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1.1
Introduction and Definitions

1.1.1
Introduction

The concept ofQuality byDesign (QbD) is based on the evident fact that a high level of
quality of intermediate or final products cannot be achieved by testing the products
but needs to be implemented into the products by intelligently designing the whole
manufacturing process. To be able to do so, a comprehensive understanding of the
process on a causal basis is required. Only such an understanding ensures reliably
defined and consistent quality levels by operating stable and robust processes and, for
instance, in the case of pharmaceutical products, allows real-time release of the
manufactured goods. The technology that enables translation of the concept QbD
into industrial reality is process analytical technology (PAT). PAT is generally
considered a science-based and risk-based approach for the analysis and improved
control of production processes [1]. Although initially conceived by the FDA for
application in the pharmaceutical sector, the PAT initiative continues to grow in
importance also for related industries in the applied life sciences, for example,
biotechnology, the food industry, as well as the chemical industry [2].

1.1.2
Historical Aspects

In the course of the past decades, the industrial landscape has undergone many
changes which were mainly dominated by the shift from a supplier-dominated
market to a customer-dominated market (Figure 1.1, [3]). Due to the rebuilding
after the Second World War, in the 1950s, the overall product demand exceeded the
general capacity supplied by industry. Hence, the quality of a product was mainly
defined by the producer�s view of what quality was (compare the partial analytical
understanding of quality) [4]. This situation has changed dramatically since then.
Today the industry faces a market situation that is often characterized by an intense
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cut-throat competition inmany branches, by ever increasing product complexity and
diversity and by growing customer awareness of high product quality and function-
ality. In addition, more stringent legislative and regulatory measures imposed by
society comprise an increasingly powerful driving force towards comprehensive
public health and environmental compatibility of industrial processes. In contrast to
the earlier years of industrialization, producing enterprises nowadays can no longer
stratify theirmarket position by increasing themass-per-hour throughput of a certain
product. Today, the sustainable success of an industrial company depends more
critically than ever on the cost-effective realization of customer-tailored products of
high quality that flexibly meet the rapidly changing end-customer�s demands.

Reflecting this overall trend towards an increased focus on custom-made quality,
increasingly sophisticated and holistic quality management systems have been
developed over the years (Figure 1.2), ranging from simple inspection of the finished
parts for defects and elimination of inferior ones, over implementing increasingly
complex quality systems to avoid the production of any defective parts during
manufacturing, to the modern views of process oriented, integrated and compre-
hensive total quality management systems. It is in this context that the modern
concepts of PATs andQbDhave to be reviewed. Before this, some general definitions
and remarks on quality and process control are given.

1.1.3
Definition of Quality: Product Functionality

Qualitymay be best defined as product functionality [6]. Several levels of functionality
can be identified (see Table 1.1) that are related to the various contexts a product and

Figure 1.1 Changes in market situation during the past decades and concomitant adaptation of
quality concepts (modified after [3]).
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Figure 1.2 Historical development of important quality concepts and their major elements
(modified after [5]).

Table 1.1 The various levels of functionality [6].

Functionality level Description Examples

Fundamental
functionality

Basic properties based on the
chemical composition and
morphological constitution
of the material

Is the material as it should be?
Content of ingredients, particle
size distribution, distribution of
active compounds/traces/
dopants within material, and so
on

Technical functionality Behavior during the produc-
tion process

Is the product processable? Flow
behavior, mixing properties,
purification and down-streaming
properties, and so on

Technological
functionality

Required performance pro-
file for the intended use

Is the product usable? Hardness,
strength, efficacy, durability,

Value-oriented
functionality

Cost : benefit ratio Is the tailored quality level
appropriate? Displayed product
features versus price

Sensory functionality Appearance and design Is the product appealing? Haptic
behavior, product smell, visual
appearance, and so on
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its intermediates experience throughout the whole life cycle from manufacturing to
the end-use and its disposal. Besides its fundamental functionality, which relates to
the basic physical and chemical properties, such as composition and components
distribution, surface properties ormorphology of a product, the productmust also be
processable during manufacturing (technical functionality) and must fulfill the
customer�s requirements during the end-use (technological functionality).Moreover,
the extent to which certain quality levels are realized in the product (value-oriented
functionality) and its design-related properties (sensory functionality) are also
important aspects. In the ideal case, single measured values from various methods
are combined and mathematically related to all these different functionality levels
(Figure 1.3).

According to the Kano model [7], a product complies with the customer�s
requirements and expectations when it displays basic, performance and excitement
functionalities [8]. All performance characteristics of a group of objects or services
intended to successfully populate a certain product niche will steadily have to be
improved, expanded and further developed with time, since the customer will get
used to the features and functions. This provides the driving force for continuous
product development and product innovation. Due to cost issues and a desirably
short time-to-market of novel products, only companies that are able to handle very
short innovation cycles will sustain economic success. Knowledge-based production,
based on a QbD approach and realized by process analytics, is the key element in
achieving such short innovation cycles. Furthermore, it allows flexible response to
sudden changes in customer�s expectations, since the processes to translate the
quality characteristics into product features are causally understood.

In this context, twomain aspects need to be considered when introducing process
analytical tools, for example, on-line spectroscopy, into manufacturing: quality
monitoring and product functionality design [6]. Usually, the identification and quan-
tification of a direct relation between, for instance, themeasured spectral information
and a target compound like a pharmaceutical ingredient is attempted. Inmany cases,
univariate target responses, such as concentration, purity, or extent of conversion,
and so on are determined and compared with standard values. Thereby, deviations of
characteristic process parameters may be determined in real-time and the quality of

Figure 1.3 Relationship between measurement and product functionality.
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the manufacturing process may be monitored and controlled. Due to the recent
developments of stable on-line and in-line instrumentation, in combination with
complex chemometric toolboxes, a robust calibration of such relations is possible
and, therefore, applications of process analytics in industry are numerous. In most
cases, off-linemeasurements canbe directly substituted by on-line spectroscopy,with
the advantage of a possible 100% quality control of a specific response.

However, while process analytics is already widely recognized as a powerful tool to
perform such quality monitoring, the full potential of this technology is by far not
exhausted; process analysis can be exploited to an even much greater extent with
economical advantage when it is embedded in a philosophy of continuous process
improvement and product functionality design. Currently, process analytical data
obtained from measurements on intermediate product stages during the running
manufacturing process are only very rarely related to the performance of the final
product or to the final application properties of the product. However, it is possible to
relate process analytical information even to product functionality when a conse-
quent transition from considering univariate data (single parameters and responses)
to multivariate data analysis (multiple parameters and responses) is performed.
Product functionality may be defined as the fundamental chemical and morpho-
logical properties of the material, by its performance throughmanufacturing, by the
technical properties for the final application, and certainly also by its cost/perfor-
mance ratio. If objectively classifying data for these definitions exist, a direct
correlation to, for example, the spectral information in the case of on-line spectros-
copy is possible. The exact nature of the individual signature of a spectrum (the
�spectral fingerprint�) is always dominated by the morphology and chemistry of the
substrate, due to its substance specific absorbance and scattering behavior. The
relative contributions of these two components to themeasured spectrumdepend on
thewavelength of the interaction, on the angle of illumination of the substrate, on the
angle of detection, on the difference in refractive indices, and on the particle size and
particle distribution. In Figure 1.4 this is illustrated using the example of tablet
spectroscopy [9].

Figure 1.4 The information contained in wavelength-dependent scattering and absorption spectra
of tablet samples compacted at different pressures (ranging from 31 to 281MPa) and containing
different amounts of theophyllin can be used to model the theophyllin content [9].
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Thismultivariate information can be used not only to calculate the dependence of a
single target (quality monitoring), but also allows full and overall classification of the
sample quality (functionality design). This is especially true for the characterization of
solids and surfaces by means of diffuse reflectance spectroscopy. Within the concept
of QbD/PAT, a knowledge-basedmanufacturing is attempted which relies heavily on
the combination of various sources of information using chemometric methods like
principal component analysis, PLS, multivariate curve resolution, or other multi-
variate calibration methods.

1.1.4
Quality Control

The term quality controlmay generally be defined as a system thatmaintains a desired
level of quality [10]. In general, this may be accomplished by comparing a specific
quality characteristic of some product or service with a reference, and if deviations
from the desired state are detected, taking remedial action to reinstate the targeted
quality level. Similarly, process controlmay be defined as appropriate measures to re-
adjust the state of a process upon some observed undesired deviation. Process
analytics provides the required information on the state of the process. While process
analytics deals with the actual determination of specific data using process analytical
devices, likeHPLC, optical spectroscopy or other sensors, process analytical technology
is a system for designing, analyzing and controlling manufacturing by timely
measurements [1] (see below), already with quality determination in mind. Process
analysis is the comprehensive analysis of the industrial process including every single
activity involved in themanufacturing of the product. Thereby, allmaterial and virtual
flows are considered. Historically, the PAT initiative roots in a comprehensive
approach to realizing process analysis on an instrumental basis. PAT is the essential
tool to realize the concept ofQ bD, which has recently been further developed to the
even more comprehensive approach of product quality life-cycle implementation
(PQLI) [11, 12].

Essentially, quality control is accomplished by off-line quality control procedures,
statistical process control and, to a lesser degree, by acceptance sampling plans. Off-line
quality control involves selecting and defining controllable product and process
parameters in such a way that deviations between process output and a standard
will be minimized [10]. A typical tool for such a product or process design is the
statistical experimental design approach or design of experiment (DoE). Quality is
here basically defined �off-line� before the process has actually been implemented or
started. Statistical process control (SPC) in contrast compares the results or output of a
process with the designated reference states andmeasures are takenwhen deviations
from a desired condition of a process are statistically significant.When the process is
poorly designed (by inappropriate off-line quality control measures, that is, unsuit-
able or sub-optimal processes) these deviations may be large and cannot be com-
pensated for by statistical process control. Hence, it is obvious that off-line quality
control by well-designed processes which are based on a thorough understanding of
the effects of the involved process factors on the critical quality features of the product
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will govern the achievable product performance, or in other words: quality cannot be
tested into products afterwards.

1.1.5
Quality Assurance

Quality assurance relates to a formal system that ensures that all procedures that have
been designed and planned to produce quality of a certain level are appropriately
followed. Hence, quality assurance acts on a meta-level and continually surveys the
effectiveness of the quality philosophy of a company. Internal and external audits,
standardized procedures and comprehensive documentation systems (traceability)
are important tools to accomplish this �watchdog� function within the company.
Strict process descriptions determining every single step required during
manufacturing a product, including the required appraisal procedures, may be
defined, and deviations from these fixed procedures may be indicative of potential
deteriorations in quality; instruments like the Good Manufacturing Practice
approach or ISO certifications are typical for quality assurance on a highly sophis-
ticated level. However, defined procedures and certification alone do not necessarily
lead to improved performance or functionality of a product; obeying agreed-on
procedures merely guarantees conformance within a specifically designed process.
Pre-defined andfixed processes that are certified and commissionedby the regulatory
authorities, like for instance the manufacturing process of a specific drug by a
pharmaceutical company which is accepted and granted by authorities like the Food
and Drug Administration (FDA) may even prove to be inflexible, sub-optimal and
difficult to develop further. Since every small deviation from the standard routine
processing is considered a potential quality risk and, especially in the case of
pharmaceuticals or biologicals, may comprise a potential health hazard, all such
deviations are required to be communicated to the authorities. Process improve-
ments or further adaptations that usually require significant redefinition of process
parameter values need renewed approval by the authorities, which in most cases is
time and cost intensive. Thus, in a sense, quality assurance may even be counter-
productive to process improvement and impede the establishment of higher quality
levels in products. To overcome these limitations of current quality assurance
policies, during the past years, the FDA has promoted the PAT initiative which, in
a similar form, is also supported by the European Medicine Agency (EMA).

1.2
Management and Strategy

1.2.1
PAT Initiative

The major incentive behind the PAT initiative of the FDA is defined in the FDA-
Guidance �PAT – a Framework for Innovative Pharmaceutical Development,
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Manufacturing and Quality Assurance� [1]: �PAT is a system for designing,
analyzing, and controlling manufacturing through timely measurements (i.e.,
during processing) or critical quality and performance attributes of raw and in-
process materials and processes, with the goal of ensuring final product quality.
It is important to note that the term analytical in PAT is viewed broadly to
include chemical, physical, microbiological, mathematical, and risk analysis
conducted in an integrated manner.� Within the PAT initiative, the manufac-
turers of pharmaceutical compounds are motivated to undergo a transition from
the currently used strategy of testing random samples at the end of the pipeline
for their compliance and otherwise strictly sticking to approved routine proce-
dures, towards a causal understanding of the process by means of process-
accompanying and process-controlling measurements and tests. This PAT rec-
ommendation is valid also for other branches of industry, such as the food
industry or biotechnology. By using powerful process analysis in the sense of
PAT, manufacturing processes may be controlled and directed towards the
desired levels of quality; moreover, PAT also contributes to the resource-efficiency
of the production process by, for instance, minimizing the emission of carbon
dioxide or reducing the energy consumption. Ideally, a 100% control of the
manufactured goods is accomplished by using on-line and in-line sensors. It is
anticipated that, by an integrative and system-oriented approach based on process
analysis and process control, the industry will experience significant competitive
advantages in the manufacturing of high-quality, customized products. Explicitly,
the following goals are pursued with employment of process analysis and process
control tools (PAT):

. Increase in productivity and product yield

. Minimization of energy and resources consumption

. Minimization of expenses for safety issues in the production facility

. Decreased number of customer complaints

. Increased operational flexibility

. Anticipating maintenance and process-integrated self-diagnosis

. 100% constant and certified quality

PAT will increase the production efficiency by

. Deep understanding of the production process

. Integration of quality into process steps

. Reduction of quality overhead costs

. Higher production quality

. Lower production costs

. Self-adjusting production processes

With the implementation of PAT it will be possible to pursue product-functionality
design or a quality by design approach from the very beginning of the product
conception. PAT targets a comprehensive feed-forward control approach and adap-
tive process analysis systems. Implementing PATconsequently requires application
of the following modules:
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1) Risk analysis of the production process (e.g., by failuremode and effects analysis,
FMEA)

2) Process analytics (sensors, spectrometers, etc.)
3) Process control systems (SPC, MSPC)
4) Statistical experimental design (DoE)
5) Multivariate data analysis

This PAT toolbox and its interplay is depicted schematically in Figure 1.5.

