constant mass density � D const)

EG r D �
RZ

0

G m(r)�(r)
r

4π r2dr

D � (4π)2

3
G�2

RZ
0

r4dr D �3
5

G M2

R
� O

�
�G M2

R

�
. (1.121)

Here, m(r) is the mass of the sphere up to radius r; it is the “enclosed mass.” In
the following, we shall use

EG r � �
G M2

ˇ
Rˇ

. (1.122)

The exact numerical factors are not needed for a rough estimate. In Eq. (1.122), Rˇ
is the radius and Mˇ is the mass of the sun. Astrophysical observations provide
us with the values Mˇ D 1.99 � 1030 kg and Rˇ D 6.96 � 108 m. The age of the
sun is estimated as tˇ � 4.55 Gyr. Measurements of the luminosity Lˇ deliver
the basis for estimates of the surface temperature Tˇ. The approximate value for
the luminosity is Lˇ D 3.86 � 1026 W. Making use of the luminosity formula
Lˇ D 4πR2

ˇσT 4
O with the Stefan–Boltzmann constant σ, we find for the surface

temperature TO � Tˇ � 5780 � 6000 K. This value is quite different from the
temperature in the interior of the sun. The latter should be much larger in order to
enable the nuclear fusion process.

The physical parameters of the interior of the sun follow from solar models [18,
19]. Solar models are meanwhile quite advanced. Typical values for the central tem-
perature, central mass density, and pressure at the center, respectively, are

Tc D 15.6 � 106 K , (1.123)

�c D 1.48 � 105 kg m�3 , (1.124)

Pc D 2.29 � 1016 Pa . (1.125)

The large central temperature becomes plausible from the following estimate
based on the stationarity condition

dP
dr
D ��

G Mr

r2 , (1.126)
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20 1 Introduction

where Mr � m(r) is the “enclosed mass,” G the gravitational constant, and P is the
pressure. This is a minimal model; many effects are neglected.

Multiplying Eq. (1.126) by 4π r3 and integrating over r from zero to R � Rˇ
leads to

RZ
0

dr4π r3 dP
dr
D �

Z
G Mr

r
dm � EG r , (1.127)

with dm D 4π r2�dr . EG r is the potential (gravitational) energy of the whole mass
distribution and � is the mass density.

Next, we integrate on the left-hand side by parts. For (nearly) vanishing pressure
at the surface R � Rˇ, we obtain

�3hPiV D EG r , (1.128)

with the averaged pressure

hPi D
R

P(r)dVR
dV

. (1.129)

The averaged pressure is the mean pressure value averaged over the whole volume.
With the new notation, Eq. (1.128) is known as the virial theorem, usually written
in the form

hPi D �1
3

EG r

V
. (1.130)

The contents of the virial theorem is the maximum information we can get without
specifying an equation of state.

Making use of the virial theorem, we find for the sun hPi � 1014 Pa. Note that
we obtain the mean pressure averaged over the whole volume. The pressure in the
center is much larger. When we are interested in more details, we need the equa-
tion of state. For rough values, a classical calculation is still possible. In addition,
although deviations from the ideal gas law will become significant, for simplicity,
we still use the ideal gas approximation

hPi D nkT D h�iNm k T . (1.131)

This leads to the mean temperature for the hydrostatic equilibrium hT i � 6 �
106 K. That temperature is much larger than the surface temperature (by a factor
of approx. 103), and reasonably close to the temperature at center Tc � 15.6 �
106 K. In any case, the low surface temperature is very important. Larger surface
temperatures would lead to a X-ray bombardment on the earth, making life in its
present form impossible.

1.4
Individual and Collective Effects

In this section, we discuss the differences between individual and collective effects
in more detail. We have already mentioned that binary collisions are typical indi-
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1.4 Individual and Collective Effects 21

vidual effects. Their strength is measured in terms of a collision frequency ν. The
latter should be compared with the plasma frequency ω p , a typical collective phe-
nomenon. Let us now first work out the physical meaning of the electron plasma
frequency ω p e.

1.4.1
The Plasma Frequency

A “Gedankenexperiment” starts from a sphere of radius r uniformly filled with
electrons and protons such that the whole system is globally neutral. If, on the
other hand, only one species, for example, electrons, would be present, the sphere
would have a charge qe resulting in a radial field at the surface,

qe D �4π
3

r3ene , jE j D 1
4πε0

qe

r2 . (1.132)

The field strength could be enormously large, depending on the size of the sphere
and the electron density. However, as stated already, we start our “Gedankenexperi-
ment” with homogeneously distributed electrons and protons such that outside the
sphere no electric field exists. Next, let us expand the electron sphere from radius r
to radius rC x with x � r , creating an electron shell of thickness x. Since the total
number N of electrons and protons, respectively, is constant, the electron density
is decreased to

ne D ne0 C δne � N
4π
3 r3

�
1C 3 x

r

� � ne0 � 3ne0
x
r

. (1.133)

Within the sphere of radius r, we now have a positive excess charge

Δq � 4π ne0er2x , (1.134)

creating, at r, the radial electric field component

E � 1
4πε0

4πene0x . (1.135)

A shell electron feels the radial force

K � me
d2x
d t2 D �eE D � 1

ε0
e2ne0x , (1.136)

which pulls it back into the original sphere. An overshooting will occur, resulting
in oscillations with the electron plasma frequency

ω p e D
s

e2ne

ε0me
. (1.137)

In this scenario, we kept the ions fixed, having in mind their large mass compared
to the electron mass and the high-frequency of the electron oscillations.

