
1
Rocket Fundamentals

Many people have had and still have misconceptions about the basic principle of a
rocket. Here is a comment of an unknown editorial writer of the renownedNew York
Times from January 13, 1920, about the pioneer of US astronautics, Robert Goddard,
who at that time was carrying out the first experiments with liquid propulsion
engines:

Professor Goddard . . . does not know the relation of action to reaction, and of
the need to have something better than a vacuum against which to react – to
say that would be absurd. Of course he only seems to lack the knowledge
ladled out daily in high schools.

The publisher�s doubt whether rocket propulsion in the vacuum could work is
based on our daily experience that you can only move forward by pushing backward
against an object or medium. Rowing is based on the same principle. You use the
blades of the oars to push against the water. But this example already shows that the
medium you push against, which is water, does not have to be at rest, it may move
backward. So basically it would suffice to fill a blade with water and push against it by
very quickly guiding the water backward with the movement of the oars. Of course,
the forward thrust of the boat gained hereby is much lower compared with rowing
with the oars in the water, as the large displacement resistance in the water means
that you push against a far biggermass of water. But the principle is the same. Instead
of pushing water backward with a blade, you could also use a pile of stones in the rear
of your boat and hurl them backward as fast as possible. With this, you would push
ahead against the accelerating stone. And this is the basis of the propulsion principle
of a rocket: it pushes against the gases it ejects backward with full brunt. So, with the
propellant, the rocket carries themass, against which it pushes tomove forward, and
this is why it also works in vacuum.

This repulsion principle, which is called the �rocket principle� in astronautics, is
based on the physical principle of conservation of momentum. It states that the total
(linear) momentum of a system remains constant with time: if, at initial time t0, the
boat (rocket) with mass m1 plus stone (propellant) with mass m2 had velocity v0,
implying that the initial totalmomentumwas pðt0Þ ¼ ðm1 þm2Þv0, thismust remain
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the same at some time tþ > t0 when the stone is hurled awaywith velocity v2, the boat
has velocity v1 (neglecting water friction) and the total momentum is
p tþð Þ ¼ m1v1 þm2v2. That is,

p t0ð Þ ¼ p tþð Þ principle of the conservation of ðlinearÞmomentum

from which follows

m1 þm2ð Þ � v0 ¼ m1v1 þm2v2

Note: The principle of the conservation of momentum is valid only for the vectorial
form of themomentum equation, which is quite often ignored. A bomb that is ignited
generates a huge amount of momentum out of nothing, which apparently would
invalidate an absolute value form of the momentum equation. But if you add up the
vectorial momentums of the bomb�s fragments, it becomes obvious that the vectorial
momentum has been conserved.

Given m1, m2, v0, and velocity v2 of the stone (propellant) expelled, one is able to
calculate from this equation the increased boat (rocket) velocity v1. Doing so, this
equation affirms our daily experience that hurling the stone backward increases the
speed of the boat, while doing it forward decreases its speed.

1.1
Rocket Principles

1.1.1
Momentum Thrust

With a rocket, the situation is a bit more complicated, as it does not eject one stone
after the other, but it emits a continuous stream of tiny mass particles (typically
molecules). In order to describe the gain of rocket speed by the continuous mass
ejection stream adequately in mathematical and physical terms, we have to consider
the ejectedmass and time steps as infinitesimally small and in an external rest frame,
the so-called inertial (unaccelerated, see Section 13.1) reference frame. This is
depicted in Figure 1.1 where in an inertial reference frame with its origin at the
center of the Earth, a rocket with mass m in space experiences no external forces.

At a given time t, the rocket may have velocity v and momentum pðtÞ ¼ mv. By
ejecting the propellant mass dmp > 0 with exhaust velocity ve and hence with momen-
tum ppðtþ dtÞ ¼ ðvþ veÞ � dmp, it will lose part of its mass dm ¼ �dmp <0 and hence
gain rocket speed dv by acquiring momentum prðtþ dtÞ ¼ ðmþ dmÞðvþ dvÞ.

Note: In literature, dm > 0 often denotes the positive mass flow rate of the propellant,
and m the mass of the rocket. This is inconsistent, and leads to an erroneous
mathematical description of the relationships, because if m is the mass of the rocket,
logically dmhas to be themass change of the rocket, and thus it has to be negative. This is
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why in this book, we will always discriminate between rocket mass m and propulsion
mass mp using the consistent description dm ¼ �dmp < 0 implying _m ¼ � _mp < 0
for their flows.