1.2.2
PAT Toolbox

Hence, in contrast to a widely anticipated false view, PAT is not restricted to single
devices for process analysis; PAT covers numerous tools included multivariate
statistical methods for data design, data gathering and data analysis, process
analytical sensors, control systems in the manufacturing, testing and admitting of
products, as well as measures for continuous process improvement and methods of
knowledgemanagement. One of themost important groups of on-line sensors is the
spectroscopic sensors, using the interaction between electromagnetic radiation and
matter for material characterization [6]. Another important group of PATsensors are
based on chromatographic methods which employ various types of physical-chemical
separation principles to physically de-convolute complex reaction mixtures into
single components which may subsequently be identified and quantitatively deter-
mined [13]. Yet another and completely different group of sensors is the so-called soft
sensors [14]. The basic principle behind soft sensors is that some material properties

Figure 1.5 The PAT toolbox.
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may not be measured directly as physical or chemical material parameters but can
only be deduced indirectly by analyzing secondary variables, which in turn can be
related to the target property by mathematical models. A very interesting recent
account of soft sensors in the PAT context is given in Ref. [14]. With soft sensors,
basically two main groups can be distinguished. On the one hand there are purely
data driven models which involve no a priori knowledge of biological, physical or
chemical interrelationships between the various categories of variables. Suchmodels
are called black box models and have the advantages of requiring no deep process
understanding and relative ease of implementation. However, they may over-fit the
observed data and be restricted to pure descriptions of the data without yielding true
causal relationships which are required for a knowledge-based quality design. Tools
often used are artificial neuronal networks, evolutionary algorithms, chemometric
models like partial-least squares (PLS), principal component analysis (PCA), prin-
ciple component regression (PLR), or support vector machines (SVR). White box
models, in contrast, are based on known physical or chemical relationships based on
kinetic or thermodynamic equations. If a priori information is integrated into data
driven models, so-called gray box models are employed [14]. It is evident that
numerous mathematical methods and algorithms are also included in PAT and,
hence, PAT is not restricted to specific sensors that record specific physical signals.
There are numerous requirements from the industrial user for process analytical
technologies. The most important ones are summarized in Figure 1.6 [15].

1.2.3
The Concept of Quality by Design (QbD)

The basic concept behind PATandQbD in the context of regulatory authorities of the
pharmaceutical industry has only recently been summarized very concisely by
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Figure 1.6 User requirements for PAT tools Source: [15].
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Schmidt-Bader [16] and in the following paragraphs some of the most relevant
aspects from this article will be adapted and summarized. The key aspect with a QbD
approach is that quality should not simply be tested at the end after the manufactur-
ing process has finished but should be considered already in the early phase during
the conceptual design of the product, and later at all stages of its manufacture.
�Quality cannot be tested into products; quality should be built in by design� [1]. In
consequence, quality becomes already a matter of product development and, hence,
is also strongly dependent on prior research activities into how the desired product
featuresmay be realized by industrial processes. Thewhole processing cycle, ranging
from the early developmental stage when the product and its quality features are
designed and planned, based on the input from the customers, over the product
realization and production phase to its final distribution and end-use is included in
such a perspective, and the manufacturer is now in the situation that he needs to
demonstrate a causal process understanding throughout the whole cycle, starting
from the early phases of product development to the routine productionwhich allows
guaranteed compliance with the required critical quality attributes (CQAs) during all
steps. This can only be brought about by employing scientific methods. �Using this
approach of building quality into products, this guidance highlights the necessity for
process understanding and opportunities for improving manufacturing efficiencies
through innovation and enhanced scientific communication betweenmanufacturers
and the Agency� [1].

All in all, with thePAT initiative the industry faces a shift in paradigmregarding the
future of intelligent process and quality control from a quality by testing approach
towards a quality by design approach. This paradigm change offers many opportu-
nities for business excellence. Primary goals in the context of QbD are

. Assurance of a reproducibly high quality of the intermediate and final products

. Reduction of the manufacturing costs

. The promotion and advancement of novel, innovative technologies for quality
assurance and process optimization

. The generation of in-depth, causal understanding of manufacturing processes

The transition fromQbT toQbD is characterized by numerous significant changes
in quality philosophy which are summarized in Figure 1.7 and Table 1.2.

1.2.4
ICH

The concept of QbD as developed by the FDA has been pushed towards realization
during the past years mainly by the International Conference on Harmonization of
Technical Requirements for Registration of Pharmaceuticals for Human Use
(ICH) [18]. The motivation behind ICH was to stimulate world-wide a common
and more flexible, science-based approach to the admission of pharmaceuticals.
The main focus lies in an international consensus between regulatory authorities
and industrial companies regarding the quality of pharmaceutical compounds:
�Develop a harmonized pharmaceutical quality system applicable across the life
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cycle of the product emphasizing an integrated approach to risk management
and science�.

In the ICH Q8 document [19] quality in the context of the QbD concept is defined
as follows: �Quality is the suitability of either a drug substance or drug product for its
intended use. This term includes such attributes as the identity, strength, and

Figure 1.7 Paradigm change by QbD (Courtesy of JH & Partner CATADIA Consulting GmbH,
Germany).

Table 1.2 Major differences between QbT and QbD (modified after [17]).

Quality by Testing (QbT) Quality by Design (QbD)

Development . Empirical approach . Systematic approach
. Importance of random findings . Multivariate strategies
. Focus on optimization . Focus on robustness

Manufacturing . Fixed . Variable within design space
. Based on defined specifications . Based on knowledge

. Supported by robust processes

Process control . Retrospective analysis . Prospective analysis
. Based on in-process control quality
is determined

. PAT tools control critical para-
meters, quality is predicted

. Data variability is not completely
understood

.Data variability has been subject
of research and is completely
(causally) understood

. Focus on reproducibility . Focus on PAT and QbD
concepts

Control strategy . Feed-back control . Feed-forward control
. Control by testing and inspection . Knowledge- and risk-based

quality assurance
Product specification . Acceptance criteria depend on data

of specific product charge

. Acceptance criteria depend on
end-user benefit
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purity.� [19] Besides considering the traditional definition of drug quality in the sense
of the law, the ICH definition also includes all processes and parameters that might
have an impact on the quality of the drug and, as documented in the ICH Q6
publication [20], ICH clearly assigns full responsibility to the industrial manufac-
turers to provide the required level of quality of a drug by appropriate measures:
�Specifications are critical quality standards that are proposed and justified by the
manufacturer and approved by the authorities� [20].

ICH was founded in 1990 by six independent organizations representing the
regulatory authorities as well as the industry involved in pharmaceutical research in
USA, Europe and Japan (see Figure 1.8).

The organizations directly involved are

. European Medicines Agency (EMEA)

. European Federation of Pharmaceutical Industries and Associations (EFPIA)

. Food and Drug Administration (FDA)

. Pharmaceutical Research and Manufacturers of America (PhRMA)

. Ministry of Health, Labor and Welfare (MHLW)

. Japan Pharmaceutical Manufacturers Association (JPMA)

. International Federation of Pharmaceutical Manufacturers and Associations
(IFPMA)

The European regulatory authorities are represented by the Committee for
Medicinal Products for Human Use (CHMP) as a subsection of the EMA. The
European pharmaceutical market is represented by EFPIA which represents 29
national pharmaceutical associations in Europe and 45 of the most important
industrial companies. For the American authorities, the FDA is involved with the
Center for Drug Evaluation and Research (CDER) and the Center for Biologics
Evaluation and Research (CBER). The researching American pharmaceutical indus-

Figure 1.8 The organizational structure of the International Conference of Harmonization of
Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) [18].
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try is involved with the PhRMA which represents 67 industrial enterprises and 24
research organizations from the US. The Japanese authorities are represented by the
Pharmaceuticals and Medical Devices Agency (PDMA) and the National Institute of
Health Sciences (NIHS) while the Japanese industry is represented by the JPMA
which heads 75 Japanese pharmaceutical companies and 14 national committees.
Pharmaceutical companies and associations situated in other countries all over the
world, including threshold and developing countries, are represented by the IFPMA,
which is a non-profit, non-governmental organization comprising numerous com-
panies involved in pharmaceutical research, biotechnology and vaccinemanufacture.

Additionally, three international organizations of observing status are involved in
ICH, whose most important role is to mediate between ICH and non-ICH member
countries. These three organizations are

. World Health Organization (WHO)

. European Free Trade Association (EFTA)

. Health Canada

1.2.5
The Concept of a Design Space

For an understanding of the strategy behind PAT/QbD, the concept of a design space
is of special importance. The ICH Q8 document [19] defines a design space as a
multidimensional correlation, that is, the combination and interaction of numerous
production factors governing the built-in quality of a (pharmaceutical) product.
Within such a design space, the complex interplay between input variables, like
properties of raw materials, process parameters, machine properties or user-effects
are completely understood on a causal level (see Figure 1.9).

Causal understanding is achieved by identifying and quantifying the effects of
critical factors on product quality at any stage of the process by multivariate
mathematical models. A design space can be obtained by applying the design of
experiments (DoE) approach which has been established as an important tool in
quality management since the 1980s [21, 22], for example, in the Six Sigma
concept [10, 23].

As pointed out in the ICH Q8 document [19], from a regulatory point of view, a
process would be considered as conforming as long as it is carried out within the pre-
defined design space. Since the exact trace within the design space is of no
importance, manufacturing a pharmaceutical or any other product becomes more
flexible. Currently, even small deviations from pre-defined values of process para-
meters need to be addressed with the authorities in a time-consuming and cost-
intensive procedure. Such deviations from a specific path within the design space
would no longer matter as long as a defined level of final quality can still be
guaranteed.

As an example to illustrate this shift in process philosophy in the pharmaceutical
industry, an industrial processwill be discussed schematically. Consider the chemical
synthesis of a given compound X. According to conventional philosophy, the
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preparation process would have been required to be defined very specifically in terms
of production conditions, such as specified reaction temperature, reaction time and,
say, catalyst concentration. To conform with the certified procedure all efforts are
focused on keeping the process within defined limits. Process analytical technology
would be employed to control the parameter settings for temperature and catalyst
concentration within agreed narrow boundaries to carry out the process in the pre-
defined way. The target in the traditional philosophy of QbTwould be to maintain a
process �180min at 120 �Cwith 5% of catalyst�, all significant deviations therefrom
would have to be documented and announced. In a QbD approach, in contrast, the
target would be �95% conversion plus defined product specifications� and all feasible
combinations of temperature, time and catalyst concentration (¼ design space)
leading to this end would be allowed. Thereby, a quality (and risk) based approach to
production is realized and much regulatory effort and certification cost can be
avoided.

This offers process analytical technology a decisive role inmanufacturing. Process
analytical tools would not be used to �measure and control the quality of the product�
or intermediate stages thereof, but instead would be employed to determine the
current �position of the process in the design space� allowing prediction of the
expected degree of quality and adjusting accordingly subsequent process steps to
guarantee an agreed final level of quality.

Accordingly, validation of the manufacturing procedure would be focused on the
process analytical methods that allow complete control of the design space. Robust
process analytical technologies are the key requirement for monitoring and con-

Figure 1.9 Schematic representation of the design space which is based on a knowledge space.
The control strategy with a QbD approach is to maintain a process within the design space.
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trolling the multivariate design space [16]. Analytically robust methods yield precise
and accurate results under modified working conditions. Analytical ruggedness is of
importance, too. This means that analytical methods are reproducible under varying
analytical circumstances, such as different laboratories, different laboratory personal
or different measurement devices. Robustness and reliability of analytical methods
as well as their continuous improvement will be of increasing importance for
assuring the quality and safety of products. In consequence, industrial processes
will becomemore robust. The robustness of an industrial process may be defined as
its tolerance against variability introduced by fluctuations in raw material quality,
variations in process and environmental conditions, and variations introduced by
equipment (e.g., deterioration with time) and human resources (e.g., habits,
moods). With robust processes, companies may be allowed to produce their goods
with a higher level of independence at lower cost and still improved guaranteed
quality levels.

Currently, manufacturing processes are defined and certified at an early stage
when only incomplete information is available on the influence of variations and
fluctuations in rawmaterial quality and process parameters. Improvements based on
later experience are difficult to implement. Knowledge-based manufacturing allows
rapid and continuous adaptation of the process to varying starting conditions and
allows cost-effective further development and quality improvement.

A major element within the philosophy of QbD is the exploitation of PAT to
accomplish this transition towards a knowledge-based production.

1.2.6
Implications for Other Branches of the Life Sciences

1.2.6.1 General Remarks
Although the basic impetus for pursuing PAT/QbD approaches arises from restric-
tions imposed by the rigorous legislative and regulatory framework in the context of
the good manufacturing policy (GMP) in the pharmaceutical industry, which lead to
complicated and cost-intensive approval processes caused by already moderate
modifications or even improvements in the production process, the implications
of this approach are certainly also of importance for other branches of the life
sciences. For example, in biotechnology and the food industry, the total control over
the design space in the growth of microorganisms and the harvesting of compounds
produced by them has also been targeted recently [24]. Compared to the pharma-
ceutical industry, however, there are several peculiarities that have to be overcome by
these industries, many of which deal with process analytical research questions.
Although many of the chemical processes employed in the pharmaceutical industry
which are desired to result in well defined compounds of high purity with a very
specific biological activity are complex systems governed by numerous factors like
concentration, composition, temperature, pH, and so on, in comparison to biotech-
nological or biosynthetic processes they seem rather simple and well-defined with
respect to the possible synthetic pathways encountered.
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1.2.6.2 Biotechnology
In biotechnology, due to the introduction of living cells or even mixed cultures,
another level of complexity is introduced which usually renders classical chemical
reaction engineering insufficient to develop a full understanding of the relevant
design space. Considering, for instance, recombinant protein expression by
genetically modified microorganisms, this typically involves numerous inter- and
intracellular interactions, growth and diffusion phenomena, and very complex
chemical reaction cascades within the living cells of the microorganisms. Expres-
sion of the foreign target compound by the organism has to be balanced with the
energy and material demands of the growing microorganism. Intracellular trans-
port phenomena and metabolic processes have to be included in the quantitatively
and causally determined design space, as well as external factors like organism
selection, fermentation medium development, process parameters, and scale-up
effects. Hence, like in conventional chemical or pharmaceutical synthesis, the
reactor system may not be treated as a black box; in the case of biotechnology the
living microorganism systems need also to be scientifically understood. This
imposes great challenges on process analytical technologies and is reflected by
numerous recent attempts to monitor in real-time fermentation processes and the
cultivation of microorganisms. Although subsequent process steps in biotechnol-
ogy, such as down-streaming, that is, the purification and enrichment of the
desired compounds from the fermentation broth, are also important, the major
focus in the application of PAT/QbD concepts in biotechnology clearly lies in the
fermentation step. Quality improvement in the course of the down-streaming may
be achieved only to a certain degree, and is usually achieved only via a sequence of
several process steps and, hence, is rather time-consuming and cost-intensive.
Therefore, the development and adaptation of suitable in-line measurement
technologies that lead to an improved understanding of microbial fermentation
is the most effective and promising way. Again, in comparison to the pharma-
ceutical industry which was our starting point, specific problem solutions of
process analytical tools for biotechnology must, among others, consider that the
sterility of the reaction system must be ensured, that many of the targeted analyte
species are present only in very small amounts, and that there is usually a large
influence of the surrounding medium, which in general is rather complex and not
constant with time.