The Debye length is connected to the plasma frequency via

λD D vt h

ω p
. (1.138)
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1.4.2
General Remark on Individual Collisions

Next, we will discuss the individual collision frequencies in more detail. Binary
collisions correspond to the classical two-body problem. At this point, we should
mention that the two-body problem with Coulomb interaction can be reduced to
an effective one-particle problem if we go to the center of mass (COM) system.
Then, the reduced mass appears. If one mass is much larger than the other (or
if we fix the position of the scatterer, which effectively means that we assume an
infinitely large mass of the scatterer), the difference between COM and laboratory
system disappears. The next considerations can be interpreted as the calculations
for a fixed scatterer. The two-body problem with a fixed scattering center is depicted
in Figure 1.4.

A charge q D Ce scatters a beam of electrons with charge �e. The incoming
particle current density is j D neve . Per time unit, we have 2π�d� j particles being
scattered when passing through a ring area 2π�d�. Each particle is scattered at a
specific angle θ . Asymptotically, the change of longitudinal (i.e., in the direction of
initial propagation) momentum of a single particle is

Δp0 D �meve(1� cos θ ) . (1.139)

We can define the total force on the beam (in the presence of a fixed scatterer),
whose magnitude is

Fe D �
1Z
0

mve(1 � cos θ ) j 2π�d� OD � meve j σ . (1.140)

Here, we assumed fixed initial velocities of magnitude ve . The expression

σ D
1Z
0

(1� cos θ )2π�d� (1.141)

θ

ρ

e

q

rα

Figure 1.4 Sketch of a two-particle collision.
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1.4 Individual and Collective Effects 23

is called the transport cross section (for momentum transfer). To evaluate the latter,
we need the functional dependence θ D θ (�). That can be taken from standard
textbooks of classical mechanics [33],

tan
θ
2
D 1

4πε0

e2

me�v2
e

. (1.142)

As a side note, this relation can be made easily plausible for small scattering an-
gles θ � 1. Then, the straight-path approximation may be assumed in evaluating
integrals. For example, we get for the transverse momentum change

Δp0? � meve θ D
1Z

�1
F?d t � 1

4πε0

1Z
�1

e2��
�2 C v2

e t2
�3/2 d t

D 1
4πε0

2e2

�ve
, (1.143)

where we have approximated sin θ � θ and cos α � �/
p

�2 C v2
e t2. The angle θ

is the scattering angle and α is the angle between the total force and the perpen-
dicular component.

Evaluating the cross section Eq. (1.141), we make us of 1 � cos θ � θ 2/2 to
obtain

σ D 1
(4πε0)2

4πe4

m2
ev4

e

1Z
0

1
�

d� . (1.144)

Apparently, the integral is logarithmically divergent. As a lower limit, we define

�min D 1
4πε0

e2

mev2
e

, (1.145)

which is the collision parameter for 90ı scattering. Note that tan(π/4) D 1. For
more details, see the chapter on transport theory. For very small collision param-
eters (strong collisions), a classical treatment will break down. The upper limit
�max D λD is postulated as the Debye length due to the screening of the potential
of the scatterer. Thus, we evaluate, instead of Eq. (1.144),

σ D 1
(4πε0)2

4πe4

m2
ev4

e

�maxZ
�min

1
�

d� . (1.146)

The expression

ln Λ D ln
�max

�min
D ln 16π2 ε5/2

0
3(kB T )3/2

e3
p

n
(1.147)

is proportional to the logarithm of the number of particles in the Debye sphere
and is called the Coulomb logarithm. In magnetic fusion plasmas, it is of the order
10–20. In Eq. (1.147), we have used

1
2

mev2
e �

3
2

kB T . (1.148)
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Of course, within an approximate treatment, also slightly different estimates are in
use. The result for the cross section is now

σ D 1
(4πε0)2

4πe4

m2
ev4

e
ln Λ . (1.149)

We find the order of magnitude

σ � 10�12

(E [eV])2 cm2 , (1.150)

where E D 1/2mev2
e is the kinetic energy.