For this line of events, we can apply the principle of conservation of momentum as
follows:

pðtÞ ¼ pðtþ dtÞ ¼ ppðtþ dtÞþ prðtþ dtÞ

From this follows,

mv ¼ �dm vþ veð Þþ mþ dmð Þ vþ dvð Þ ¼ mv� dm � ve þm � dvþ dm � dv
As the double differential dm � dvmathematically vanishes with respect to the single
differentials dm and dv, we get with division by dt

m _v ¼ _mve

According to Newton�s second law (Eq. (7.1.12)), F ¼ m _v, the term on the left side
corresponds to a force, calledmomentum thrust, due to the repulsion of the propellant,
which we correspondingly indicate by

Fe ¼ _mve

Note:This equation can alternatively be derived from the fact that themomentum of
the expelled propellant mass is dpp ¼ dmpve. The equivalent force according to
Newton�s second law (see Eq. (7.1.12)) is Fp ¼ dpp=dt ¼ _mpve. This in turn causes
a reaction force (Newton�s third law Eq. (7.1.11)) on the rocket of
Fe ¼ �Fp ¼ � _mpve ¼ _mve.

Figure 1.1 A rocket in force-free space before (above) and after (below) it ejected amass dmp with
exhaust velocity ve, thereby gaining speed dv. Velocities relative to the external inertial reference
frame (Earth) are dashed and those with regard to the rocket are solid.
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Thismeans that the thrust of a rocket is determined by the product of propellantmass
flow rate and exhaust velocity. Observe that due to _m ¼ � _mp < 0, Fe is exactly
in opposite direction to the exhaust velocity ve (but depending on the steering angle
of the engine, ve and hence Fe does not necessarily have to be in line with the flight
direction v). Therefore, with regard to absolute values, we can write

Fe ¼ � _mve ¼ _mpve momentum thrust ð1:1:1Þ

The termmomentum thrust is well chosen, because if the expression _mpve is integrated
with regard to time, one obtains the momentum mpve, which is merely the recoil
momentum of the ejected propellant.

1.1.2
Effective Exhaust Velocity

In the above, we have considered a simple mechanism, namely, propellant mass
expelled at rate _mp and at relative speed ve, that causes momentum thrust. As we will
see in the following sections, there exist other mechanisms that in conjunction with
the propellant mass flow – or from a relativistic point of view, that employs the
expenditure of energy – causes an additional thrust Fþ .We can take this into account
by writing quite formally Fþ ¼ _mpvþ . On the other hand, there are often side effects
that decrease the momentum thrust such as jet straying that leads to divergence
losses (see Section 4.4.2). All such losses are generally accounted for by a total loss
factor g. We can hence write the total thrust as

F� ¼ Fe þ Fþ ¼ _mpðgve þ vþ Þ ¼: _mpv�

We therefore can understand the total thrust F� as caused by an effective exhaust
velocity v�. From this point of view,

The effective exhaust velocity v� is an effective conversion factor of all physical
effects that convert the employed propellant flow _mp into total thrust F�.

If we would only have the above mechanism of expelling mass with some stray
losses, as for instance with an ion engine (see Section 5.2), we would simply have
v� ¼ gve. This is not the case for thermal engines, which will be examined in the
following section. There we will see that the gas pressure at the chamber exit
produces an additional thrust, the so-called pressure thrust. By the same token, we
will see in Section 1.3.2 that for relativistic flight, relativistic effects have to be taken
into account and, in addition, photons might also contribute to thrust. In all these
cases, v� takes on a more complex form.

In essence, one can state that for each type of engine, one has to investigate
what the thrust-generating mechanisms are, how they act, and, by writing its total
thrust in the form F� ¼ _mpv� determine what the effective exhaust velocity of that
engine is.
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As we will see in Section 2.5.1, the effective exhaust velocity v� is identical to and
therefore can also be understood as �the achievable total impulse of an engine
with respect to a given exhausted propellant mass mp,� called the mass-specific
impulse: v� ¼ Isp.