1.2.6.3 Food Industry
Another level of complexity is typically added when the food manufacturing
industry is considered from a holistic point of view. Here again, purely physical
and chemical processes similar to classical chemical and pharmaceutical industries
or fermentation processes as in biotechnology may be involved in the manufactur-
ing of food. However, the growth, harvesting and processing of multi-cellular
organisms and complex objects has to be taken into consideration, and should
actually be included in the causal analysis of the variation pattern observed in food
manufacturing. Again, powerful process analytical technologies are required that
include measurement and processing of reliable data. However, in the context of
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establishing PAT/QbD approaches in the manufacturing industry, the food industry
plays a special role, not only because of the complexity of the involved processes but
also because it displays a disproportionately low level of automation in comparison
to the chemical and pharmaceutical industries or other branches. Hence, the
demand for process analytical technologies is especially high. It can be safely
assumed that due to the ever increasing cost pressure, to globalization, and to the
increasing requirements regarding quality assurance and food safety the food
industry will develop to an important emerging market for the automation industry
in the coming years. Besides activities directed at the rationalization of not-yet
automated processes, two main fields will be of major importance in the food
industry, (i) pro-active process and quality management, involving the integration of
quality assurance in the production and an improvement in equipment availability;
and (ii) the tracking and tracing of goods, that is mainly targeted at an increase in
food safety and a reduction in food deterioration caused by microbial decay
processes. This implies, in turn, an increasing demand for the engineering and
development of appropriate process analytical technologies, suchas, among others,
in-line sensors and data extraction tools [25].

1.2.6.4 Summary and Outlook
In any industry, process analytical technologies will, hence, gain in importance in the
near future. Process analysis as one of the major tools within PAT is concerned with
chemical, physical, biological and mathematical techniques and methods for the
prompt or real-time acquisition of critical parameters of chemical, physical, biolog-
ical or environmental processes. The aim of process analysis is to make available
relevant information and data required for the optimization and automation of
processes (process control) to assure product quality in safe, environmentally
compatible and cost-efficient processes [12].

Not only does time-resolved information need to be retrieved and used as a
controlling input, but, as becomes most evident from the outlined increase in
complexity of the subjects that are dealt with in the life sciences, the retrieved
information should also be space-resolved (chemical imaging). While in rather
�simple� aqueous reaction systems with quite rapid adjustment of (dynamic)
equilibria during chemical synthesis a spatial resolution may not necessarily be
required, it is obvious that the distribution of a drug in a pharmaceutical formulation,
or the spatial distribution of pathogens on food cropsmay be of critical importance to
the overall quality of the manufactured goods.

The major improvements for industrial processes that are brought about by
pursuing a QbD approach with the concomitant rigorous application of PAT tools
may be summarized as follows:

. Assurance of reproducibly high quality of intermediates and final products

. Reduction of the manufacturing costs

. Continuous process optimization with respect to an improved exploitation of the
employed material and energy resources

. Improved yields of high-quality end-product
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. Improved safety and environmental compatibility of the industrial processes

. Stimulation of novel technologies for quality assurance and process
optimization

. Generation of a causal understanding of the manufacturing process

1.3
Toolboxes for Process Control and Understanding

1.3.1
Introduction: Causality

Process control and understanding is an important feature for a future knowledge-
based manufacturing. Although on-line process control has been well known for the
last 20 years, the aspect of PAT in the pharmaceutical industry has become a driving
force for recent activities [1]. However, �quality� has different meanings to different
companies. For instance, for large companies that produce a standardized material,
the major target associated with quality is ensuring close adherence to the defined
product specification. In contrast, for smaller companies, �quality� means, in many
cases, guaranteeing the flexibility to fit the end-product requirements in relation to
rapidly changing market needs. Moreover, nowadays the concept of quality often
goes far beyond a specific product but embraces the concepts of plant quality and
total quality management (TQM). However, what all views of quality have in
common is their dependence on information about the intrinsic properties of a
product and knowledge of the relationship between plant parameters and product
functionalities.

On-line and inline quality control and process optimization will only be suc-
cessful when based on appropriate process analysis and process understanding, that
is, the analysis of the connection (cause and effect) between process parameters and
the quality characteristics of the final product with its specifications. Process
analytics in this sense means, therefore, understanding the causal relation between
measurement and response. By definition, causality is the strict relationship
between an event (the cause) and a second event (the effect), where the second
event is a consequence of the first [26]. Very often in chemometrics only descriptive
or statistical knowledge is produced which fits the special data set but cannot be
used as a general model. Figure 1.10 visualizes the different levels of knowledge for
process understanding.

A straightforward �cooking recipe� for knowledge-based production integrates the
following procedures (see also Section 1.2.2, Figure 1.5):

Step 1: Detailed analysis of the process and risk assessment
Step 2: Selection of the process analytical toolboxes
Step 3: Define the design space and design the necessary experiments
Step 4: Multivariate data analysis of the data
Step 5: Define the control system and integrate system into production
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1.3.2
Sampling

In homogeneous systems any sample which is taken will be representative of the
whole system. In heterogeneous systems it is difficult tofind away to extract a sample
(¼ fragment)which represents the average of thematerial. In practice, no samplewill
be strictly identical to the material as it is a matter of scale [27].

There are four general sampling strategies that are used for process analysis1):

. Withdrawal: A portion of the process stream is manually withdrawn and trans-
ferred into a suitable container for transport to the analyzer.

. Extractive sampling: A portion of the process stream is automatically taken to the
analyzer. This may take place either on a continuous basis or at frequent
intervals.

. In situ probing: A probe is inserted into the process stream or vessel and brought
into contact with the sample.

. Non-invasive testing: Either a �window� into the process stream or another mode
of non-contact measurement is used in order to account for interaction of the
analysis system with the process material

All four approaches have certain advantages and drawbacks and there is hardly ever
a clearly right or wrong approach to sampling.

In process analytics, one can distinguish between off-line, at-line, on-line and in-line
measurement methods [6]. In the case of off-line measurements, samples are
withdrawn from the process and analyzed in a laboratory environment which is
spatially clearly separated from the industrial equipment. Thus off-line analysis
always exerts significant lag times between recognizing and counteracting irregu-
larities. With at-linemeasurements, the sample is withdrawn from the process flow

Figure 1.10 Road map for process understanding.

1) D. Littlejohn, personal communication.

22j 1 Industrial Perspectives



and analyzedwith analytical equipment that is located in the immediate environment
of the industrial equipment.Hence, the reaction time for countermeasures is already
significantly reduced. Due to the industrial proximity it is often observed that at-line
analytical equipment is more robust and insensitive towards process environment
but less sensitive or precise than laboratory-only devices. In the case of on-line
measurements, samples are not completely removed from the process flow but
temporarily separated, for example, via a by-pass systemwhich transports the sample
directly through the on-line measurement device where the sample is analyzed in
immediate proximity to the industrial machining and is afterwards reunited with the
process stream. When in-line devices are used, the sensor is directly immersed into
the process flow and remains in direct contact with the unmodified material flow.
Figure 1.11 illustrates various sampling modes realized with in-line, on-line, at-line
and off-line sampling. Typical probes for interaction of electromagnetic irradiation
with samples are shown schematically in Figure 1.12 for various spectroscopic
techniques (transmission, diffuse reflectance, transflection and attenuated total
reflectance spectroscopy).

In the ideal case of process control, 100%of the processed elements or products are
covered by analytical methods at any time and complete knowledge about the quality
of the manufactured goods is obtained throughout the whole process. However, in
most cases (when only off-line or at-line devices are used) this is not possible and then
accepted sampling plans are required which define which and how many samples are
inspected at certain intervals [6].

Sampling is always an issue no matter which measurement approach is used, but
the nature of the challenge also varies with the approach. For instance, since with on-
line analysis a sample may be spatially separated from the main process stream by
means of a bypass system, on-line analysis has the advantage over in situ or in-line
analysis in that the sample can be pre-conditioned (filtrated, extracted, constant

Figure 1.11 Sampling methods.
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temperature etc.) prior to the analytical procedure. The main concern of sampling is
to get access to a representative sample. Besides being representative of the process
stream, some additional features need to be considered when selecting a certain
sampling approach. Sampling systems must ensure that the sample is1:

. obtained and delivered safely,

. conditioned and presented reliably to the analyzer,

. compatible with the analyzer regarding the measurement conditions, such as
temperature or pressure,

. obtained in a cost effective way, and

. representative also of the process stage, that is, the lag time from the process to the
analyzer must be within an acceptable range

It is generally believed that about 75% of analyzer reliability problems are
associated with the sampling system.

Sampling of solids presents the most significant problems. It is clear that finding
the key component at low concentrations of a targeted analyte within a complex
particulate systemwith high precision is a real challenge. As a rule of thumb, around
3000 to 10 000 particles are needed to obtain representative values. This can easily be
realized when only small particles are present in the medium; however, it is almost
impossible to calibrate a system with large particles. In this case, on-line calibration
may be the best way to receive representative information over time.

Liquids are considerably easier to sample, unless there are two phases present or
the liquids carry high levels of solid compounds.

Gases in general present the least problems, but can still be tricky where there are
components close to their dew point. The NESSI consortium has focused on using
modular sample system components in building block form that can be linked
together to make complete conditioning systems which include pressure regulators,
valves, pressure gauges and filters [28].

Figure 1.12 Schematic representation of typical spectroscopic probes (D, detector; P, probe; S,
sample).
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1.3.3
Process Validation

1.3.3.1 Role of Design of Experiments (DoE)
In January 2011 anew �Guidance for Industry: ProcessValidation:General Principles
and Practices� was introduced by the FDA and will be outlined here [29]. This
guidance describes process validation activities in three stages through the whole
lifecycle of the product and process, (i) process design, (ii) process qualification, and
(iii) continued process verification. These are the basic principles for smart or
intelligent manufacturing (see Figure 1.13).

The process should be understood from first principles and from a scientific and
engineering point of view. In most cases, the sources of variation during production
may already be known by experience; however, only rarely are they really understood
or quantified. Thus an important objective of process validation is to attribute all
variations in the process and raw materials directly to the product variability. The
perfect way to relate product variability to process and rawmaterial changes is to use a
DoE strategy [30]. However, it is sometimes difficult to select the appropriate
parameters and parameter settings for the design. A parameter is a measurable
value which can describe the characteristics of a system, for example, temperature,
pressure, and so on. Very often, these parameters may be the factors (¼ independent
variables) which predominantly influence the process and product quality (critical
process parameter or factor (CPP)).DoE allows one to identify the relevant factors and
to quantify their relative importance. It is logical that the factors which are of
importance should be controlled. However, it is sometimes a difficult task to find
the correct CPP.Multivariate data analysis (e.g., PCA) of historical data helps to select

Figure 1.13 Basic principles of smart manufacturing as defined by the FDA [29].
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the most important orthogonal parameters [6]. Orthogonality is an important
prerequisite in parameter selection for DoE since it is desirable to vary CPPs
independently of each other in order to influence the response properties of the
product.

Outliers are usually amuch better source of information than historical data based
on �standard� production, as standard production data only show the variationwithin
the regular production and, therefore, no systematic and significant variation of the
factors can be deduced. It is also important to emphasize that a reliable design of the
experiments should always include the possibility to evaluate the interaction terms
between the factors. When the interaction is more important than the main factors
this usually indicates that parameters are used which are not factors and, hence, the
DoE has to be modified.

1.3.3.2 Role of Failure Mode and Effects Analysis (FMEA)
Another tool to extract the most important factors is risk assessment such as failure
mode and effect analysis (FMEA) or cause and effectmatrices [10, 31, 32]. This assists
in effectively defining the design space, increases the awareness of the process risks,
and yields a better understanding of the relationships between functionality and
quality parameters. The critical quality attributes (CQA) are the data that best describe
the characteristics that need to be controlled to ensure product quality. Figure 1.14
shows the principal steps involved in FMEA and Figure 1.15 illustrates how FMEA is
situated within the production site of a product.

1.3.4
Measurement Technologies (How to Measure)

1.3.4.1 Selection of the Appropriate Technique
One of the key elements for process control is the selection of the best possible
technology. Common techniques used in industry measure physical attributes such
as conductivity or refractive index. They may be addressed as univariate sensors.
Process chromatography can be used to separate the components of complex
mixtures, but chromatographic methods are difficult to integrate in in situ and

Figure 1.14 Basic approach behind failure modes and effects analysis (FMEA).

26j 1 Industrial Perspectives



in-line process control set-ups.Unlike optical spectroscopy, new technologies like on-
line-NMRor terahertz spectroscopy, aswell asmass spectroscopy are not yet standard
equipment in in-line process analytics. A detailed overview of the different techni-
ques is given in [6, 33]. Since optical spectroscopy is currently among the most
prominent methods used in inline-process analytics, it is discussed inmore detail in
the following paragraphs.

