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4.2.3  
1-D excitons 
Any object in the real world belongs to the physical Euclidean space and have 3 dimensions 

(3D). The volume of this object, assuming a generalized parallelepiped shape is V=LxLyLz where 

Lk is the dimension along k in a cartesian reference. (This is valid within a factor of  for most of 

the existing shapes.) We call one dimensional a solid having one dimension much larger than the 

others, like Lz>>Lx and Lz>>Ly. Here a generalized section is A=LxLy, with a section ݀ =  ܣ√

and the solid is 1D with axis along –z.  

Let’s consider now a pair of opposite charge particles, like electron and positron, free to move 

along an axis, as in a one dimensional space. This conceptual situation describes an electron-hole 

excitation in a one dimensional solid, like a carbon nanotube or a polymer chain, or, with less 

accuracy, a quantum wire. The study of the two particle motion in 1D has a fundamental limit 

when the separation distance between electron and hole, zeh, becomes comparable or  smaller 

than the  section, zeh ≤ d. Indeed, from a simple geometrical point of view, if we consider a 

section of the solid dz≈d the 1D approximation, as described above, breaks down. 

The original problem of the hydrogen atom in 1D has been studied in 1950, as a particular case 

of the 3D hydrogen atom. 
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The absorption spectrum of the 1D W-M exciton shows a very large intensity only in the first 

transition spectral line, and an almost suppressed band to band transition (Figure 4.10). This can 

be stated as a drastic reduction of the Sommerfeld factor, fS, defined as the fraction of the band-

to-band oscillator strength, ௌ݂ = ௙ಳಲಿವ௙ಳಲಿವା௙೐ೣ೎. 
The peculiar features seen in the 1-D exciton stems from the effect of dimensionality onto the 

hydrogenoid atom. In 1D electron and hole cannot escape   their mutual attraction (check in 

chapter 8 about random walk and dimensionality). The acceleration of the internal motion cannot 

counterbalance Coulomb attraction. Screening of the Coulomb interaction is ineffective because 

most of the force-lines of the interaction field (this is a 3D pattern!) are located “outside” the 

system, in the medium surrounding the nanotubes.  
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Finally when the exciton level is degenerate, or embedded, in the band continuum, tunneling 

from the bound state to the free e-h continuum may occur spontaneously. This may lead to a 

Fano-like shape of the exciton resonance when the ionization rate is large enough (in the order of 

the exciton lifetime). An external electric field will facilitate this process, enhancing the auto 

ionization rate. For large field this may lead to a field induced modification of the resonance 

lineshape to a Fano lineshape. A tunneling probability can be estimated from the “leaking” of the 

exciton wavefunction, as evaluated from the exciton wavefunction amplitude at some large 

distance between electron and hole, enough to assume a free state. This probability amplitude 

can be converted into a tunneling rate, that can be eventually compared to experiments, by using 



an approximate expression like Eb=hA where  Eb  is the exciton binding energy and A the 

attempt frequency of escape. The later expression is obtained by the following reasoning. The 

attempt frequency A can be written as A=v/2LC where v is an averaged velocity describing the 

approaching at the potential wall of the internal particles.   According to the Heisenberg 

uncertainty principle, an averaged momentum of the bound exciton is ݌ = ௛௅಴. According to the 

virial theorem, the exciton binding energy Eb is proportional to the kinetic energy, Ek=pv/2.  

Assuming Eb= Ek one reach A= Eb/h. The attempt frequency can be used to estimate an 

effective dissociation rate when used together with a tunneling probability (for each attempt) as 

discussed in chapter 8. 
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Essentially it is dictated by the time scale of the slowest coupled mode, typically a collective 

solvent reorganizational mode. 

(before Now we consider….) 

According to this picture the electron transfer process is suppressed at low temperature, because  

the encounter probability reduce to zero as the solvent modes get frozen. 
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In the adiabatic regime, when 22
Vve




  is large respect to the phonon frequencies, the total 

pre-exp factor A will be given by ܣ = ቀ ଵఔ೙ ൅ ଵఔ೐ቁିଵ ఔ೐≫ఔ೙ሱۛ ۛۛ ሮ  ௡. It should be noted that even weakߥ

electronic coupling (e.g. V=10 cm-1 giving	ߥ௘ି ଵ =  is sufficient to reach the adiabatic ( ݏ݌	5.3
limit. Equation 8.9 is thus the classical limit of the quantum mechanical expression.    When the 
coupling is small the non adiabatic regime sets in and tunneling becomes important. 
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The probability of return to the origin for a random walker in 3D is P(3D)  0.34. Remember 

however that a random walker in 1D and 2D always go back to the origin, P(2D)=P(1D)=1. In 