Generalized Thrust Equation
According to the above considerations, we generalize the above equations to

F� ¼ _mv� ð1:1:2Þ

and for absolute values

F� ¼ � _mv� ¼ _mpv� propellant force ðthrustÞ equation ð1:1:3Þ

Equation (1.1.2) or (1.1.3), respectively, is of vital importance for astronautics, as it
describes basic physical facts, just like every other physical relationship, relating just
three parameters, such as W ¼ F � s or U ¼ R � I. This is its statement: thrust is the
product of exhaust velocity timesmass flow rate. Only both properties togethermake
up a powerful thruster. The crux of the propellant is not its �energy content� (actually,
the energy to accelerate the propellantmight be provided externally, which is the case
with ion propulsions), but the fact that it possesses mass, which is ejected backward,
and thus accelerates the rocket forward bymeans of conservation ofmomentum. The
higher the mass flow rate, the larger the thrust. If �a lot of thrust� is an issue, for
instance, during launch, when the thrust has to overcome the gravity pull of the
Earth, and since the exhaust speed of engines is limited, you need thrusters with a
huge mass flow rate. The more the better. Each of the five first stage engines of a
Saturn V rocket had a mass flow rate of about 2.5 metric tons per second, in total
12.5 tons per second, to achieve the required thrust of 33 000 kN (corresponds to
3400 tons of thrust). This tremendous mass flow rate is exactly why, for launch,
chemical thrusters arematchless up to now, and theywill certainly continue to be so
for quite some time.

1.1.3
Pressure Thrust

We now take the next step and refine our engine by taking into account that _mp is not
just a stream of mass particles but gas particles in a jet engine. A jet engine is
characterized as an engine that gains thrust through the repulsion of expelled gases
(or fluids in general). This includes not only the classical thermal engines (see
Chapter 4), resistojets, or arcjets working with neutral gases but also engines that
work with �ion gases,� i.e., plasma, such as ion jets (see Chapter 5) or Hall ion jets,
where the ions interact via the Coulomb interaction and therefore also create
pressure. Because all practical propulsion engines work with gases or plasmas, the
considerations and results of this section apply to all today�s engines, which iswhywe
treat this as fundamental rocket knowledge.
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Gases are a loose accumulation of molecules, which, depending on temperature,
display internal molecular motion and interact with each other, and thus generate
pressure. On the other hand, the rocket at launchmoves in an atmosphere whose gas
molecules exert an external pressure. In order to understandwhat is the impact of the
propellant gas pressure and external ambient pressure on the engine�s thrust, let us
have a look at the pressure conditions in a jet engine (see Figure 1.2).

Inside the combustion chamber and depending on the location within the
chamber, we assume a varying internal pressure pint, which exerts the force
dFint ¼ pint � dA on a wall segment dA. In the area surrounding the chamber, we
assume a constant external ambient pressure p1. Now quite generally, the total
propellant force F� generated by the chamber must be the sum of all effective forces
acting on the entire engine wall with surface S

F� ¼
ðð
S

dFeff ¼
ðð
S

pint�p1ð Þ � dA ð1:1:4Þ

The normal vector of the chamber surface can be split into two components: a radial
ur and an axial ux component (Figure 1.3):

dA ¼ dAr þ dAx ¼ sin � � ur þ cos � � uxð Þ � dA
where the wall angle y is the angle between surface normal and chamber axis. If the
combustion chamber is axially symmetric, we haveðð

S

pint�p1ð Þ � dAr ¼ 0

and, therefore, we only get axial contributions:

Figure 1.2 Pressure conditions inside and outside a jet engine chamber.

Figure 1.3 Definition of the wall angle with regard to the chamber axis.
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F� ¼
ðð
S

pint�p1ð Þ � dAx ¼ ux

ðð
S

pint�p1ð Þ cos � � dA ð1:1:5Þ

Maintaining the internal pressure conditions and thus without a change in thrust,
we now deform the combustion chamber, so we get a rectangular combustion
chamber (see Figure 1.4).Now that all wall angles are only � ¼ 0; 90�; 180�; 270�, the
following is valid:

F� ¼ �
ðð
A�

pint�p1ð Þ �1ð Þ � dA �
ðð

A��At

pint�p1ð Þ � dA ð1:1:6Þ

where F� now expresses the propellant force of the combustion chamber in forward
direction, the direction in which the total force is effectively pushing.