1.4.3
Collision Frequencies for Momentum and Energy Transfer

The transport cross section allows us to find the momentum transfer rate between
particles. Let us consider an electron beam in a cold plasma. Then, we still assume
the scatterers as fixed. Let ni be the ion density. When we have ni scatterers per
unit volume, the mean force acting on a single particle of the beam will be

F e D �mev e j σni
1
ne
D �meve σniv e . (1.151)

Due to this force, the electron mean velocity is decelerated,

dv e

d t
D F e

me
D �ni σvev e � �ν e iv e . (1.152)

Here, v e is the relative velocity between electron and ion. For a fixed scatterer, the
total energy of an electron does not change. The longitudinal velocity component
of the scattered electron changes according to Eq. (1.139), or approximately as

Δve D �ve(1� cos θ ) � �ve
θ 2

2
. (1.153)

Thus, the angular spread grows, that is,

dθ 2

d t
D 2σnive . (1.154)

The characteristic time

τ e i D 1
ni σve

� 1
ν e i

(1.155)

is the inverse of the collision frequency ν e i .
The collision frequency follows from the cross section after multiplying nive ,

that is, we obtain the approximate result

ν e i D 1
(4πε0)2

4πe4ni

m2
ev3

e
ln Λ . (1.156)



�

�

Karl-Heinz Spatschek: High Temperature Plasmas — Chap. spatscheck0415c01 — 2011/9/1 — page 25 — le-tex

�

�

�

�

�

�

1.4 Individual and Collective Effects 25

The ratio between the individual collision frequency and the collective plasma
frequency is proportional to the inverse of the number of particles in a Debye
sphere,

ν e i

ω p e
� 1

nλ3
D e

(1.157)

for ni � ne � n.
Note that after the time T � ν�1

e i the quantity θ 2 suffers a change of its order of
magnitude. We may calculate characteristic values from

ν e i � 6 � 10�5 ni [cm�3]
(E [eV])3/2

. (1.158)

The electron mean free path is

λmfpe D 1
ni σ
� 1012 (E [eV])2

ni [cm�3]
cm . (1.159)

For a Maxwellian, we may use

hE 2i D 15
4

(kB T )2 . (1.160)

With that, we determine the temperature dependencies of the characteristic quan-
tities. Measuring lengths in cm, densities in cm�3, and temperatures in eV, we
obtain the characteristic values

σ � 3 � 10�13

T 2
cm2 , (1.161)

ν e i � 3 � 10�5 n
T 3/2 s�1 , (1.162)

λmfpe � 3 � 1012 T 2

n
cm . (1.163)

1.4.3.1 Calculation in the Center of Mass System
When the masses of scatterer (m2) and scattered particle (m1) are similar or m1 �
m2, we transform to the center of mass system with center of gravity R . Using
r D r2 � r1 for the difference of the position vectors, and the reduced mass m12 D
m1m2/(m1 C m2), we have

r1 D R � m2

m1 C m2
r , r2 D R C m1

m1 C m2
r , (1.164)

and find

m12 Rr D �Z1Z2e2 r
r3 . (1.165)

In the following, we assume that the scatterer has charge Z2e, while for the scat-
tered particle, the charge is �Z1e. One obtains an effective two-body problem simi-
lar to the treatment for fixed scatterers. The mass has to be replaced by the reduced
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mass, and the position of the scatterer is replaced by the relative distance. We can
immediately translate the previous formulas, for example, Eq. (1.149) can now be
written as

σ D 1
(4πε0)2

4πZ2
1 Z2

2 e4

m2
12v4

ln Λ , (1.166)

and the general formula for the collision frequency (to deflect the incident particle
by an angle 90ı in the presence of n2 scatterers per unit volume)

ν12 D v σn2 D 1
(4πε0)2

4πZ2
1 Z2

2 e4n2 ln Λ
m2

12v3
. (1.167)

Note that we calculated the frequency for velocity deflections. Thus, ν12 directly
gives the frequency for momentum transfer in the center of gravity system. We
shall denote the momentum scattering frequencies as ν ee , ν i i , ν e i , and ν i e for the
various possible interactions between species. The reciprocals are denoted by τ �
ν�1.

Energy scattering is characterized by the time required for an incident particle
to transfer its kinetic energy to the target particle. The energy transfer collision
frequencies are denoted by νE

ee, νE
i i , νE

ei , and νE
i e, respectively.

As a typical velocity, we take v � vt h. We reference all collision frequencies to
ν ee. Note for the reduced mass mee � me/2 � me and v � T 1/2/m1/2

e for this case.
When we calculate ν e i , we have mei � me and v � T 1/2/m1/2

e , that is, (except for a
factor two) the same values, and therefore

ν e i � ν ee (1.168)

follows.
Next, we consider ν i i . Now, mi i � mi/2 and v � T 1/2/m1/2

i , and therefore

ν i i �
r

me

mi
ν ee (1.169)

follows. In all cases, the differences between the lab frame and the center of gravity
system are tolerable since we ignore factors of order two in the present estimates.