Optical spectroscopy has developed into a widely used technique in process
analytics. Depending on the measurement problem, a broad range of useful
wavelength ranges and modes of interaction between electromagnetic radiation and
the sample can be used (see Figure 1.16).

Key issues from a practical point of view, besides cost/performance, are the need
for high sensitivity and selectivity, as well as the simplicity of application. Although

Figure 1.15 Integration of FMEA in the quality stream of a manufacturing facility.

Figure 1.16 Selection of appropriate wavelength regions depends on the spectroscopic method
used and the intended analytical application.
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the basic layout of spectroscopic tools is always very similar (light sensors–sample
contact area–detector), the various optical spectroscopic techniques are based on
numerous different measurement principles. Ultraviolet- and visible (UV/Vis)
spectroscopy is a highly sensitive technique for electronic transitions while mid-
infrared (MIR) spectroscopy is specific for vibrational transitions. Since energy
transitions between vibrational states of a molecule are highly substance-specific,
peaks measured in the MIR region can be directly attributed selectively to funda-
mentalmoieties in amolecule. Near-infrared (NIR) spectroscopy is less sensitive due
to lower yields of the higher order vibrational transition probabilities. However,
although not easily directly interpretable, the major advantage with NIR is that, even
at higher concentrations, no sample preparation (e.g., dilution) is needed. It is
important to emphasize that both NIR and MIR spectroscopy are highly sensitive to
water absorption. Table 1.3 shows a qualitative comparison of the advantages and
disadvantages of the different optical spectroscopic tools.

1.3.4.2 Working in Aqueous Systems
Figure 1.17 shows the spectra ofwater in theNIR andMIRwavelength ranges.Due to
the different absorption cross sections of the fundamental vibrations (MIR), the
combination bands, first second and third overtones in the NIR, different path
lengths must be used. The measured MIR spectrum is measured with a diamond
ATR system with a mean path length around 5mm.

The strong water absorption limits a broad application of these techniques in
aqueous systems, for example, the study of fermentation processes. Raman spec-
troscopy may be advantageous over NIR and MIR spectroscopy in aqueous systems.
In recent years, Raman spectroscopy has developed into a highly sensitive and
versatile technique and, therefore, has proven a very suitable method in biotech-

Table 1.3 Selection of the best possible inline technology in optical spectroscopy [6].

UV/VIS/s-NIR NIR MIR Fluorescence Raman

Selectivity þ þ þ þ þ þ þ þ þ þ þ
Sensitivity þ þ þ þ (þ ) þ þ þ þ þ þ (þ ) þ (þ þ )
Sampling þ þ þ þ þ þ þ þ þ þ þ þ
Working in
aqueous media

þ þ þ þ þ þ þ þ þ þ

Applicability þ þ þ þ þ þ þ þ
Process
analytical tool

þ þ þ þ þ þ þ þ þ þ þ

Light guide þ þ þ þ þ þ (þ ) þ þ þ þ þ þ
Signal Absorption Absorption Absorption Emission Scattering
Sampling
on-line/in-line

s, l, g s, l s, l, g s, l (g) s, l, (g)

Techniques Transmission
Reflectance ATR

Transmission
Reflectance ATR

ATR
(Transmission)

Reflectance
Transmission

Reflectance

Relative costs 1 3–5 6–10 4–6 8–12

28j 1 Industrial Perspectives



nology. For special applicationsfluorescence spectroscopy is certainly one of themost
sensitive techniques in spectroscopic analysis.

1.3.4.3 Trace Analysis
Trace analysis is still a challenge in process analytics. Optical spectroscopy can cover a
broad range of sensitivities and selectivities, as described before. One major
advantage of NIR is that the absorption cross sections are generally low. Thus the
technique can be used even at high concentrations. The typical detection limit for low
concentration mixture components lies at around 1%; due to the high absorption
coefficient for water as a trace component it is in the range down to 0.1% (or even
0.01%, depending on the system). In contrast, withMIR spectroscopy concentrations
as low as 0.01% are easy to measure and standard detection limits can be even as low
as 0.001%. Although Raman absorption cross sections lie typically around 10 orders
of magnitude lower than in FTIR, due to recent development of extraordinarily
sensitive detection systems Raman spectroscopy may approach the performance of
FTIR spectrometers in the near future. UV/Vis and fluorescence spectroscopy are
very sensitive techniques (in ppm, ppb and even lower), but lack selectivity.

As can be seen, the work horses in PAT are in many cases sufficiently sensitive.
However, especially for applications in biotechnology when one is working in
an aqueous environment at typically rather low metabolic concentrations, only
chromatography in combination with mass spectroscopy may be a reasonable
option [6, 33].

1.3.4.4 Qualification of a Spectrometer
Generally the quality of a spectroscopic inline control system can be described in
terms of its spectral range, spatial resolution, non-linearity, S/N ratio (stray light),
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Figure 1.17 Absorption spectra of water in the NIR region with different path lengths and MIR
(insert).
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diffraction efficiency and stability. The parameters needed to characterize the
systems are, for example:

. Spectral resolution

. Spectral linearity

. Absolute efficiency of the optics (throughput) and diffraction efficiency of the
grating,

. Straylight (S/N), ghost line and ghost image properties.

. Wavelength stability

Spectral axis calibration is done with spectrally well known light sources for
example, neon lamps, lasers, fluorescent systems. The backgroundCCD signal (dark
current) must be compensated for and – if possible – be minimized by cooling. The
detector response to light varies from pixel to pixel and is also strongly wavelength-
dependent. Moreover, the energy throughput of lenses and other optical elements
also depends on the wavelength. These variations can be calibrated by measuring a
white reference surface, storing this image, and then calculating the ratio between a
measured sample image and this white image (after dark current subtractions). Light
source color temperature drift and lighting spatial non-uniformity are also compen-
sated for, as long as the texture of the reference and the target is similar in terms of
specular and diffuse reflectance.

The spectral range defines the wavelength regions covered by the spectrometer.
The spectral resolution is related to themonochromator system used and defines the
power to resolve the narrowest spectral features in the electromagnetic spectrum.
The bandwidth is defined as the full width at half maximum of the spectral line. It is
important to notice that the optical resolution is different to the (digital) pixel
resolution of, for example, a diode array spectrometer. The pixel resolution describes
the number of digital points which are required to represent a peak in the spectrum.
Usually the pixel resolution should be about 2 to 3 times higher than the optical
resolution. The signal to noise ratio is the ratio of the radiancemeasured to the noise
created by the instrument electronics and the detector.

For on-line process analysis some additional features like the frequency of
maintenance and the frequency of recalibration are important and define, among
other features, the cost of ownership. Details of the calibration procedures are
defined inASTMstandards. The location of the analyzermust be compatible with the
safety ratings of the end user area.

1.3.5
Data Analysis and Calibration (How to Process Data and How to Calibrate)

1.3.5.1 Introduction
The basic idea of multivariate data analysis is to extract useful information from data
and to transfer this information into knowledge. Figure 1.18 visualizes the meth-
odology of multivariate data analysis to extract useful information from multidi-
mensional data sets.
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In common data there is high redundancy of the information, overlappingwith no-
information (white noise) and informationwhich is of nouse for the specific problem.
Besides univariate data analysis, the chemometric toolbox includes explorative data
analysis like principal component analysis (PCA);multivariate regressionanalysis like
partial least square analysis (PLS); andnonlinear approaches likeneural networks. It is
important to emphasize that the first step for a proper calibration and modeling is
always the correct optical set-up of the spectrometer device and the appropriate
definitionof themeasurement procedure. Aswill be shown later, complex systems are
preferably analyzed and described by using multiple spectroscopic methods (multi-
modal spectroscopy) which may be addressed as �optical principle component�
analysis. Hybrid models like multivariate curve resolution (see below) or science-
based calibration (SBC) allow the introduction of knowledge into the modeling.

A standard procedure to extract information and transform this information into
knowledge may be:

. Standardization and calibration of the instrument

. Spectral data pretreatment

. Data cleaning

. Principal component analysis

. Regression analysis

. Evaluation and figures of merit

The procedure for standardization and calibration of the instrumentwas described
in the previous section.

1.3.5.2 Spectral Data Pretreatments and Data Cleaning
As common in spectroscopy, themeasureddark spectra, reference spectra and sample
spectra are used to calculate the corrected sample spectra. Data transformation may
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+

redundant information
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information 

+
non-specific 
information

Some information + 
no information

Find small portion of useful 

information

Univariate data analysis

Explorative multivariate
data analysis (PCA, etc.)

Multivariate regression and       
classification   (MLR, PLS,  
RBF, Kohonen.......)

Optical principal component 
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MCR, SBC, Multiblock

Toolbox Chemometrics: Selectivity!! 

Figure 1.18 Extraction of information from a large data set.
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then involve the conversion of the raw data into, for example, absorbance. The
measured diffuse reflectance spectra can be transformed to absorbance or Kubelka-
Munkunits inorder to linearizethecorrelationtochemicalconstituentconcentrations.

Changes in sample surface, sample orientation, particle size distributions, com-
paction of loose samples like powders and external changes in the illumination or the
detector response (for instance by temperature drift)may result in unwanted spectral
signals, which are added or subtracted throughout the whole spectral range. To
reduce these additive effects a first and second derivative can be carried out. If the
spectra are very noisy they have to be smoothed before calculating the derivatives. A
detailed overview of standard pretreatment procedures and their effects on the optical
spectra is given in [34].

Spectra normalization, either to length one or area one, can be a choice if the
interesting information is more related to the shape of the spectral features than to
changes in absorbance intensity due to concentration variations of a constituent. In
such cases when classification (qualitative information) is aimed at, normalization is
a very helpful pretreatment method since the spectra will become independent of
their global intensity.

To correct for particle size or other scattering effects a multiplicative signal
correction (MSC) can be applied [35, 36]. Several methods have been described in
the scientific literature, ranging from simple MSC to more sophisticated method-
ologies such as extended MSC [37] and stepwise multiplicative scatter correction
(PMSC) [38]. Alternatively, the standard normal variate (SNV) correction for scatter
effects can be used. SNV is a simpler but purely mathematical-based procedure to
correct for scatter.

In order to correct for baseline curvature or other nonlinear effects across the NIR
spectral range a de-trending algorithm can be applied subsequently after an SNV
transformation. Barnes et al. [39] have shown thatMSCand SNVgivemore or less the
same results.

1.3.5.3 Chemometrics
Chemometrics offers the possibility to extract relevant information from multiple
wavelengths and methods instead of using single-wavelength channels only. Addi-
tionally, chemometrics reduces this relevant information into one or a few quality
defining parameters (underlying entities) by applying either multivariate classifica-
tion or regression models to the data.

There has been constant development in chemometrics and a number of good
reviews and useful tutorials have been published [34, 40–42]. The advent of modern
computer systems in the past decades has boosted widespread use of chemometric
software packages, and has also had a very positive effect on the broader distribution
of mathematics-intensive spectroscopic on-line methods.

Principal component analysis is a chemometric method that decomposes a two-
dimensional data Table X into a bilinear model of latent variables, the so-called
principal components, according to the following expression:

X ¼ TPT þE ð1:1Þ
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where T is the scores matrix and PT the transposed loadings matrix. The matrix E is
the residual matrix and accounts for the experimental error (noise), which is not part
of the model. The principal components are calculated so that they explain as much
variance of the data as possible. The first principal component captures most of the
variance in the data set. This information is then removed from the data and the next
principal component is calculated, which again captures the major part of the
remaining variance; this procedure is continued until a pre-defined stopping
criterion is met, which is based on falling below a lower limit of variance explained
by an addition of another principal component. All principal components are linearly
independent (orthogonal); that means there is no correlation among them and they
can, therefore, serve as a new coordinate system with reduced dimensions.

A so-called loading plot shows the relative importance of the individual variables
(here: absorbance at different wavelengths). It can be used to assign the spectral
classification to molecular structures of the chemical components. The objects can
also be represented by their scores in the new principal components space. This
allows clustering and structuring the samples quantitatively.

The fact that the principal components have no correlation among each other, as
they are calculated to be orthogonal, results in negative scores and loadings. This
makes it often difficult to interpret the underlying chemistry. To overcome this
deficiency, MCR can be applied instead, where non-negativity is one of the basic
prerequisites for calculation. Such MCR methods have been introduced to image
analysis only recently, with growing attention and success. More details can be found
in [9, 40].

1.3.5.4 Regression Analysis

Regression The target of PCA is more explorative but it is well possible to build
regression models with the PCA scores regressed on target values. This is called
principal component regression (PCR). However, as in traditional spectroscopy, the
most commonly used algorithm for multivariate regression is partial least squares
(sometimes also called projection to latent structures). The PLS algorithm builds an
inverse calibration model for the spectra X and the target value Y according to the
following regression equation:

Y ¼ XB ð1:2Þ
The matrix X contains the spectra and Y holds the corresponding target values,

which are the properties to be predicted. Y can be a matrix, but especially in process
control it often has only one y-variable. PLS uses latent variables, similar to the
principal components in PCA, to build the calibrationmodel. The latent variables are
calculated so that they explain asmuch as possible of the covariance between X and Y.

The model size (number of latent variables) is determined by the internal
validation data set and is checked for correctness with an external data set. The
figures of merit are given as bias and root mean square error of prediction as a
measure of accuracy and precision. They are calculated separately for the different
data sets according to the following formulae:
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X
i

yi�ŷið Þ ð1:3Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i yi�ŷið Þ2
n

s
ð1:4Þ

where yi is the reference concentration for the ith sample (given by the reference
method), ŷi is the predicted concentration by the calibrationmodel and n the number
of samples.When themodel has been validated, it can beused to predict y values (e.g.,
concentration) for measured spectra.