As there is nowall at the throat with the surfaceAt, no force can be exerted on it, and
thus on the chamber�s back side, the integral is limited to the surface A��At. The
maximumcombustion chamber pressure pint ¼ p0 is on the front side of the chamber,
where the gas is about at rest. Because the gas flow increases in the direction of the
throat where it exits the chamber, the pressure at the rear of the chamber is reduced by
a certain amountDp: pint ¼ p0�DpðrÞ, and due to the axial symmetry of the chamber,
this pressure drop is also axially symmetrical; so at the throat, pint ¼ p0�DpðrÞ ¼ pt
applies. So Eq. (1.1.6) reads as follows:

F� ¼ p0�p1ð ÞA� �
ðð

A��At

p0�p1ð Þ � dAþ
ðð

A��At

Dp � dA

As ðð
A��At

p0�p1ð Þ � dA ¼ p0�p1ð Þ A��Atð Þ

andðð
A��At

Dp � dA ¼
ðð
A�

Dp � dA�
ðð
At

Dp � dA ¼
ðð
A�

Dp � dA� p0�ptð ÞAt

Figure 1.4 Pressure conditions in the idealized combustion chamber.
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we get

F� ¼ pt�p1ð ÞAt þ
ðð
A�

Dp � dA ð1:1:7Þ

Let us have a closer look at the integral of the last equation. It describes a force that
results from the pressure reduction along the rear combustion chamber wall. This
pressure reduction is due to the propellant flow through the throat. Thismassflow, of
course, does not generate a sudden pressure drop at the rear wall, but rather a
pressure gradient along the chamber axis. That is,ðð

A�

Dp � dA!�
ððð

chamber

D

p � dV

The pressure gradient corresponds to an acceleration field dv=dt of the mass flow.
According to the Euler equation of hydrodynamics, they are intimately connected
with each other via the mass density r:

� D

p ¼ r
dv
dt

Euler equation

This equation expresses Newton�s law in hydrodynamics. If we apply the Euler
equation to the volume integral, we obtain

ððð
chamber

D

p � dV ¼ �
ððð

chamber

dv
dt

dmp

dV
dV ¼ �

ðvt
0

_mp � dv

The velocity integral now ranges from the velocity at the front part of the chamber,
where the pressure gradient and hence the drift velocity of the propellant is zero, to its
throat, where the velocity takes on the exit value vt. According to the continuity
equation (Eq. (1.1.12)), the mass flow rate _mp is invariant along the combustion
chamber and also in the subsequent nozzle, and thus it is constant. So we find

ðð
A�

Dp � dA ¼ �
ððð

chamber

D

p � dV ¼ _mp

ðvt
0

dv ¼ _mpvt ð1:1:8Þ

If we apply this result to Eq. (1.1.7), we get

F� ¼ _mpvt þ pt�p1ð ÞAt

So far our considerations have been independent of the exact form of the
combustion chamber, as long as it is axially symmetric. So we can consider the
nozzle to be also a part of the combustion chamber. Then, all the parameters
considered so far at the throat of the combustion chamber are also valid for the
nozzle exit, i.e.,

F� ¼ _mpve þ pe�p1ð ÞAe ¼: Fe þFp ð1:1:9Þ
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We recover its vectorial form from the direction information in Eq. (1.1.5) by
observing that the surface integral at the given conditions is negative and ue ¼ ux

F� ¼ _mve� pe�p1ð ÞAeue ð1:1:10Þ

where ue is the unit vector of the exit surface in the direction of the exhaust jet with
exhaust velocity ve. The first term on the right side of the last two equations is the
knownmomentum thrust Fe, while the second term is called pressure thrust Fp. This
term, on one hand, is conclusive because it originates from the very special fact that
the jet engine works with gases that produce pressure. On the other hand, and as
according to Eq. (1.1.8), themomentum thrust here is also generated by a pressure on
the chamber because of its internal pressure gradient. At the end, it is all pressure that
accelerates the gas engine, and with it the rocket.