Care is required when calculating ν i e. The transformation into the lab frame is
necessary, straightforward, but not immediately obvious. An easier way to estimate
ν i e is momentum conservation in lab frame which leads to mi Δv i D �me Δv e

where Δ means the change in quantity as a result of the collision. For a head-on
collision, we approximately have Δv e � 2v i and therefore jΔv i j/jv i j � 2me/mi .
Thus, in order to have jΔv i j/jv i j of order unity, it is necessary to have mi/me

collisions. Hence,

ν i e � me

mi
ν ee . (1.170)

Next, we consider energy changes. If a moving electron makes a head-on colli-
sion with an electron at rest, then the incident electron stops while the originally
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standing electron flies off with the same momentum and energy that the incident
electron had. From here, we conclude

νE
ee � ν ee . (1.171)

A similar picture holds for an ion hitting an ion,

νE
i i � ν i i �

r
me

mi
ν ee . (1.172)

Finally, we compare energy changes during electron–ion and ion–electron colli-
sions. The electron momentum change is�2mev e during a collision of an electron
with an ion. From conservation of momentum, we find miv i D 2mev e . The ener-
gy transferred to the ion is 1/2miv2

i D 4(me/mi )mev2
e /2. An electron has to make

mi/me collisions for transferring all its energy to the ions, and hence

νE
ei �

me

mi
ν ee . (1.173)

Similarly, during an ion–electron collision, an electron initially at rest will fly
off with twice the incident ion velocity. The electron gains energy 1/2mev2

e �
2(me/mi )miv2

i . Again, approximately mi/me collisions are necessary for the ion
to transfer all its energy to the electrons, that is,

νE
i e �

me

mi
ν ee . (1.174)

These rough estimates have an important consequence, namely, that we may de-
scribe – even in nonequilibrium situations – an electron–ion plasma by a two-fluid
model. The relaxation to approximate Maxwellians occurs fast in each component
(fastest for the electrons), and the exchange between the components occurs on a
much slower scale.

1.4.4
Friction Force in Thermal Plasmas

We now consider a thermal e–i-plasma. The velocity distribution functions are as-
sumed as

f i
�
v 0� D � mi

2πTi

�3/2

exp

 
�mi (v 0 � u i )

2

2Ti

!
(1.175)

and

f e
�
v 0� D � me

2πTe

�3/2

exp

 
�me (v 0 � ue)

2

2Te

!
. (1.176)

The electric current density in this configuration is

j D ni eu i � ne eue . (1.177)
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It is appropriate to transform into the system of the mean velocity ue of the elec-
trons and to define the relative velocity

ur e l D u i � ue � u . (1.178)

The distribution functions in this frame will be

f i (v ) D
�

mi

2πTi

�3/2

exp

 
�mi (v � ur e l)

2

2Ti

!
(1.179)

and

f e(v ) D
�

me

2πTe

�3/2

exp
�
�mev2

2Te

�
. (1.180)

Since the ion thermal velocity is much smaller than the electron thermal ve-
locity, the ion velocity distribution is much narrower than the electron distri-
bution function, and the ions can be considered approximately as a monoener-
getic beam. When impinging on ne electrons per unit volume, we calculate the
net force on the ions making use of the previous expressions and applying the
actio D reactio principle. Using Eq. (1.151), for a moment we go to the system
where the ions are at rest, such that the electrons have velocity v e � u. Then, F e

can be used in the form Eq. (1.151). Setting F i D �F e , we find

F i D �me ju � v ej σne(u � v e) , (1.181)

with (Z1 D 1, Z2 D Z )

σ � 1
(4πε0)2

4πZ2e4

m2
e ju � v ej4 ln Λ . (1.182)

By the way, similar formulas would hold for a fast electron component in a thermal
plasma. Let us assume that we have a fraction of scatterers in a certain velocity
domain. Then, we replace

ne ! dne D ne f e(v 0)d3v 0 . (1.183)

We rewrite the friction force for dne scatterers per unit volume. Having in mind
the relative speed u � v 0 of the scattered particles, we obtain

dF i D � 1
(4πε0)2

4πZ2 ln Λe4ne

me

u � v 0

ju � v 0j3 f e
�
v 0� d3v 0 . (1.184)

When averaging over the possible velocities of the scatterers, one has to evaluate
the integral

I D
Z

u � v 0

ju � v 0j3 f e(v 0)d3v 0 . (1.185)
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Its form reminds us of the integral over a charge distribution appearing when solv-
ing the Poisson equation [34]. If the distribution function f is isotropic, the integral
corresponds to an electric field caused by a spherically symmetric charge distribu-
tion with “radius vector” u. We know that the radial electric field at distance u is
only caused by the charge within the sphere of “radius” u, that is,

I D u
u3

uZ
0

f e(v 0)4πv 02dv 0 . (1.186)

For readers who are not familiar with the discussion of the Poisson integral, we
briefly present an “evaluation for pedestrians.” Let us start withZ

u � v 0

ju � v 0j3 f e(v 0)d3v 0 D �ru

Z
1

ju � v 0j f e(v 0)d3v 0 . (1.187)

Next, we introduce spherical coordinates for the integration on the right-hand side,
perform the integration over the azimuthal angle, obtaining after a simple refor-
mulationZ

1
ju � v 0j f e(v 0)d3v 0

D 2π

1Z
0

dv 0v 02
C1Z

�1

d
�
cos # 0� d

cos # 0
p

u2 C v 02 � 2uv 0 cos # 0
�
� f e(v 0)

uv 0

�

D 4π

8<: 1
u

uZ
0

v 02 f e(v 0)dv 0 C
1Z
u

v 0 f e(v 0)dv 0
9=; .