1D the averaged distance travelled after N jumps is aND   if “a” is the single jump 

distance. Assuming a constant jump rate, the time dependent survival probability of the random 

walker in 1D is 2/1 t .  
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The Onsager theory is instructive in describing the dissociation process, but it faces the problem 

of quantitative fitting. In order to reproduce experimental results in solids one should plug in 

values for the initial CT radius, or thermalization distance, of several nm, while a CT state is 

usually occurring between nearest neighbor, with separation < 1 nm. This discrepancy can be 

rationalized considering hot dissociation and the role of excess energy in pushing away the initial 

charges, as described for amorphous semiconductors in the paragraph above. A second weakness 

of the model is that geminate recombination to the ground state of the dissociated carriers seems 

in contrast with the existence of a metastable intermediate CT state. According to Braun the 

Onsager equation should be corrected to take into account the dynamic balance between CT 

dissociation and CT regeneration, FCCTGS
dk

FCN

CTk  

 


, where kd is the dissociation rate of the 

bound pair, NFC is the recombination rate constant of the population of free carriers (either 

polarons or electron and holes), and kCT is the CT rate of back recombination to the ground state. 

Here  is the bimolecular recombination constant of the free carriers. We first analyze the 

dynamical equilibrium in zero electric field. At equilibrium the rate of dissociation and 

bimolecular recombination are equal, FCd Nk  . Let’s assume a population of CT states (ion 

pairs in the original Braun paper) with average electron-hole distance “a” (thermalization 

distance in Onsager model) that occupies all the space. Their density at zero external field (F=0), 

will be 
3

10

4

3

a
VN F

CT 
  . At equilibrium the population of bound pairs ( 0F

CTN at distance “a”) 

versus free pairs ( 0F
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  and we use the Boltzman statistics. According to equation 8.16 
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The bimolecular recombination constant can be expressed according to Langevin model, 
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This contains explicitly the role of transport (through mobility) in the dissociation dynamics.  

In presence of the electric field the equilibrium population will be different, due to the possibility 

of field assisted dissociation. We note that eq.8.13 can be written as the product of two terms, 

F 0  where 0  is the dissociation probability at zero field and ...........
!2
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is the field dependent dissociation probability. Assuming valid the Onsager model for the field 

effect, the free carrier population in presence of the field can be expressed as 00   F
FC

FF
FC NN , 

in order to account for the non-null field assisted escape probability. Again at kinetic equilibrium 

the dissociation and bimolecular recombination rates will be equal, 000   F
d

FF
FC

FF
d kNk  . 

This provides the dissociation rate in presence of electric field: 
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      eq. 8.18 

 

The final result of the Braun Onsager model is an yield of dissociation 
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crucial difference of this theory with respect to the pure Onsager model, based on eq. 8.13, is that 

free carrier recombination leads to CT regeneration and subsequent re-dissociation, while in 

Onsager model the dissociated pairs never come back and the recombined pair disappears from 

the system. In other term pure Onsager is described by FCCTGS dCT kk   while Braun 

Onsager describes the dynamical equilibrium between CT and FC according to 

FCCTGS
dk

FCN

CTk  

 


. The modified dissociation rate according to Braun is consistent with 

thermalization distances sizably smaller than those needed when fitting the original Onsager 

model. The explicit dependence on mobility also suggests that better transport might help 

dissociation of the initial CT pair.  

Poole-Frenkel……… 

 
 
 
  
 

Box 8.1 
The matrix element appearing (squared) into the golden rule rate are: 

)2()1()2()1( **
ADADC V          

)1()2()2()1( **
ADADE V    

Energy transfer can be seen as an exchange of a virtual photon. In energy transfer a 
vertical transition can conserve energy due to the contribution of the photon field. For 
this reason the reorganization energy does not lead to a barrier in the process. In addition 
the external reorganization energy is small because the states are overall neutral. In 
energy transfer reorganization energy appears as relaxation energy following the event.  

The exchange (Dexter) matrix element requires the overlap between )1()1( **
AD  , that 

are on two different molecules, introducing the exponential dependence on distance.  

)1()0()0()1( *


ADADCT V   