Effective Exhaust Velocity
If we compare Eq. (1.1.9) with Eq. (1.1.3), we can see that the effective exhaust velocity
is made up by two contributions

v� ¼ ve þðpe�p1Þ Ae

_mp
effective exhaust velocity ð1:1:11Þ

The expression �effective exhaust velocity� makes clear that it is not only about
exhaust velocity ve but also aboutmodifying by a pressure thrust-equivalence exhaust
velocity term.However, for a real engine chamber, the pressure thrust indeed is only a
small contribution (see Eq. (1.1.14) and thereafter). For an ideally adapted nozzlewith
pe ¼ p1, (see Section 4.2) it even vanishes.

1.1.4
Momentum versus Pressure Thrust

Ultimately, if it is only pressure that drives a jet engine, howdoes thisfit togetherwith
the rocket principle discussed in Section 1.1, which was based on repulsion and not
on pressure? Andwhat is the physical meaning of pressure thrust? You often find the
statement that pressure thrust occurs when the pressure at the exit (be it nozzle or
chamber exit) hits the external pressure. The pressure difference at this point times
the surface is supposed to be the pressure thrust. Though the result is right, the
explanation is not. First, the exit pressure does not abruptly meet the external
pressure. There is rather a smooth pressure transition from the exit pressure to
the external pressure covering in principle an infinite volume behind the engine.
Second, even if such a pressure difference could be traced back mathematically to a
specific surface, this would not cause a thrust, because, as we will see later, the gas in
the nozzle expands backward with supersonic speed, and such a gas cannot have a
causal effect on the engine to exert a thrust on it.

For a true explanation, let us imagine for a moment and purely hypothetically a
fully closed combustion chamber (see Figure 1.5) with the same pressure conditions
as in the idealized combustion chamber with mass flow rate (see Figure 1.4). The
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surface force on the front side would be Ffront ¼ ðp0�p1ÞA�, and
Frear ¼ ðp0�Dp�p1ÞA� on the rear side. Hence, the net forward thrust would be
F� ¼ Ffront�Frear ¼ Dp �A�. Because the wall angle on the rear side is 0� and because
of Eq. (1.1.8), this translates into F� ¼ Dp �A� ¼ _mpvt. Therefore, we can say the
following:

The momentum thrust Fe physically results from the fact that, in a hypo-
thetically closed engine chamber, due to the mass flow rate _mp, there is a
bigger chamber pressure on the front side compared to the Dp smaller
pressure on the back side. This causes a net pressure force Dp �A�.

Ultimately, it is the Euler equation that relates the mass flow rate _mp with the
pressure differences in the pressure chamber. In order to have the hypothetical gas
flow indeed flowing, we need to make a hole with area At into the rear side (see
Figure 1.4). Once this is done, the counterthrust at the rear side decreases by

DFrear ¼ �ðp0�Dp�p1ÞAt ¼ �ðpt�p1ÞAt

which in turn increases the forward thrust by the same amount. But this is just the
pressure thrust. Therefore,

The pressure thrust Fp is the additional thrust that originates from the
absence of the counterpressure force at the exit opening of the engine.

If the exit pressure happens to be equal to the external pressure, then the external
pressure behaves like a wall, the pressure thrust vanishes, and we have an ideally
adapted nozzle (see Section 4.2.1).

1.1.4.1 Momentum Thrust Revisited
Themomentum thrust can also be described in a differentmathematical form. Let us
have a general look at the behavior of propellant gas perfusing an engine. Apropellant

Figure 1.5 Pressure conditions of the idealized combustion chamber if it would be, hypothetically,
fully closed.
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mass dmp perfuses a given cross section of the engine with the area A and velocity v
(see Figure 1.6). During the time interval dt, the volume of amount dV ¼ A � ds ¼
Av � dt will have passed through it. Therefore,

dmp ¼ r � dV ¼ rAv � dt
where r is the mass density. From this, we derive the mass flow rate equation:

_mp ¼ rvA continuity equation ð1:1:12Þ

The continuity equation is a direct outcome of the transport of mass particles as a
conserved quantity,which expresses the fact that the number ofmass particles cannot
increase or decrease, but can only move from place to place. This is exactly what the
word �continuity� means.