(1.188)

Applying the operator �ru to the right-hand side, we obtain Eq. (1.186).
For small relative velocities compared to the thermal electron velocity, u � vt he,

we obtain

uZ
0

f e(v 0)4πv 02dv 0 � f e(0)
4π
3

u3 , (1.189)

and thereby for a Maxwellian

I �
p

2
3
p

π

�
me

Te

�3/2

u . (1.190)

On the other hand, for large velocities u,

I � u
u3 . (1.191)



�

�

Karl-Heinz Spatschek: High Temperature Plasmas — Chap. spatscheck0415c01 — 2011/9/1 — page 30 — le-tex

�

�

�

�

�

�

30 1 Introduction

F

uvth

Figure 1.5 Sketch of the friction force as a function of the drift velocity u.

Summarizing for small velocities compared to the thermal electron velocity of
the scatterers, the friction force is

F i D � 1
(4πε0)2

4
p

2π
3

Z2 ln Λe4ne

me

�
me

Te

�3/2

u , (1.192)

that is, it increases in magnitude with velocity. However, when the drift velocity
becomes larger than the thermal velocity, we get a decaying friction force, F �
u�2. Remember, u is the mean velocity difference. The friction force reaches some
maximum around the electron thermal velocity; see Figure 1.5.

We now apply these results to the problem of current flow through plasma. At
equilibrium, the driving force by the electric field must be equilibrated by the fric-
tion, that is, for ions

F i C Z eE D 0 . (1.193)

However, when the drift velocity becomes much larger than the electron thermal
velocity, collisions cannot stop particle acceleration, and the particles run away. In
other words, when the applied electric field becomes large,

E >
Fmax

Z e
, (1.194)

we get runaway particles. The critical field is the Dreicer field

ED r � 1
(4πε0)2

ln Λne e3Z
Te

� ln Λ
e

λ2
D

. (1.195)

A more general kinetic evaluation gives [15]

ED r � 0.43
(4πε0)2

2π ln Λne e3Z
Te

� 5.6 � 10�18ne Z
ln Λ
Te



V
m

�
. (1.196)

In order to elucidate the typical behaviors for u� vt h and u� vt h, respectively,
we solve the momentum equation

mi
du
d t
D F i C Z eE (1.197)
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in the two regions. In both cases, we anticipate a one-dimensional description. In
the small velocity range, the momentum equation is of the form

du
d t
D �auC b , (1.198)

(with constants a and b which are easy to determine). Its solution, for u D u0 D 0
at t D t0 D 0, is

u(t) D b
a

�
1 � e�at�! b

a
for t !1 . (1.199)

For small velocities (fields), one finds stationary conduction

j � enu � ne
eE

mν e i
� ε0ω2

p

ν e i
E � σE . (1.200)

The conductivity is inversely proportional to the collision frequency. Since the latter
decays with increasing temperature, we find

σ � T 3/2
e , (1.201)

that is, the electric conductivity of hot plasmas becomes very large. The resistivity
η is inversely proportional to σ, that is,

η D 1
σ

, (1.202)

and thereby it decreases with temperature. The value obtained from kinetics [15] is

η � 1
(4πε0)2

8
p

π ln ΛZ e2m1/2
e

3
p

2T 3/2
e

. (1.203)

For practical applications, we may use

η � 1.03 � 10�4 Z ln Λ

T 3/2
e

Ω m (1.204)

when Te is measured in eV.
In the large velocity range, the momentum equation is of the form

du
d t
D � g

u2 C b (1.205)

(with constants g and b, which are easy to determine again). Its solution for u D
u0 >

p
g/b at t D t0 D 0 is

u � u0 C 1
2

r
g
b

ln

2641 � 2

q
g
b

uC
q

g
b

375
u

u0

D bt . (1.206)
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It is easy to see that t is a monotonously increasing function of u for u >
p

g/b. In
other words,

u! bt for t !1 . (1.207)

This asymptotic reflects the so called runaway phenomenon.

1.5
Fusion Processes

Nuclear fusion is the source for energy production in burning stars. Fusion pow-
ers the sun and stars as hydrogen atoms fuse together to form helium, and matter
is converted into energy. At low temperatures, fusion is not possible because the
strongly repulsive electrostatic forces between the positively charged nuclei pre-
vent them from getting close enough together for fusion to occur. However, if the
conditions are such that the nuclei can overcome the electrostatic forces to the ex-
tent that they can come within a very close range of each other. Then, the attractive
nuclear force between the nuclei will outweigh the repulsive (electrostatic) force,
allowing the nuclei to fuse together.