Evaluation of the Calibration The reliability of a method includes accuracy and
precision. �Accuracy� in testing means �closeness to the true value�. Especially in
biotechnology, this is hard to define because usually the relevant constituents cannot
be prepared in a pure state and their spectral characteristics depend strongly on the
interfering matrix material. Within a laboratory, accuracy can be established by
repeated analysis. Between laboratories, accuracy can be assessed by using themean
results of collaborative studies (ring tests) among all of the laboratories belonging to
the same organization. �Precision� in any testing means obtaining the same result
every time themeasurement is repeated. It includes repeatability and reproducibility.
�Reproducibility� includes all features of the test, including sub-sampling, sample
preparation and presentation to the instrument, and testing by all of the operators
that are likely to be involved in the testing. It is determined by repeated analysis of the
same sample, including all of the steps involved in the analytical procedure and all of
the operators likely to be involved in future testing. �Repeatability� includes all
features of the test except sub-sampling and sample preparation. It is determined by
performing duplicate or replicate tests on the same sample, after sub-sampling and
sample preparation, and is a test of the actualmethod on a single sample after sample
preparation. It is important to emphasize that PLS can bemisleading if it is not used
with care [43, 44]. To select the correct validation technique is the key for causality (see
Section 3.1).

1.3.6
Process Control (How to Control a Process)

As described in the �Guidance for Industry: Process Validation: General Principles
and Practices� and other papers, process analysis provides quantitative and quali-
tative information about a chemical process in real time, using on-line and in-line
analyzers [29, 45]:

�The information given by these systems is used to control the process. The
control strategy is defined as the input material controls, process controls and
monitors, and finished product tests, as appropriate, that are proposed and
justified in order to ensure product quality. The control strategy will ensure the
product is manufactured within the Design Space to meet all Critical Quality
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Attributes and other business-driven quality attributes (e.g., that affect cost or
manufacturability)�.

Process control is important for economic, safety and environmental reasons.
Improved process control allows more efficient use of feedstock and energy, giving
better product quality and ensuring consistency of quality. It also enables improved
treatment of waste products and effluent to meet continually more stringent
environmental legislation.

The key to good process control lies in the ability to measure fluctuations in the
system behavior (e.g., changes in feedstock composition or temperature build-up).
This information is then used to compensate for these changes and to optimize
process parameters.How representativemeasurements are of a system, how long the
interpretation of the data takes and how quickly this information can be acted on, are
important factors of process control.

In this section, the strategy of a modern manufacturing using feed-back and feed-
forward control is described. Figure 1.19 visualizes the strategy for process control
and how to manage variability.

Process control summarizes allmeasures to keep quality within certain limits.On-
line statistical process control involves actions tomonitor deviations fromadesired state
while the process is actually running andmanufacturing takes place. Hence, in order
to be able to react promptly in response to observed deviations, real-timemonitoring
techniques are advantageously employed. Even when a process is well designed,
statistical process control measures are always useful, since they allow one to detect
and act upon unforeseen effects of immediate or abrupt changes in the process

Figure 1.19 Managing variability (modified after FDA).
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conditions, and to correct the process for statistical variations that occur, for instance,
in the rawmaterial, which is always likely to happen. Moreover, processes when first
implemented are usually not yet optimizedwith regard to the highest possible level of
quality they might produce; on-line statistical process control may well assist in such
optimization and continuous improvement. Regarding the information that is used
for statistical process control, laboratory data or process datamay be used. Laboratory
data typically comprise physical or chemical tests performed on the incoming raw
material to control the input quality, or technological tests for the application behavior
of the final products to control the output quality. Especially in the early phases of
industrial manufacturing, this was the main mode of controlling the overall perfor-
mance of a process, the major indicator of process quality being the amount of waste
production or sorted-out parts (Figure 1.2). Regarding process-related data two
different types of process data are available: the first includes machine data, which
are accessible by recording parameter settings of themachine equipment, or general,
unspecific process data, like temperature, pHor conductivity, whichmay be recorded
by various sensors throughout the whole course of the production. The second type
includes quality influencing, material specific data which are directly related to and
measured on the produced goods by means of process analytical methods which are
applied at numerous intermediate product stages. Traditional laboratory data alone,
especially when only applied as end-of-pipeline tests of product performance, only
allow feed-back control loops, that is, after having detected that a fraction of the final

Figure 1.20 Process control by feed-back and feed-forward control requires a holistic view of the
process and the trans-disciplinary interplay of numerous techniques and methods [46].
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product is unusable andmust either be downgraded or even discarded, the process is
modified until subsequent batches may again be within specifications. In contrast,
process data (in combination with a causal understanding of the overall process)may
more intelligently be used in so-called feed-forward control loops which allow antic-
ipation of product properties before they have actually manifested. In this way,
correcting measures may be undertaken in advance in the case of expected negative
deviations and inferior or waste production may be totally avoided. Figure 1.20
(adapted from [46]) summarizes these concepts schematically.

1.4
Specific Problems Encountered in Industrial Process Analytics

In this section, selected process analytical problems that are of crucial importance to
many applications throughout various branches of industry are addressed. Since they
are often encountered in an industrial environment, this section is dedicated to
principle problem solutions that deal with moisture determination, the process
analytics of solids and surfaces, strongly scattering systems, and the spatially resolved
spectroscopy of samples using spectral imaging.

1.4.1
Moisture Measurements (NIR, MW)

Moisture is an important quantity which influences processability and shelf-life.
Moreover, delivering a product of definedmoisture content not only saves energy but
also increases profit. Off-line moisture measurements are time-consuming and
cannot be used for a feed-back or a feed-forward control inmanufacturing. Therefore,
there is a strong demand in industry for on-line and in-line control of water in a
substrate [47].

1.4.1.1 NIR Spectroscopy
As described in the previous chapter, MIR and NIR spectroscopy show strong
absorption for water and, therefore, can be used for in-line analysis of moisture
content. NIR spectroscopy is based onmeasurements of light absorbed by the sample
when it is exposed to electromagnetic radiation in the range from 780nm
(12 820 cm�1) (short-NIR, s-NIR) to 2500 nm (4000 cm�1) (NIR). As described in
the previous chapter, water absorption in the NIR occurs mainly at wavelengths
around 1445 and 1900 nm (Figure 1.21).

There are numerous investigations which deal with the determination of surface
water and intrinsic water (bulk water). To separate these two kinds of water
spectroscopically, it is generally postulated that surface water predominantly absorbs
around 1900–1906 nm and intrinsic water, respectively bound water, at 1936 nm.
However, bands in the NIR are broad and, in most cases, spectrometers were used
which were limited in their optical resolution. Thus care must be taken to interpret
spectra obtained from measurements on real life components.
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Furthermore, as described in the next chapters, the cross sections for absorption,
and also for scattering, are usually in a range of low penetration depths of photons. At
strong absorptions in the NIR (e.g., combination vibration), penetration and, hence,
information depth may, therefore, be only a few hundred microns or even less; in the
third overtone of water (s-NIR), penetration into the substrate may go up to several
millimeters. Therefore, the measurement of moisture using NIR combination bands
is usually restricted to the determination of surface water. The typically used reference
measurement techniques for calibration of the spectroscopic signal, such as Karl
Fischer titration or gravimetric methods (�loss on drying�), however, determine the
overall bulk moisture content, which does not necessarily correlate to the surface
moisture that ismeasuredbyNIR spectroscopy.Hence, calibration ofNIRspectramay
be erroneous. Moreover, NIR spectra often also contain spectral contributions from
other components which may overlap with water peaks. To make things even more
complicated, signals may also be perturbed by scattering due to particles of different
(and unknown) size distribution, resulting in nonlinear mean free path length
variations of the photons. In multivariate calibrations, SNV, MSC or EMSC have
been successfully used to eliminate baseline offsets present in the raw spectra and can
compensate for differences in thickness and light scattering of the analyzed samples.

1.4.1.2 Microwave Resonance Technique (MWR)
In the case ofmicrowave resonance (MWR)measurements the specific absorption of
water in the microwave wavelength range of 2–3GHz is used. Sensors are designed
from cavity resonators or stray field resonators. The penetration depth of the
microwaves is in the several-cm range and, therefore, bulk moisture measurements

Figure 1.21 NIR spectra showing the typical
absorbance pattern of water with maxima at
1450 and 1950 nm. The spectra show the
evaporation of water from cellulose-based filter
paper during drying. Measurements were

performed with a Lambda 1050 NIR
spectrometer (Perkin Elmer) in diffuse
reflectance using an integrating sphere
(150mm).
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can easily be correlated. Figure 1.22 shows an example of themicrowave spectrum of
an empty resonator and a resonator filled with a substrate.

Usually, the spectrum of the empty resonator is stable and can be used as an
�absolute� reference which is specific for a given system and system set-up under
certain temperature-controlled conditions. When a moisture-containing substrate is
measured (surface and bulk), the spectrum of the empty resonator changes in two
ways: First, the resonance spectrum shifts towards lower frequencies due to the
dielectric losses and, secondly the spectral bandwidth increases in response to the
density, respectively, the mass of the substrate. This information can be used to
compensate for fluctuations of the measured path lengths due to particle size
variations or other density changes (like, for instance, compaction) during on-line
measurements. Hence, besides being a very precise and reproducible measurement
method formoisture content,MWR also allowsmass or density determination of the
bulk material which is corrected for the moisture content (dry mass determination).
Being a very rapidmeasurementmethod, theMWR technique allows up to 500 single
measurements per second of powders, granules, fibers and even solids. This allows
easy averaging of the spectral information. Unlike other dielectric techniques, such
as capacitive techniques, conductivity measurements or microwave transmission
measurements, unperturbed information is obtained, even in caseswhere substrates
are used that contain high amounts of ionic material. Numerous applications can be
found in the literature for food and feed control [48, 49]. Figure 1.23 shows examples
for the set-up of on-line measurements in the food industry.

1.4.2
Process Analytics of Solids and Surfaces: Specular and Diffuse Reflectance

In real-life samples of solids or surfaces, reflectance spectra are composed of
contributions from specular and diffuse reflected light. Pharmaceutical tablets show

Figure 1.22 Microwave spectra of an empty and filled resonator.
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primarily diffuse reflectance but, due to different degrees of compaction, specular
surface reflectance is also observed. Decisive changes in the scattering coefficient
occur during compaction and relaxation and have a great impact on the measured
signal. Metal surfaces, on the other hand, exhibit mainly specular reflectance and
interference; however, they may also show some diffuse reflectance due to defects
within the layer, surface roughness, or contaminants on the surface. In a more
complex system like wood chips, on-line control allows correlation of the spectral
signature not only to a single target value like lignin, but to a complex quality
definition like functionality.

The Fresnel equations are the basis for the calculation and interpretation of the
portion of light which is specular reflected from optically smooth surfaces and
consists of wavelengths that are comparable to those of the incident light. Diffuse
scattering originates from surface irregularities that are of the same order of
magnitude (or slightly smaller) as the wavelength of the irradiating light source,
as shown schematically in Figure 1.24. Diffuse reflected light is described by the

Figure 1.23 On-line control of wheat grains by amicrowave stray field sensor (a) and a slide sensor
measuring moisture of bread crumbs (b), (courtesy of Sartorius).

Figure 1.24 Specular and diffuse reflectance of a real-life sample surface [50].
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KubelkaMunk function [50]. In this case, diffuse reflectance is influenced by both the
absorption and scattering coefficients, which are usually denoted as k and s. In an
ideal case, the absorption coefficient k and the scattering coefficient s can be separated
by the measurement of a sample with defined thickness in diffuse reflectance on a
highly scatteringwhite or black background, or bymeans of diffuse transmission and
reflectance spectroscopy [50].

In real-life samples, specular and diffuse reflectance contribute simultaneously to
the overall spectrum,which is then amixture of both effects. A detailedmathematical
description of the resulting solutions of the Fresnel and Kubelka Munk function is
given in [51].

The ideal experimental set-up would be to measure the reflectance bymeans of an
integrating sphere. But integrating spheres are not suitable for in-line or on-line
control. Moreover, the analytical deconvolution of the spectral information into the
contributions of the pure specular and diffuse components is not a simple task. Thus,
efforts must be made to focus the measurement on either diffuse reflectance or
specular reflectance in order to optimize the response, depending on the required
physical or chemical information.

An even stronger discrimination between diffuse and specular reflectance is
feasible using polarized light. Polarized light is depolarized by scatter centers and
therewith the information on defect sites is emphasized.

A specific target of the PAT initiative of the Food and Drug Administration of the
United States of America is to identify and quantify an active pharmaceutical
ingredient (API) in a complex formulation. Thus a direct relation between the
measured spectrum and the concentration of the API must be established at high
precision. The objectives of on-line control are, therefore, a fast and robust nonin-
vasive measurement protocol which is not perturbed by artefacts. Pharmaceutical
tablets aremade from small particles which can act as ideal scatter centers for diffuse
reflectance. Spectra, therefore, simultaneously show (i) wavelength-dependent scat-
tering, and (ii) specific absorption due to their chemical composition. Since the
process of tablet formation leads to a smooth surface after compaction, the tablets
additionally exhibit specular reflectance which perturbs the diffuse reflectance
measurement. For on-line control, the amount of specular reflected light being
transmitted to the detector should beminimized. Apossible set-up to bring this about
is the diffuse illumination of the sample and a detection perpendicular to the
illuminated surface. Alternatively, the illumination can be performed at an angle
of 45� while the detection of the diffuse reflected light is again done at an angle of 90�

to the surface (assignment: 45R0). A detailed description is given in [52].

1.4.3
Working in Multiple Scattering Systems: Separating Scatter from Absorbance

1.4.3.1 Basics in the Measurement of Opaque Systems
In scattering systems, the interaction of light (photons) is complex and includes
refraction, specular and diffuse reflectance and/or transmission, as well as absorp-
tion and scattering simultaneously. Due to the diffusion of photons, even the spatial
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identification and attribution to a defined spatial coordinate in x and ymay diminish.
Hence, the spectroscopic investigation of samples that contain phase boundaries
and, therefore, simultaneously display absorption and scattering effects show several
restrictions regarding the experimental procedure (methodological approach) and
the substrate:

Methodological influences

. Angle of illumination and detection (specular and diffuse light)

. Wavelength range: for example, UV–VIS–NIR–IR

. Polarization of the light (illumination and detection)

. Illumination and detection area

. Focal planes of illumination and detection

Substrate influences

. Differences in particle and matrix refractive indices

. Particle size

. Particle size distribution

. Volume concentration – compaction

. Scattering and absorption coefficients

Figure 1.25 shows schematically the different effects occurring when photons
interact with an opaque substrate.