We apply the continuity equation to a jet engine, which reads at the exit of the
engine _mp ¼ reveAe. Applying this to Eq. (1.1.1) yields

Fe ¼ _mpve ¼ reAev
2
e ð1:1:13Þ

This equation begs the question whether the momentum thrust of a jet engine is
linearly or quadratically dependent on ve. The answer depends on the engine in
question. Depending on the engine type (e.g., electric or chemical engine), a change
of its design in general will vary all parameters ve and _mp; re;Ae in a specific way. This
is why the demanding goal of engine design is to tune all engine parameters,
including ve, such that the total thrust is maximized. Hence, it is not only ve alone,
which is decisive for the momentum thrust of a jet engine but also it is necessary to
adjust all relevant engine parameters in a coordinated way.

Significance of Pressure Thrust
Given Eq. (1.1.13), we are able to qualitatively derive the contribution ofmoment and
pressure thrust to the total thrust. We do so by rating it against the pressure-to-
momentum ratio in vacuum:

Fp
Fe

� Fp
Fe

����
1

¼ peAe

reAev2e
¼ reRsTe

rev2e
¼ RsTe

v2e
ð1:1:14Þ

where we havemade use of the ideal gas law Eq. (6.1.2) with the specific gas constant
Rs. For thermal engines, as discussed in Chapter 4, we have Fp=Fej1� 5–10%. For a
so-called ideally adapted nozzle where pe ¼ p1 (see Section 4.2.1), then of course

Figure 1.6 The volume dV that a mass flow with velocity v passes in time dt.
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Fp=Fe ¼ 0. Because the exhaust temperature Te generally decreases with increasing
ve (cf. Eq. (4.1.6) for their general relation), we see that the pressure thrust becomes
rapidly less importantwith increasing exhaust velocity. Thiswill beparticularly important
for ion engines with exhaust velocity 10 times larger than for thermal engines.

1.2
Rocket Equation of Motion

Apart from its own thrust, external forces also determine the trajectory of a rocket.
They are typically summarized to one external force Fext:

Fext :¼ FG þFD þFL � � � ð1:2:1Þ
with

FG ¼ gravitational force
FD ¼ aerodynamic drag
FL ¼ aerodynamic lift.

For each of these external forces, a virtual point within the rocket can be assumed the
external force effectively acts on (Figure 1.7). This point has a unique location with
regard to the geometry of the rocket, and it is in general different for every type of
forces. For instance, themasses of the rocket can be treated as lumped together in the
center of mass where the gravitational force applies; the aerodynamic drag and lift
forces effectively impact the spacecraft at the so-called center of pressure; and
possible magnetic fields have still another imaginary point of impact. If the latter
do not coincide with the center of mass, which in general is the case, the distance in
between results in torques due to the inertial forces acting effectively at the center of
mass. In this textbook, we disregard the resulting complex rotational movements,
and we just assume that all the points of impact coincide with the center of mass or,
alternatively, that the torques are compensated by thrusters.

Figure 1.7 External forces acting on a Space Shuttle upon re-entry.
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Newton�s second law, Eq. (7.1.12), gives us an answer to the question of how the
rocket will move under the influence of all non-inertial forces Fi, including the
rocket�s thrust F�:

m _v ¼
X
all i

Fi

We therefore find the following equation of motion for the rocket:

m _v ¼ F� þFext

and with Eq. (1.1.2), we finally obtain

m _v ¼ _mv� þFext rocket equation of motion ð1:2:2Þ

This is the key differential equation for themotionof the rocket. Inprinciple, the speed
can be obtained by a single integration step and its position by a double integration.
Note that this equation not only applies to rockets but also to any type of spacecraft
during ascent flight, re-entry, or when flying in space with or without propulsion.

1.3
Relativistic Rocket1

All what has been said here was based on Newton�s classical mechanics. It holds as
long as the speed of the rocket v is well below the speed of light c. We know from
theory of special relativity, which Einstein developed at the beginning of the last
century, that physics behaves differently if v � c. Many rockets eventually fly close
to the speed of light? In order to find out, we need to know what is needed to get it
close to the speed of light and how it performs there. But note that the need to apply
relativistic physics depends on the precision that is needed to describe a given
situation. A satellite navigation system in Earth orbit, for instance, needs a high-
precision timekeeping system on board with a stability of less than Dt=t � 10�12

that allows to determine a position on Earth with roughly 10 cm accuracy. At an
orbital speed of 3.9 km s�1, relativity contributes to the time deviation with
Dt=t ¼ v2=2c2 � 8:5	 10�11 that is not negligible. Therefore, at much lower
speeds, relativity must also be taken into account if the accuracy of the description
is high.