In the sun, massive gravitational forces create the right conditions for fusion,
but on earth they are much harder to achieve. Fusion fuel – different isotopes of
hydrogen – must be heated to extreme temperatures of the order of 108 ıC, and
must be kept dense enough and confined for long enough in order to allow the
nuclei to fuse. The aim of the controlled fusion research program is to achieve
“ignition,” which occurs when enough fusion reactions take place for the process
to become self-sustaining, with fresh fuel then being added to continue it.

The binding energy per nucleon is the key to the understanding of fusion as an
energy source. Light nuclei may fuse to heavier nuclei, releasing energy in the form
of kinetic energy and radiation. When plotting the binding energy per nucleon, as
depicted in Figure 1.6, we recognize that the curve has a minimum. On the left-
hand side of Figure 1.6, the sum of the masses of two fusion components is larger
than the mass of the fusion product. The mass defect Δm corresponds to an energy
difference ΔE � B D Δmc2. The binding energy per nucleon B/A, where A is
the nucleon number (rough atomic weight), has a minimum near A � 56. The
elements close to this atomic number are exceedingly stable.

With current technology, the reaction most readily feasible is between the nuclei
of the two heavy forms (isotopes) of hydrogen-deuterium (D) and tritium (T). The
deuterium-tritium reaction possesses a favorable cross section. Each D-T fusion
event releases approximately 17.6 MeV (2.8� 10�12 J, compared with 200 MeV for
a U-235 fission), that is,

DC T! 4He (3.5 MeV)C n (14 MeV) (1.208)

Deuterium occurs naturally in seawater (30 g/m3), which makes it very abundant
relative to other energy resources. Tritium does not occur naturally and is radioac-
tive, with a halflife of around 12 yr. It can be made in a conventional nuclear reactor,
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Figure 1.6 Binding energy per nucleon as a function of the number of nucleons A.

or in the present context, bred in a fusion system from lithium,

6LiC n ! 4HeC T (1.209)

Lithium is found in large quantities (30 ppm) in the Earth’s crust and in weaker
concentrations in the sea.

Present estimates show that a G W -reactor needs approximately 100 kg D and
400 kg Li per year. In other words, the perspectives of controlled thermonuclear
fusion become plausible when estimating that a few liters of seawater and some
pieces of rock (order of kg for the lithium extraction) will be sufficient for the en-
ergy consumption of a family of four persons during one year. At present, two
main experimental approaches are being studied: magnetic confinement and iner-
tial confinement. The first method uses strong magnetic fields to contain the hot
plasma. The second involves compressing a small pellet containing fusion fuel to
extremely high densities using strong lasers or particle beams.

Although fusion does not generate long-lived radioactive products (and the un-
burned gases can be treated on site), there appears a short-term radioactive waste
problem due to activation of the structural materials. Some component materials
will become radioactive during the lifetime of a reactor due to bombardment with
high-energy neutrons, and will eventually become radioactive waste. The volume of
such waste would be similar to the corresponding volumes from fission reactors.
However, the longterm radiotoxicity of the fusion wastes would be considerably
lower than that from actinides in used fission fuel. The fast neutron problem trig-
gered other scenarios which are also discussed from time to time in the public [35].
One is the recovery of 3He (consisting of two protons and one neutron) from the
surface of the moon. 3He is practically not available on the earth; tritium decays in-
to 3He with a 12 yr halflife. However, cosmic rays, originating from the solar wind,
already penetrating for billions of years approximately 1 m into the surface of the
moon produced 3He there due to the spallation process. The fusion of D with 3He
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to 4He is a possible process, without producing significant neutrons. The cross
section for the D�3He reaction is, however, smaller by a factor 10 than the cross
section for D–T fusion.

1.5.1
Fusion Processes in Burning Stars

Stellar fusion processes were already discussed a long time ago. Among the first
authors are Atkinson and Houtermans [36]. Laboratory observations go back to
the 1930s. At the end of the 1930s, Weizsäcker and Bethe found the dominating
processes responsible for the burning in stars [18].

We have to differentiate between massive and low-mass stars; the borderline is
approximately at the order of the mass of our sun. In low-mass stars, the fusion
cycle starts with the proton–proton reaction

pC p! DC eC C ν (1.210)

After that, the deuteron may again react with a proton

DC p! 3HeC γ , (1.211)

leading to the already mentioned 3He fusion

3HeC 3He! 4HeC 2p (1.212)

For massive stars, that process does not deliver enough energy to sustain the nec-
essary pressure. The compression of massive stars continues, transforming gravi-
tational energy into kinetic energy. Using in the virial theorem �3hPiV � Egr < 0
and hPiV � N kB T , we obtain for the kinetic energy Ek i n � 3/2N kB T

Ek i n � �1
2

Egr > 0 . (1.213)