Particles produce scattered light. The intensity of the scattered light is dependent
on the size of the particle and the wavelength of the interacting photons. Smaller
particles show higher scatter and light of shorter wavelengths is more strongly
scattered than light of longer wavelengths. This results in a difference in mean free
path lengths and penetration depths of the photons. In combination with absorption
phenomena, the overall spectral response will be significantly different when the
same sample is measured in diffuse reflectance or in diffuse transmission. Also, the
thickness of the measured sample will have a strong influence on the obtained
spectra due to photon loss at the rear side of the sample. These photons cannot be

Figure 1.25 Schematic representation of the different possibilities for the interaction of photons
with opaque systems.
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scattered back again as in the case of infinite sample thickness. Thus, the geometrical
set-up of the measurement is an important factor and changes in particle sizes and
size distribution must be compensated during calibration.

It is also important to emphasize that scattering also changes the direction of the
photons. Theoretical calculations have shown that the travel distance of the photon
may even be expressed in millimeters and more. Therefore, in highly scattering
systems, information fromone spatial regionmay be influenced by information from
another region, resulting in a mixing of the spatially separated spectral information.
As a result, there is a trade-off between spatial resolution and chemical (quantitative)
information [6].

1.4.3.2 Separation of Scatter from Absorption
In many chemical, pharmaceutical and biotechnological processes not only the
chemical changes are of importance but also the morphological variation of the
particulates. When spectroscopic in-line control is applied to such complex systems
very often the scatter in the spectra is regarded as unwanted and, therefore,
eliminated by chemometric methods instead of using it as a supplementary source
of information on the morphology of the substrate. One of the most appropriate
theories to describe multiple scattering and absorption is the radiative transfer
equation (RTE). A summary of RTE is given in [53]. A survey of the different
techniques is described in [54].

Using this equation, three separate and independentmeasurements are necessary
to separate scatter from absorption. Kort€um [50] and coworkers have demonstrated
extensively the power of diffuse reflectance spectroscopy in quantitative measure-
ments of turbid systems. The simplest approach is to use the Kubelka Munk (KM)
function, where F(R¥) describes the reflectance of an optically infinitely thick sample.

Linearity between the spectral response and concentration is only obtained (i) with
a specific optical set-up for diffuse illumination and (ii) when a defined preparation
procedure of the samples is used with special consideration for reproducible
grinding and dilution of the sample with powders that do not absorb. In practice,
the alternative log 1/R¥, that is called �absorbance�, prevails over F(R¥) of the KM
function inmost publications. The KM function is shown in Eq. (1.5). Here K stands
for absorption and S for scattering

EðR¥Þ ¼ K
S
¼ ð1�R¥Þ2

2R¥
ð1:5Þ

Several models exist to determine the wavelength-dependent scattering and
absorption coefficients in diffuse reflectance and diffuse transmission spectrosco-
py [19]. K and S can be calculated for example, from the simplified solution of
the differential equations of the Kubelka Munk function of a light flux into and from
the sample. Eqs. (1.6) and (1.7) describe the relation between S and K with the
measurements of a sample in diffuse reflectance.

S ¼ 2:303
d

� R¥

1�R2
¥
� log R¥ 1�R¥ �R0ð Þ

R¥�R0

� �
ð1:6Þ
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K ¼ 2:303
2 � d � 1�R¥

1þR¥
� log R¥ 1�R¥ �R0ð Þ

R¥�R0

� �
ð1:7Þ

Here, R0 denotes the spectrum measured at a definite sample thickness with a
black, strongly absorbing background and R¥ denotes the measurement of the same
sample with an ideal white scatter (¼ nonabsorbing material for example, barium
sulfate) as a background. Other approaches are described by Oelkrug, Dahm and
Dahm [55, 56].

Figure 1.26 shows the result of a spectrum where the contributions of scatter and
absorption have been separated. For demonstration, an aspirin tablet with cellulose
as excipient is measured at different compactions in diffuse reflectance with infinite
and definite thickness. For details see [6, 9, 52].

As can be seen clearly, the absorption portion of the spectrum in the longer
wavelength region containing chemical information is slightly perturbed by scatter,
whereas in the shorter wavelength range, scatter is the dominating information
source on the morphology of the sample.

This deconvolution can also be used with advantage in chemical imaging.
Figure 1.27 shows the image of an aspirin (ASS) tablet as measured at the specific
absorption wavelength of ASS in diffuse transmission and diffuse reflectance. The S
and K values were calculated at the specified wavelengths.

The figure shows nicely that the same particle of ASS shows different regions of
absorption depending on the geometrical set-up of the measurement and the used

Figure 1.26 Diffuse reflectance and diffuse transmittance spectra of Aspirin in cellulose (a) and
calculated wavelength-dependent scatter and �pure� absorption spectra (b) [52].
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wavelength. UV absorption is significantly stronger than the absorption in the NIR
range. This is also true for the scattering, which at lower wavelengths is much
stronger than in NIR. It can also be seen that scattering is especially strong at the
phase boundaries of the particle.

Figures 1.26 and 1.27 clearly show that the overall spectrum is the superposition
of the contributions of absorption and scattering effects. Therefore, the mean free
path lengths of a photon into and through a tablet will depend on the number of
scattering centers and the scattering characteristics of the particles. The probability of
interaction of the photon, and thus the signal intensity, also depends on the portion
of photons that is absorbed during their motion through the particulate
system. Certainly, the measured intensity also depends on the layer thickness since
photons are lost by transmission when the layers are of finite thickness. In theory, if a
photon is not absorbed it will travel for an infinite distance within the particulate
system.

1.4.3.3 Optical Penetration Depth
The optical penetration can be defined as the depth d, at which the intensity of the
radiation inside the material I falls to 1/e (about 37%) of the value of the incident
beam, I0. For a semi-infinite medium, in the range of validity of the K-M theory, the
intensity at a distance z from the surface can be approximated2) as:

d ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 2SÞp ð1:8Þ

Figure 1.27 Spectral imaging of an aspirin particle in cellulose: (a) �pure� absorption of the aspirin
at different wavelengths, (b) �pure� scatter of the particle at different wavelengths (for more details,
see [52].

2) D. Oelkrug, B. Boldrini, and R. W. Kessler, unpublished results.
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This is a generalized form of the penetration depth integrating absorption and
scattering. Details will be described elsewhere.

Figure 1.28 shows the result of a calculated penetration spectrum of the theo-
phyllin tablet example shown in Figure 1.4 at two different compactions. Because of
the high absorbance at longer wavelengths the penetration depth is low. On the other
hand, due to the strong absorption, the spatial resolution at higher wavelengths may
be higher because the number of scattered photons is lower and specular reflectance
has a lower probability. In the short NIR range (below 1100 nm), high penetration
takes place, mainly due to the low absorption and mean scattering properties of the
sample. As demonstrated, the penetration depth and, therefore, the scale of scrutiny
can be determined, when the scatter and absorption coefficients are known. Similar
approaches with similar results are described in [53, 57].

Amuch simpler approach is described in [58, 59]. Here the spectral response of an
absorber ismeasuredwhen this absorber is coveredwith different layers of scattering
particles. The description of the determined path length is, however, strongly
dependent on the geometrical set-up of the system, the sensitivity of the instrument
and the properties of the particulates and, therefore, cannot be generalized.

1.4.4
Spectral Imaging and Multipoint Spectroscopy

Spectral or chemical imaging combines the physical and chemical characterization of
samples by spatially resolved spectroscopy. The techniques may either be classified
according to the usedwavelength ranges or,more generally, intomapping or imaging
techniques. Mapping usually means to get an image by exploiting the full spectrum
(l) of a local point through point measurements (at spatial x and y coordinates). The
term imaging is used, when two-dimensional pictures (x, y) are obtained by a camera

Figure 1.28 Penetration spectrum for the theophyllin tablet in cellactose at different degrees of
compaction.
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at different wavelengths (l). In addition, line scans are defined as measured spectra
along a line [60]. A more straightforward taxonomy is used in remote sensing. The
different applied technologies are labeled as:

. Whiskbroom imaging

. Staring (�stardown�) imaging

. Pushbroom imaging

Figure 1.29 visualizes the different techniques. All techniques can use the full
optical wavelength range from the UV to the IR as well as Raman and fluorescence.

In process control, the spectroscopic method is often applied to moving samples
and, therefore, should be as fast as possible. Hence, in this case the pushbroom
acquisition mode is usually the best suited technique. Along a line of the sample,
which represents the first spatial direction (x-axis), several spectra are measured at
the same time. The pixel spatial resolution of this x-axis is determined by the number
of pixels used and the distance of the sample from the spectrometer objective lens.
The pixel resolution of the spectral l-direction (z-axis,) is determined by the spectral
range of the spectrometer (camera) and the number of pixels that are combined
together to yield one spectrum. The second spatial dimension (y-axis) is correlated
with time. If the sample is moved before the next line-scan starts, the time and the
second spatial dimension on the sample (y-axis) are correlated to themoving speed of
the sample. The data cube of the measurement thus represents the two spatial axes
and the wavelength axis.

Figure 1.30 shows an example of the data cube of a hyperspectral image of a wood
chip on which the letters RRI (Reutlingen Research Institute) are written with a UF
(urea formaldehyde) resin binder that is commonly used in the production of

Figure 1.29 Visualization of the different imaging technologies: whiskbroom imaging, staring
imaging, pushbroom imaging.
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oriented strand boards (OSB). The objective of the chemometric treatment is to
separate the information �wood chip� from the information �binder� and is intended
finally to determine the thickness of the binder layer. A hyperspectral image was
recorded for this sample with a pushbroom imager from Specim Finland. The first
spatial resolution (x-axis) contains 180 pixels and each pixel represents 0.1mmon the
sample. For the second spatial direction (y-axis) 20 line-scans were performed after
positioning the sample on a conveyer belt another 0.5mm further in the y-direction
from the starting position. Thismeans 20 pixels for this y-directionwith a spatial pixel
resolution of 0.5mm. The chemical information for each pixel is contained in 214
NIR absorption values in the wavelength range from 900 to 1700 nm (spectral pixel
resolution is 3.7-nm). The resulting three-dimensional data cube (180� 20� 214) is
sketched in Figure 1.30 together with a distributionmap for one selected wavelength
(1506 nm) and one spectrum along the spectral direction for pixel x¼ 90, y¼ 10. The
full hyperspectral image has (180� 20¼ 3600) spectra with 214 spectral readings in
each spectrum.

To get the full chemical information out of the hyperspectral image it is necessary
to look at the full spectral information contained in the image. This can be done by
applyingmultivariate data analysismethodologies to extract the relevant information
and at the same time reduce the dimensionality of the data. For images it is called
multivariate image analysis (MIA) and for a qualitative analysis it is very often linked
to principal component analysis (PCA). If a quantitative value for a quality or process
parameter is required it is called multivariate image regression (MIR) and is mostly
related to the partial least squares algorithms (PLS) [61].

When an optical fiber bundle is coupled to a pushbroom imager, multi-point
spectroscopy at different locations in a reactor will be possible. These fibers can,
however, also be coupled to various probes, thereby enabling simultaneousmeasure-
ments like reflection, transmission or ATR measurements (see Section 6.2).

Pushbroom imaging technology is, for example, used to identify plastics in waste
management systems. Figure 1.31 shows an example of a commercial application in
separation of the different polymers automatically on a conveyor belt.

Figure 1.30 left: Sketch of three-dimensional hypercube (a) and distribution map for one selected
wavelength l¼ 1506 nm (b) and one spectrum along the spectral direction for one pixel x¼ 90,
y¼ 10 (c). (d) Schematic drawing of a pushbroom imager (courtesy of Specim, Finland).
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1.5
Survey Through Industrial Applications

1.5.1
Selection of Applications

This short survey through selected industrial applications of process analytical
technology in the industry should illustrate the potential and widespread use that
such methods already experience in the current industrial landscape. It should
stimulate interest in potential problem solutions and with several thousand pub-
lications on the subject only in the course of the last five years is by far not intended to
be comprehensive.

The objective of this section is to give also a short overview of the different
applications of hyperspectral imaging in industry and science. It should provide
some ideas on the heritage of information which is gained from hyperspectral
images. Historically, the pharmaceutical industry uses mainly staring imaging
technology, whereas food and agriculture is more focused on pushbroom imaging
technology due to its background in remote sensing. Whiskbroom imaging tech-
nology will not be included in the selected applications as this technique is more
restricted to scientific interests [62].

It is by far beyond the scope of this chapter to mention all relevant techniques and
methods in detail, in the following sections only a brief summary of important
applications of the various optical spectroscopic techniques is given. For an in-depth

Figure 1.31 Real time characterization of polymers in plastic waste separation (courtesy of EVK
company).
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summary of new developments in PAT the reader is referred to the review articles on
process analytical chemistry by Workman and coworkers, for instance Refs [2, 63]
which are published every couple of years and reflect the most important new
developments in the field. Recent accounts of the state of the art of process analytical
technology are also to be found, for example, in [6, 33, 64, 65].

1.5.2
Pharmaceutical Industry

The most important applications of process analytical technology in the pharma-
ceutical industry cover on-line measurements in raw material control, reaction
monitoring and control, crystallization monitoring and control, drying, milling,
cleaning validation, granulation and blending, drug polymorphism detection, par-
ticle size, moisture content determination, and tablet analysis, as well as packaging.

1.5.2.1 UV/Vis Spectroscopy
Spectroscopic analysis in the pharmaceutical industry is very often concerned with
the analysis of drug formulations such as tablets. For instance, dissolution testing of
tablets is mandatory and there exist guidelines of how to perform these tests. Diode-
array spectrometer-based UV/Vis techniques can be employed in this context to
monitor the dissolution behavior of tablets [66]. Another important application of
UV/Vis spectroscopy is the controlling of cleaning operations. The cleanliness of
vessels intended for pharmaceuticals, beverage or food production has to be
guaranteed when production shifts from one batch to another with an intermittent
cleaning step. Fiber-opticUV/Vis spectrometers have beenused for this purpose.UV/
Vis spectroscopy has also been used to determine the active ingredients content in
tablets, for example paracetamol, ibuprofen, and caffeine [67].