Our goal here is to understand how relativity works for a spacecraft close to the
speed of light and how this relates to classicalmechanics at lower speeds.We start out
by assuming a one-dimensional motion of the rocket, thrust direction, and hence
acceleration along the x-axis. The main components of relativity will not be touched
by this restriction. This implies that the position of a rocket in time can be

1) Section 1.3 is partly adapted from Walter (2006) with contributions from Westmorelend (2010).
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appropriately described by the two vectors ðx; tÞ. We define two reference frames: the
�primed� reference frame of an external inertial observer O0ðx0; t0Þ and the
�unprimed� reference frame of the rocket under consideration Rðx; tÞ, which is
supposed to have an instantaneous velocity v relative to O0.

1.3.1
Space Flight Dynamics

For relativistic physics, it is important to note that among all existing reference
frames, there is one preferred frame: the rest frame. This is the frame of the object
under consideration inwhich it is at rest. Any other external observer having velocity v
relative to this rest frame observes the properties of the object such as length, time,
speed, and acceleration differently as the object itself. Since there may be an infinite
number of observers and, therefore, many different views of the object properties,
relativistic physics holds that only one has a proper view of the object: the object itself.
In this sense, relativity is an absolute concept.

Relativistic physics, therefore, introduces the notion of �proper.� In general, a
�proper�measure of a quantity is that taken in the relevant instantaneous rest frame,
thus also called proper reference frame. So �proper� is everything an astronaut
experiences in his rocket. This is why we will not put a prime on such quantities and
those as observed from outside will carry a prime. In general, the observed values
depend on the reference frame with of course one exception: v ¼ v0. Adopting this
notion, what is of relevance first is how the propermeasures relate to themeasures of
external observers.

Proper time (also called eigentime) t is the time that the watch of an astronaut in a
rocket shows. Special relativity holds that t is related to the time t0 of the external
observer O0 by

dt 
 dt ¼
ffiffiffiffiffiffiffiffiffiffiffi
1�b2

q
� dt0 ð1:3:1Þ

where we adopt the convenient relativistic notations b :¼ v=c and c :¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
1�b2

q
.

Wewill sometimes denote dt by dt in order to point out that the proper time ismeant.
It should be noted that in special relativity, Eq. (1.3.1) holds for any condition of
the rest frame even if it is accelerated, because, and contrary to common misjudg-
ment, special relativity is not restricted to constant relative velocities or inertial
reference frames.

Einstein pointed out that acceleration is an absolute concept: an astronaut does not
experience rocket velocity in his rest frame, but he does so for acceleration. Let us
assume that the astronaut experiences an acceleration a. Then, special relativity tells
us that this is related to the acceleration a0 as seen by an external observer through

a ¼ c3a0 proper acceleration ð1:3:2Þ
Because acceleration is an absolute concept, we are apt to define

ds :¼ aðtÞ � dt ð1:3:3Þ
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ds is an increase in speed asmeasured in the instantaneous rest frame.We integrate
to get

sðtÞ ¼
ðt
0

aðtÞ � dt ð1:3:4Þ

This equation tells us that s is the integral of the acceleration as experienced in the
proper reference frame and hence is the speed as experienced by an astronaut, who
sees the outer world going by. Since this is the true meaning of proper, s is a proper
speed. In order tofind the relation of this proper speed to the relative speed v, we apply
Eqs. (1.3.1) and (1.3.2) to Eq. (1.3.4) and get

s ¼
ðt0
0

c2a0 � dt0

As a0 ¼ dv=dt0 ¼ c � db=dt0, we find

s ¼
ðv
0

dv
1�v2=c2

¼ c
ðb
0

dj

1�j2
¼ c � arc tanh b proper speed

or

b ¼ v
c
¼ tanh

s

c

� �
ð1:3:5Þ

It is now shown that the proper speed is proper in a more general sense. Let us
consider a second rocket or any other object in space having the known speed u
relative to the astronaut�sR system.Wewant to knowwhat its speed u0 is asmeasured
by O0. Special relativity tells us that