The latter relation makes, for massive stars, the increase in temperature plausible.
At higher temperatures, a new process becomes possible, the CNO cycle (for

carbon-nitrogen-oxygen), or sometimes Bethe–Weizsäcker cycle, with a much high-
er fusion power than the direct proton–proton reaction just mentioned. The CNO
process was proposed by Carl von Weizsäcker and Hans Bethe independently in
1938 and 1939, respectively [18]. Models show that the CNO cycle is the dominant
source of energy in stars heavier than about 1.5 times the mass of the sun. The
previously mentioned proton–proton chain is more important in stars of the mass
of the sun or less. This distinction stems from differences in temperature depen-
dency between the two reactions; the p–p reactions start occurring at lower tem-
peratures, making it dominant in smaller stars. The CNO chain starts occurring
at higher temperatures, but its energy output rises much faster with increasing
temperatures. That crossover is depicted in Figure 1.7.

In the CNO cycle, four protons fuse, using carbon, nitrogen and oxygen iso-
topes as a catalyst, to produce one alpha particle, two positrons and two electron
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Figure 1.7 Temperature dependence of the fusion power in the p–p reaction and the CNO cycle,
respectively.
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Figure 1.8 Diagram of the CNO cycle. The reaction chain starts at top and should be read clock-
wise.

neutrinos. The positrons will almost instantly annihilate with electrons, releasing
energy in the form of gamma rays. The neutrinos escape from the star carrying
away some energy. The carbon, nitrogen, and oxygen isotopes are in effect one nu-
cleus that goes through a number of transformations in an endless loop, as shown
in Figure 1.8.

Our sun (mass density 160 g cm�3) is confined by gravitation, the primary heat-
ing was due to compression. The core temperature is around 15.7 � 106 K and
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only 1.7% of 4He nuclei produced in the sun are born in the CNO cycle. The
p–p chain reaction is by far dominating. The fusion power density is approximately
0.28 mW cm�3.

During the p–p reaction,

pC p! DC eC C ν e (1.214)

pC D! 3HeC γ (1.215)

3HeC 3He! 4HeC pC p (1.216)

the energy gain per produced 4He nucleus is 26 MeV OD 26 � 1.6 � 10�13 J. The
radiation power of the sun is 4 � 1026 W.

It is interesting to note that the p–p reaction is rather slow. A proton needs ap-
proximately 5 � 109 yr D 1.5 � 1017 s to fuse with another proton. One needs four
protons to effectively create a 4He nucleus with 26 MeV energy gain. For the total
power of 4 � 1026 W, one needs

4 � 4 � 1026

26 � 1.6 � 10�13 D 4 � 1038 protons
s

. (1.217)

2� 1038 neutrinos per second are produced. Part of them will reach the Earth. (The
neutrino problem is a separate issue.)

Dividing the power 4 � 1026 W by the mass of the sun, we get the average
0.2 mW/kg. That power density is smaller than the corresponding one of a human
body. We may estimate the total number of protons in the sun as 7 � 1056. One
needs 4 � 1038 s�1 for the total power 1038 � 26 � 1.6 � 10�13 D 4 � 1026 W.
7 � 1056/4 � 1038 � 2 � 1018 s � 63 Gyr is the upper limit for the lifetime of the
sun. Actually, the lifetime may be smaller by a factor of ten since not all protons
will fuse.

The sun is essentially a quite stable burning object. It can be considered as a
self-regulating thermostat. In case the energy release and thereby the temperature
in the interior increases, the total energy E D Ek i n C Egr increases. Because of
Eq. (1.213), we have

E � 1
2

Egr � �Ek i n . (1.218)

Thus, with increasing energy, also the gravitational energy increases and the kinetic
energy (temperature) decreases. The sun expands and cools, acting in the opposite
direction to the initial disturbance. On the other hand, when the energy produc-
tion in the interior becomes smaller, the total energy decreases. The sun would
contract and increase its temperature; again, a reaction which opposes the original
disturbance.

When the fuel for p–p fusion, often called hydrogen burning, is running low in
the core, the sun will contract and becomes hotter. Then, the hydrogen burning can
also take place in the previously colder outer shells. The next dominating process
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Table 1.1 Possible fusion products are shown in dependence of temperature T and mass M of a
star.

T D 107 K M > 0.08Mˇ hydrogen ! helium

T D 108 K M > 1/2Mˇ helium ! carbon, oxygen
T D 5 � 108 K M > 8Mˇ carbon ! oxygen, neon, . . .

T D 109 K neon ! oxygen, magnesium

T D 2 � 109 K oxygen ! magnesium, . . . sulfur
T D 3 � 109 K M > 11Mˇ silicon ! iron, . . .

in the core will be helium burning. Temperatures of approximately 2 � 108 K will
become possible in the center; the maximum mass density will be of the order
108 kg m�3. The sun will appear as a red giant. That terminology becomes plausible
because of the following typical values for luminosity, surface temperature, and
radius, namely, roughly L D 1000Lˇ, TO D 4000 K, R D 70Rˇ, respectively.