1.5.2.2 NIR Spectroscopy
NIR spectroscopy is an establishedmeasurement technology that has been employed
for several decades under in situ conditions. In comparison to the chemical industry,
the diversity of industrial operations is much smaller. Hence, a number of standard
applications of NIR spectroscopy have been developed that are established and widely
used by numerous pharmaceutical companies. Typical standard applications are, for
example, the NIR spectroscopic control of raw material identity by using fingerprint
analysis of the incomingsubstances, theNIRmonitoringofmixingprocesses, theNIR
monitoring of granulation, or the NIR analysis of tablet formation and compaction.
While raw material control in many cases is accomplished by laboratory equipment,
in-process applications are of importance, especially in the control of the granulation
process.An important target signal here is the time-dependentmoisture content of the
aggregate in the course of particle compaction. Besidesmonitoring the kinetics of the
granulate water content, the kinetics of changes in the particle size distribution can be
determined [68]. NIR spectroscopy is also used in the characterization of the mixture
homogeneity of powder preparations. Here, two major strategies have been followed:
(i) on-line NIR monitoring of the mixing process [69–72] by implementing either
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stationary or moving NIR-probes directly in the mixing machinery, and (ii) imaging
approaches, which will be described below. In the NIR spectroscopic analysis of
tablets, the recent development of very rapid measurement devices based on diode
array spectrometers allows 100% control of all manufactured tablets [73, 74], which
represents an important step forward from random sampling. A typical problem in
tablet manufacturing is not only the absolute amount of active ingredient but also its
distribution within the particular formulation. While chromatographic analysis upon
homogenization of the tablet by dissolution reveals the actual overall content of the
drug in the tablet, the information generated by spectroscopicmeasurements is more
complicated to unravel. Since NIR spectroscopy of tablets is typically carried out in
diffuse reflectance the simultaneous contributions of scattering and absorption
phenomena have to be considered and the arguments presented in Section 4.3 need
to taken into account. Besides photon diffusion spectroscopy, here, too, imaging
methodswill play an increasingly important role in process analysis. Besides the active
ingredient content and its distribution, in the automated analysis andquality control of
tablets, physical parameters such as mass, diameter, thickness and hardness of the
tablets are targeted [75, 76]. More examples on the application of NIR spectroscopy in
combination with chemometric techniques can be found in the recently published
review by Roggo [77] and in [78].

1.5.2.3 Raman Spectroscopy
Since interpretation of Raman bands is much more straightforward than qualitative
interpretation of NIR bands and, hence, with Raman less chemometric effort is
required, information deduction from Raman spectroscopy provides great potential
also for the pharmaceutical industry. Monitoring of pharmaceutical blend homoge-
neity has been successfully accomplished using Raman based on a calibration-free
approach by mean square difference between two sequential spectra; see, for
example, [79]. In this study it was demonstrated that particle size and mixing speed
significantly influence the time required to obtain homogenous mixing. Raman
spectroscopy has also been used to follow the kinetics of polymorph conversion from
one form to another [80]. Automated analysis of micro-titer plates can also be
performed using Raman spectroscopy. Since it is possible to distinguish between
crystal forms Raman spectroscopy has been suggested as a tool for high-throughput
screening for different crystal structures [81]. Raman spectroscopy can also beused in
combination with NIR data to determine correlations between physical pharmaceu-
tical properties of tablets, such as hardness, porosity, and crushing strength [82].
Among others, the review published by Barnes [83] summarizes more recent
examples of the application of Raman spectroscopy in the monitoring of pharma-
ceutical processes.

1.5.2.4 Imaging Techniques
There are still only a limited number of real life on-line applications for chemical
imaging in process control in the pharmaceutical industry. Exhaustive reviews of
different applications canbe found in [33, 84]. Focus ismainly on three different uses:
blend uniformity of powders and tablets, composition andmorphological features of
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coated tablets and granules, spatial changes during hydration, degradation and active
release.

Pharmaceutical solid dosage forms are ideally suited for NIR chemical imaging.
The systems are chemically complex and the distribution of the components affects
dramatically the product quality and performance [85]. Recently, Lewis and cow-
orkers compared wet granulation, direct compression and direct compression
together with a micronized API. Besides the evaluation of the homogeneity of the
mixing, they could also qualify the appearance and the morphology of API hot spots
and agglomeration [86]. It is also possible to relate this information to the perfor-
mance of the final product [87].

In another work, the utility of NIR chemical imaging in measuring density
variations within compacts is demonstrated. The data are also used to relate these
variations to tableting forces which are controlled by frictional properties and the
quantity of the Mg stearate concentration during production [88]. This is possible as
the spectral information also includes the percentage of specular reflected light at the
surface of the tablet and the change in penetration depth of the photonswhich change
after compaction.

Counterfeit pharmaceutical products are a real threat to the health of patients. NIR
chemical imaging provides a rapid method for detecting and comparing suspected
counterfeit products without sample preparation. The advantage of imaging is that the
discrimination of the tablets is not only caused by changes in the chemical compo-
sition, but also from its spatial distribution. This reflects the use of different raw
materials as well as the distribution of the components in the tablet which depends
strongly on processing conditions [89]. Thus the combined chemical and morpho-
logical information provides an individual measure for the characterization of tablets.

Applications of chemical imaging in the pharmaceutical industry are mainly
related to NIR imaging. Some papers describe also the use of terahertz imaging.
Terahertz is ideally suited to the identification of chemical components with strong
phonon bands, thus components with high crystallinity can easily be distinguished
from amorphous systems [90].

1.5.3
Food and Agriculture

Spectroscopic quality monitoring, and especially NIR spectroscopy, has a very long
tradition in the food and agricultural industries. The main areas of application here
regard the quality control of rawmaterials, intermediate products and final products.
Many different sample types have to be dealt with, as reflected by the vast diversity of
possible food stuff, ranging from liquids, powders, slurries to solid materials. One
major problem often encountered in the application of NIR in food technology is the
preparation of appropriate reference materials – soft matter such as food usually is
connectedwith complex and varyingmatrix systems. Typical applications include the
transmission, transflection and diffuse reflection measurement of crop grains and
seeds, fruits and vegetables, livestock products, beverages, marine foods and
processed foods.
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1.5.3.1 UV/Vis Spectroscopy
UV/Vis spectroscopy is still an under-represented technique in process analysis. The
advantages of UV/Vis spectroscopy are the low cost and high reproducibility of the
equipment and its precision, especially in quantitative analysis. In recent years, UV/
Vis analysis has been successfully implemented in the beverage industry and for
wine color analysis [91–93]. The main application is the use of color cameras in food
processing, which is also a sort of spectroscopic application.

1.5.3.2 NIR Spectroscopy
Water is an important issue in the food industry and can be measured using NIR
spectrometers integrated in the food processing facility [94]. Typically, a rotating filter
wheel is used and the characteristic absorbance peak of water at 1940 nm is used for
calibration. By this method, water has been determined in a wide variety of dry
products, such as instant coffee powder, potato chips, bonbons, tobacco, wheat,
noodles, cookies, or dry milk powder [95]. Another important food constituent is fat,
which may also be measured using infrared spectroscopy; in aqueous systems,
however, it is preferable to use measurements in the mid-infrared range to avoid
interfering water bands [96].

Although determination of major components in foodstuff, such as acid or sugar
content, is still an important task, increasing attempts are made to determine
complex quality parameters governing the expected sensory perception or storage
stability of a certain product instead of only measuring one defined component. For
comprehensive and recent reviews on the subject, see, for instance [97–101].

Assuring food safety is still a key issue in the food industry. Bacteria usually show
broad bands in the NIR region even on taxonomically unrelated bacteria. However,
using MVA it is possible to differentiate most of the bacteria [102].

1.5.3.3 Raman Spectroscopy
Raman spectroscopy is also a versatile method in applications related to food and
agricultural products [103]. Food components, such as carbohydrates, edible oils,
cyanogenic components, or proteins can readily be identified due to their charac-
teristic absorption pattern by means of univariate characterization and peak assign-
ment. For instance, proteins can be studied by comparing changes in the amide I
(carbonyl stretch) band, which shifts from 1655 cm�1 for thea-helix to 1670 cm�1 for
the anti-parallel b-sheet structures and, hence, allows detailed studies of food stuff.
Cyanides show a very distinctive sharp band for the C:N triple bond at 2242 cm�1.
Inorganic food constituents, such as calcium carbonate, can also be identified
due to their very sharp spectra. It was, for instance, possible to characterize the
pre-freezing treatments of shrimp by studying the relative differences in Raman
signals obtained fromdifferent crystal structures of calcium carbonate (ratio between
calcite and vaterite), respectively, by studying the dehydration of the hexahydrate
(ikaite, absorbance at 1070 cm�1) to the anhydrous form (vaterite, 1089 and
1075 cm�1).

Certainly, the potential of Raman spectroscopy can be enhanced by subjecting the
spectral information to chemometric post-treatment, opening the field for rather
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quantitative applications of Raman methods. For example, alginate powders have
been studied quantitatively with respect to their characteristic b-D-mannuronic acid
to a-L-guluronic acid (M :G) ratio. It is recognized that Raman spectroscopy must no
longer be regarded as an exotic tool for routine analysis of softmatter like food but has
its rightful place in the PAT toolbox available for the food and agricultural
industries [103].

1.5.3.4 Imaging Techniques
On-line chemical imaging in agriculture is mainly remote sensing. Satellite or aerial
remote sensing (RS) technology uses nowadays pushbroom imaging technology in
the Vis, s-NIR and NIR-range. Vegetation images show crop growth from planting
through to harvest, changes as the season progresses and abnormalities such asweed
patches, soil compaction, watering problems, and so on. This information can help
the farmer make informed decisions about the most feasible solution.

The differences in leaf colors, textures, shapes, or even how the leaves are attached
to plants, determine howmuch energywill be reflected, absorbed or transmitted. The
relationship between reflected, absorbed and transmitted energy is used to deter-
mine spectral signatures of individual plants. Spectral signatures are unique to plant
species [104].

Remote sensing is used to identify stressed areas in fields by first establishing the
spectral signatures of healthy plants. For example, stressed sugar beets have a higher
reflectance value in the visible region of the spectrum from400–700 nm. This pattern
is reversed for stressed sugar beets in the non-visible range fromabout 750–1200 nm.
The visible pattern is repeated in the higher reflectance range from about 1300–
2400 nm. Interpreting the reflectance values at various wavelengths of energy can be
used to assess crop health. The comparison of the reflectance values at different
wavelengths, called a vegetative index, is commonly used to determine plant vigor
(for details, see [104]).

In the food industry, numerous on-line controls are still made by human vision,
especially for sorting bad looking products. Cameras can perform this task more
efficiently and, using RGB cameras, a limited certain spectral differentiation is
possible in machine vision [105]. However, due to the great variety of states (solid,
fragmented, etc.) of the food, shapes, color and chemical composition, as well as
seasonal variations it is difficult to monitor and control food in an unbiased manner.
The driving force to introduce NIR imaging was to qualify food not only on its
appearance but also on its chemical composition, such as water or starch content. An
extensive demonstration of different applications is given in [105],which includes on-
line characterization of chemical composition, detection of external contamination,
surface and subsurface nonconformities and defects in food.

The airborne or on-line information for process control in food qualification can be
complemented with a higher resolution by hyperspectral imaging techniques on a
laboratory scale. The ripeness of tomatoeswas qualified usingVis-spectroscopy [106],
moreover, apples were qualified on the quantification of starch and other chemical
compounds [107, 108]. Differences in phenol-typing in plant breeding development
can also be visualized by NIR imaging as shown in [105].
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Chemical imaging in food and agriculture can also be used to identify diseases, rot
and contamination by insects, for example, larvae. A method to detect animal
proteins in feed is described in [108]. The objective was to determine the limits of
detection, specificity and reproducibility.

1.5.4
Polymers

Process analytics is evenmore widespread in the chemical industry and such diverse
processes as polymerization, halogenation, calcination, hydrolysis, oxidation, cor-
rosion, purification, or waste disposal, to name just a few, can be advantageously
monitored using PAT tools. As an example for the chemical industry, a few
application examples from polymer manufacturing are given.

1.5.4.1 UV/Vis Spectroscopy
Applications of UV/Vis spectroscopy in the polymer industry are numerous; for
example it can be successfully used to determine the color of extruded plastics [109].
Color is a key quality criterion for the customer and automated on-line analysis of
color is of great importance and relatively easily accomplished, and various exper-
imental set-ups have been described. Another example of the industrial application of
UV/Vis spectroscopy is determination of the thickness of polymer films.

1.5.4.2 NIR Spectroscopy
NIR spectroscopy is widely used in laboratory and industrial applications formaterial
classification [65]. One of themost important processes in the industrial synthesis of
polymeric materials is polymer extrusion. NIR has been employed to control the
extrusion process, for example in terms of characterization of the starting formu-
lation and of the final polymeric product [110–112]. Moreover, the additive content of
polymer blends can be determined by using NIR [113, 114]. For that kind of
measurement, on-line probes can be installed before or after the actual extrusion
unit. More sophisticated application of NIR process analytical technology uses the
direct implementation of NIR sensors in the extrusion machinery. Here, a flow cell
with an integratedNIR sensormay be located after themixingunit, directly before the
hot polymer melt enters the mold, and spectra may be recorded either in transmis-
sion or diffuse reflectance, depending on the transparency of the polymer. Since the
absorbance of the glass fiber optics has been shown to be temperature depen-
dent [115], the temperature needs to be carefully controlled in the measurement
chamber and the measured spectra have to be baseline corrected. Important
requirements for reliable extrusion monitoring are reproducibility, accuracy and
long-term stability of the NIR system [116]. For each measurement position (for
example, at the end of the extruder, in the transport zone of the extruder, or at the
cooling, extruded polymer material) separate calibration has to be performed that,
besides polymer composition, also includes parameters like color or particle content
and particle size distribution [117].
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The moisture content in polymers has also been determined by NIR spectrosco-
py [116]. Besides composition, physical parameters of polymers such as density [118]
and melting flow index [119] have been determined by NIR, and even more complex
rheological parameters have been correlated with NIR spectra [120]. When NIR
spectroscopy was used in combination with an ultrasonic treatment, even the bubble
formation in the transformation of polystyrene was observed, which demonstrated
the versatility of the method [121]. A review of process analytical applications in the
polymer industry has recently beenpublished byBecker [116]. Siesler also gives a very
good overview of the potential of NIR in polymer analysis [122].

1.5.4.3 Raman Spectroscopy
Raman spectroscopy has been shown to have great potential in polymer production,
for example for monitoring the emulsion polymerization of various polymers
[123–126] or polymer curing reactions [127, 128], and also for the determination
of the residence time of TiO2-containing polypropylene in an extruder [129]. Polymer
films can also be characterized in real-time during the blown film extrusion process
with respect to composition, crystallinity and theirmicrostructure development [130].
Besides polymer bulk and film characterization, application of Raman spectroscopy
as a PAT tool may also be very promising in the characterization of synthetic and
natural polymer fibers and their composites [131], foams [132], and even liquid
crystals [133].

However, so far not so many applications of Raman spectroscopy in industrial
polymer processing have been described in comparison to NIR applications. NIR
spectroscopy is by far themost commonly employedmethod here. Onemajor reason
for this is themuch higher cost of Raman equipment. Recent developments towards
lower investment costs will certainly broaden the scope of potential applications.

1.5.4.4 Imaging Techniques
While standard spectrometers only allow measurement at one sampling point at a
time, NIR spectral imaging techniques can identify, in real-time, both the size and
shape of an object, as well as thematerial it ismade from. The robust classification of
materials, such as polymers, is based on their characteristic reflectance spectra.
Sorting, for example, requires the correctmaterial, size and shape of the entire object
to be known for reliable separation [134–136].

1.6
Perspectives

1.6.1
Technology Roadmap 2015þ

Regarding the various PAT, the following trends in future development of process
analytical equipment have been identified and summarized in the roadmap 2015þ
for process sensors published by NAMUR/GMA [137].
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1) It is expected that sensor systems will display much greater robustness and
long-time stability, that is, they will be required to depend on much less
efforts in maintenance and, hence, will have a significantly lower cost-of-
ownership

2) New in-process sensors will not only be incorporated in the design of newly
erected industrial plants but they will also be employed in the optimization of
existing processes

3) The new requirements for process analysis systemswill not be exhausted by the
pure collection and storage of process data. Information on the current state of
intermediates while production is still operating and predictions on expected
end-product properties will be increasingly used for controlling and process
management purposes.

4) For specific purposes, an increased accuracy of the gathered process informa-
tion will be required

5) As a most important trend, spatially resolved information of process and
material parameters will become of increasing importance.

6) Since interfaces play an important role for practically all industrial and engi-
neering areas, the localization, identification and characterization of interfaces
will play an increasingly important role in process analysis applications

7) There is a growing trend towardmanufacturing products in an environmentally
compatible way. This means that a growing number of synthetic processes
currently performed in a classic chemical pathway will be translated
intobiotechnologicalapproaches.Asaconsequence,processmonitoringsystems
suitable for biotechnological applications, and specifically fermentation process-
es, will gain in importance and will have to be further developed and refined

8) In bioprocess technology, an industrially feasible and robust in-process analysis
of specific targeted proteins would be a revolutionary achievement.

9) In order to comply with an ever increasing cost-pressure imposed on industrial
processes, the substitution of sophisticated and expensive process analysis
methods carrying a significant cost of ownership during maintenance by low-
cost, ideally single-use devices that are disposed of after having delivered the
required information is an important task for future research and development
activities in the field of process analyzers.

10) The growing use of renewable resources or recycled materials as environmen-
tally compatible starting materials for new products imposes novel analytical
problems onprocess analytical deviceswhichwill have to be addressed in future
development and applications of process analysis

11) The sensitivity of process analysis devices in many cases will have to be
significantly increased. For instance, in the analysis of potentially harmful or
catalytically effective trace components in gases, continuously lower detection
limits will be required

12) In the context of a holistic process management, there is also an increasing
demand in developing non-invasive analysis techniques in the field of ware-
house logistics and product organization
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13) An overall trend towards in-linemeasurements is evident, which in turnmeans
that intensification of research on the translation from laboratory analytical
methods into stable, processable and robust in-line methods that can routinely
be applied will be required

Some of the new challenges and developments in PAT are discussed in the
following sections.

1.6.2
Medical Applications and Tomographic Imaging

The next step in imaging is to integrate the z-spatial axis into the data cube. Especially
for medical applications, it is important to feature the spatial distribution in all three
directions.

Techniques which are available for 3D-imaging often lack the spectral information
or are difficult to introduce into in-line or high throughput applications like optical
coherent tomography (OCT) and laser scanning confocalmicroscopy. As stated in the
introduction, medical ultrasonography, magnetic resonance imaging (MRI) and
confocal microscopy are not suited to morphological or spectral imaging: the first
two have poor resolution; the last lacks millimeter penetration depth and suitable
applications in process control. On the other hand, in process analysis, electrical
resistance tomography (ERT) is very popular nowadays and involves measurements
around the periphery of an object for example, a process vessel or a patient. The
instrument operates by taking data from an array of electrodes in contact with the
process media. The electrical field lines �communicate� and are, therefore, affected
by the presence of conducting and nonconducting regions [138]. However this
technique does not provide any information on a molecular basis.

New developments in laser scanning confocal microscopy allow the use of
different lasers at selected wavelengths; thus spectral imaging may then be realized.
Also, when fluorescence is excited during scanning, for example, acousto-optical
tuneable filters can be used to analyze the fluorescence spectrum at each focal point.
However, there is still a long way to go for on-line or at-line applications in process
control. This is also true for fluorescence imaging techniques, including lifetime
imaging systems without using fluorescent markers [139]. On the other hand,
multiphoton tomography is now at the edge of a broad �at-line� application in
clinical high throughput in vivo studies [140].

Diffuse optical imaging (DOI) is a new emerging technique for functional imaging
of biological tissues. It involves generating images usingmeasurements in the visible
or s-NIR-light scattered across large and thick tissues (about several centimeters)
[141, 142]. As shown in Figure 1.7, penetration depth in the s-NIR range is high,
therefore the objective of DOI is to provide low cost sensors for in vivo applications
including imaging for example, of breast and brain cancer. The key issue, however, is
the image reconstruction which is difficult due to the scattering of the material and,
therefore, low spatial information of the data. Progress has beenmade on developing
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more realistic and efficientmodels of light transport in tissue and solving the ill-posed
inverse problem in an increasingly rigorous way [141].

Another way to solve the diffusion of photons problem and to localize spatially
resolved features is time-resolved NIR-spectroscopy. This technique enables the
separation of the absorption properties of the sample from the scattering properties.
This improves the localization of changes in the physical parameters, for example, in
a tablet [143].

Until recently, researchers did not extensively explore the material interactions
occurring in the terahertz spectral region, the wavelengths that lie between 30mm
and 1mm. Terahertz spectroscopy can be used to image through materials yielding
high spatial resolution in the x, y and zdirections. The technique also has the ability to
resolve both time and amplitude information. Terahertz has the potential to be
applied to many applications, including: on-line non-destructive testing for quality
control of products and packaging for industrial markets; weapons and explosives
detection for homeland security and defense markets; topical imaging for the
medical market; quality control of external skins on space vehicles for the aerospace
and military markets and many more. The technique is still quite expensive but will
find its way into process control in the future [144].

1.6.3
Multi- Point-Information Systems in Manufacturing

The main objective of any process control is to guarantee a constant and specified
product quality. Especially,maximumyield at aminimumofmanufacturing costs are
more andmore important parameters, even in the pharmaceutical industry. Complex
manufacturing with many different successive production steps must introduce a
feed-back and a feed-forward control in the future. This requires specific efforts to
integrate at each step of the production line an appropriate quality control for
example, by spectroscopic methods.

Instead of using a single spectrometer at each individual production step, pushb-
room imaging systems with numerous attached fiber bundles allow individual
control of the quality at each intermediate and the final step. In this context, the
pushbroom imager is used as a multipoint information source and can substitute a
moving multiplexer. Many fibers per spectrometer can be used for simultaneous
measurements. In addition, different spectrometer technologies for UV–Vis–NIR,
fluorescence or Raman can also be combined. Thereby the probe becomes a multi-
information system, which describes the sample in an ideal and complete way.

Figure 1.32 shows a schematic diagram of some production steps in tablet
production with the integration of a multipoint spectroscopic information system
using push-broom imaging technology.

In this example the pushbroom technology is able to substitute several single
spectrometer systems. For example, at the fluid bed dryer, the moisture or the
homogeneity of the blending process is controlled on a molecular level. Combined
with multivariate data analysis science-based production can be realized.

1.6 Perspectives j59



1.6.4
Multimodal Spatially Resolved Spectroscopy

In recent years multimodal methods have matured to an accepted new technology,
especially in thefield ofmedicine [145]. The termmultimodal relates to the possibility
of collecting information on chemical and physical parameters at the same time. Not
only chemical changes at the molecular level but also morphological changes in the
sample can be detected. Complex interrelations of the system can be reduced and
described in an easy and complete way. Several different imaging techniques are
frequently used to realize the multimodal concept.

Process control is subject to a continuous change and the approach of multimodal
methods will be extended in the future. The increasing complexity of high quality
products and the cost pressure demand new strategies. In the future, the focus will
not only be on process optimization but also on tailoring property profiles of products
according to specifications and individual desires of customers. This will allow the
creation of operating instructions, including the choice of materials and process
parameters, to design a product with a given preference profile.Multimodalmethods
will then also enable the realization of multipurpose optimization [146].

Optical molecular spectroscopy, and in particular chemical imaging, will play an
important role in implementing these objectives. By combining different wavelength
ranges and techniquesmultimodal spectroscopy synergistically providesmuchmore
useful information than each technique on its own. It produces complementary
chemical and morphological information about reaction products. Measurements
can be carried out quickly, sensitively, selectively and economically at a reasonable

Figure 1.32 Schematic diagram of a tablet production process with different possibilities for
pushbroom imaging.
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price. In principle, the implementation of the multimodal approach can be achieved
in three different ways.

Thefirst implementation strategy uses different wavelength ranges. TheUV range
ismore suitable for scattering effects, while the short near-infrared range has amuch
higher penetration depth because of the low absorption probability in organic
samples. Fluorescence techniques for excitation and emission spectroscopy can be
used to separate molecules due to their different spectral signatures. Raman
spectroscopy as a light scattering technique can be used as a fingerprint method
to identify molecular structures or bonding effects.

The second implementation strategy involves using different technologies within
the same wavelength ranges. For example, diffuse reflectance and transmission in
the UV or NIR can be used to separate morphological scattering from chemical
effects [9]. In addition attenuated total reflection (ATR) spectroscopy can be used to
analyze highly concentrated samples without prior dilution and avoiding interfer-
ence by scatter.

The third implementation strategy deals with laterally resolved measurements to
achieve the desired differentiation. Angular resolved spectral measurements or line
scans with a pushbroom imaging system lead to different penetration depths, which
are highly specific for particulate systems. Besides the chemical information,
parameters like homogeneity, particle size, particle distribution and density can
also be detected.

1.6.5
Microreactor Control and Reaction Tomography

Microreactor technology is a powerful tool and has become indispensable over awide
application range fromorganic synthesis to enzymatic controlled reactions [147, 148].
A miniaturization with the possibility of reaction tomography, and thus a significant
reduction in costs, will be the next step in the foreseeable future. Many chemical
reactions, especially organic andfine chemical synthesis, could already be transferred
to continuousmicroreaction processes [149]. The small geometric dimensions result
in an intensified mass and heat transfer which often leads to increased yield and
selectivity compared to the classical batch approach. However, microreaction tech-
nology today is still at the threshold between academia and industry.

A crucial factor for the successful implementation of microstructured production
processes in industry is a suitable process analytical technology. Time and spatially-
resolved on-line analysismust be implemented directly in themicrofluidic channels.
Thus parallel andmultiplexedmeasurement technologies are needed to reduce costs
and increase the robustness of information. To date, no commercially available
solutions exist.

Typical state of the art procedures to study chemical processes use flow cells
positioned after the microstructured environment or off-line methods. However,
these approaches have several disadvantages. A critical point is the creation of
distorted results due to changed geometrical proportions with measurements
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downstream of the microstructured environment. Moreover, no information about
the actual reaction process inside the microreactor is generated. The major disad-
vantage, however, especially for industry, is the increasing costs for analytical devices
required to assure constant product quality. The production of high added value
chemicals by means of a microstructured process requires several hundred micro-
reactors in order to produce sufficiently large amounts of final product. Therefore,
large numbers of flow cells, each attached to a separate spectrometer (¼ pushbroom
imager), are needed to meet these unique requirements.

An alternative technology is to analyze severalmicrochannels simultaneously or to
analyze a single microchannel spatially resolved along the reaction path using
pushbroom imaging technology. This type of optical on-line spectroscopy is an ideal
tool to characterize chemical reactions in a fast and reliable way, even on a molecular

Figure 1.33 (a) Schematic diagram of the experimental set-up for an on-line spectrometer system.
(b) Example of reaction monitoring of different concentration levels of an aqueous blue solution
flowing through a microreactor system.

Figure 1.34 Pushbroom imager as amultipoint spectrograph for tomography of a batch reactor (a)
and a continuous reactor (b).
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level. Transmission or reflectance spectra are registered through a fixed prism–

grating–prismopticswith a two-dimensional CCDcamera attached to it. Thereby, the
x-axis of the CCD array corresponds to the spatial resolution and the y-axis of the
camera provides the full spectrumof the sample. Figure 1.33 shows the experimental
set-up for an on-line spectrometer system as well as an example for reaction
monitoring.

Figure 1.34 shows a sketch of a pushbroom imager connected to a fiber bundle
where a batch reactor can be analyzed, and another example is shown where
spectroscopy is applied to a continuous reactor.

This multipoint spectroscopy can also be applied to microreaction systems to
analyze along a reactor or as a multiplexed microreactor analyzing tool.
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