Stars with masses above 0.5Mˇ will follow this scenario. Depending on the mass
of the star, further steps are possible as depicted in Table 1.1.

As discussed, the highest element in this fusion scenario will be 56Fe. Heavier
elements can be generated by neutron capture and subsequent �-decay of the neu-
tron into a proton and an electron.

During the cosmological evolution, the situation occurred in which temperatures
were high enough, but the mass densities were too low to enable fusion. Only after
the formation of massive stars can fusion become possible.

When all the fuel for fusion runs dry, the stars will further shrink. For stars with
intermediate masses like the sun, degenerate electrons may provide the pressure
for hindering a complete collapse. The quantum description becomes necessary.
Whether it should be nonrelativistic or relativistic is an important question; the
answer depends on the mass of the star. In the ultrarelativistic regime, for example,
the equilibrium with a pressure delivered by degenerate electrons is fragile. For
masses smaller than 1.4Mˇ (Chandrasekhar mass), a nonrelativistic description is
appropriate, and the final state of our sun will be a compact object with degenerate
electrons providing the pressure for equilibrium. Such an object is called a white
dwarf; typical parameters are L D Lˇ/100, TO D 16 000 K, R D Rˇ/70, � �
109 kg m�3.

For massive stars, the pressure of degenerate electrons will not be sufficient. The
star shrinks further, ending, for example, as a neutron star. Degenerate neutrons
in the nonrelativistic regime become responsible for the necessary pressure. Mass
densities of order 1014�1017 kg m�3 are typical, temperatures may reach 108 K. A
typical radius is 17 km.

Similar to the applicability of the model of a white star, not all massive stars will
end as a neutron star. An upper limit of the order M � 3Mˇ exists. If the masses
are larger, the neutrons become ultrarelativistic and the equilibrium is fragile. Such
supermassive stars may end as black holes.
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When comparing with other energy energy providers, we cite 0.2 W/cm3 for a
coal-fired power plant and 90 W/cm3 for a light-water reactor. For our sun, the
estimate for the center is 3.5 � 10�6 W/cm3 (averaged over the whole sun volume
we would get 2.7 � 10�7 W/cm3).

For details on the fusion window, fusion power rates, cross sections, and so on,
we refer to more detailed reports, for example, [14, 18, 19, 37].

1.5.1.1 Ignition Conditions for a Fusion Plasma
We conclude this section by a short summary of the Lawson criterion [32]. The total
thermal energy of a plasma consisting of electrons and ions in equal numbers is

W D
Z

dV3nT � 3nT V . (1.219)

The energy loss rate PL defines the energy confinement time τE via

PL D W
τE

. (1.220)

When in a stationary state the energy loss is balanced by additional heating,

PH D PL , (1.221)

we obviously have

τE D W
PH

. (1.222)

However, besides additional (external) heating, we should also take into account
alpha particle heating. A fraction of the fusion energy is taken over by the 4He(α)
particles. The α particles are charged, in contrast to the neutrons. The charged par-
ticles interact with the plasma, transferring part of the 3.5 MeV (D Eα) to electrons
and ions. The α particle heating is defined via the heating power

Pα D 1
4

n2 hσviV Eα , (1.223)

where hσvi is the reaction parameter [37]. In a stationary state with α particle heat-
ing plus additional heating, the power balance would be

PH C Pα D PL (1.224)

or

PH D
�

3nT
τE
� 1

4
n2 hσvi Eα

�
V , (1.225)

where, on the right-hand side, for the reason of simplicity, the indication of volume
averaging has been omitted. Self-contained burning (or ignition with PH D 0)
occurs for

nτE 
 12
hσvi

T
Eα
� Teconst/ T 1/3

. (1.226)
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1.5 Fusion Processes 39

Figure 1.9 12T/(hσviEα ) as a function of T.

The right-hand side is a function of temperature, as shown in Figure 1.9. The min-
imum of 12T/(hσviEα ) occurs at T � 30 keV; taking this value, we find

nτE 
 1.5 � 1020 m�3 s . (1.227)

This relation is known as the Lawson criterion.
Still, τE depends on temperature and other variables. In other words, on the

transport properties in the plasma. One can take advantage of the fact that in the
temperature region

10 keV 	 T 	 20 keV , (1.228)

one may approximate

hσvi � 1.1 � 10�24 T 2 m3 s�1 (1.229)

when measuring T in keV. Within this approximation, the ignition criterion can be
written in the form

nT τE 
 3 � 1021 m�3 keV s . (1.230)

For example, at n D 1020 m�3, T D 10 keV, the energy confinement time should
be larger than 3 s.

To measure the progress in nuclear fusion research, the Q-factor

Q D 5Pα

PH
(1.231)

has been introduced. Note that the factor 5 D 17.5/3.5 � E f us/Eα takes care of the
whole energy gain and not only the part carried by the α-particles. Q!1means
ignition.
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