u0 ¼ uþ v
1þ uv=c2

¼ c
bu þbv
1þbubv

ð1:3:6Þ

The problem with this transformation equation is that it is not linear as in classical
physics where the Galileo transformation u0 ¼ uþ v holds. In addition, Eq. (1.3.6)
limits u0 to the range 0 � u0 � c if v starts out from below c. This can be seen
immediately if one inserts even limiting velocities u ¼ c. This is Einstein�s famous
law that nothing goes faster than the speed of light. It is exactly this non-linearity and
limited range of values that cause problems when treating special relativity math-
ematically. We now apply Eq. (1.3.5) to Eq. (1.3.6) and find

tanh s0
u=cð Þ ¼ tanh ðsu=cþsv=cÞ

where we have used the algebraic equation for any two values x and y:

tanh xþ tanh y
1þ tanh x � tanh y

¼ tanh ðxþ yÞ

1.3 Relativistic Rocket j15



As this must hold for any proper speed values, we find

s0
u ¼ su þsv ð1:3:7Þ

i.e., proper speed recovers the linearity of speed transformation in special relativity.
According to Eq. (1.3.5), the proper speed goes to infinity if the externally observed

speed goes to the speed of light. This is to say that from an astronaut�s point of view,
there is no speed limit. His subjective impression is that he can actually travel much
faster than the speed of light. But of course he cannot travel faster than infinitely fast.
This is the reason why the observer also sees a speed limit: the speed of light. So the
ultimate reason why nothing can ever go faster than the speed of light is that no
proper space traveler can ever go faster than infinitely fast. Note that from this point of
view, photons always travel infinitely fast. They experience that any distance in the
universe is zero: for them the universe is one point. Because their proper time is zero,
one might say they do not even exist. But this would be wrong. They come into
existence at one point in our universe, they transfer energy, momentum, angular
momentum, and information to any other point in proper zero time, thereby causally
linking any two parts in our universe and at the instance their work is done they are
gone. This is why causality is the basic conservation law and hence the cement of our
universe, and not the speed of light. The speed of light c may vary throughout our
universe, but the fact that the proper time at v ¼ c is always zero and cannot become
negative – implying that no inverse causality is possible – is firm.

In order to show that the concept of proper speed has relevance to the concept of
classical speed, wefinally show that for small speeds, the proper speed turns over into
the classical concept of speed v for v! 0

s ¼ c � arc tanh b ¼ c bþ 1
3
b3 þ � � �

� �
� cb ¼ v; @ v! 0 ð1:3:8Þ

We summarize by noting that the proper speed exhibits four important properties:
it is proper, it transforms linearly, its takes on real numbers, and it turns over into the
classical concept of velocity at low speeds. This implies that it is a natural extension of
the classical speed into special relativity and is mathematically integrable.

1.3.2
Relativistic Rocket Equation

With the concept of proper speed at hand, we start out to derive the relativistic rocket
equation. We want to do this in its most general form. The two physically distinct
rocket propulsion systems aremass propulsion and photon propulsion.We take both
into account and assume that upon combustion, a portion e of the propellant mass
will be converted into energywith a certain efficiencyg and that a portiond of it expels
the exhaustmass with velocity ve, while the other portion ð1�dÞ is expelled as exhaust
photons, and the rest is lost. Therefore, the overall energy scheme looks like
Figure 1.8. In the rest frame R of the rocket, momentum conservation holds. Taking
the momentums of both exhaust components and that of the rocket into account, we
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can write

1�eð Þdm � ceve þ 1�dð Þge � dm � cþ mþ dmð Þdv ¼ 0

where the factor ce ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2e=c

2
p

takes into account the Lorentz factor of the
ejected exhaust mass, and again we count dm negatively since m is the mass of the
rocket. From the above equation, we find

dv ¼ �v�
dm
m

ð1:3:9Þ
where we have defined the effective exhaust velocity

v� :¼ 1�eð Þceve þ 1�dð Þgec
Note that all terms in Eq. (1.3.9) are unprimed and are therefore terms measured in
the proper reference frame including dv (observe that in this equation, the effective
exhaust velocity is operationally defined as explicated in Section 1.1.2).

Now, in classical physics, the relation dv ¼ dv0 holds and hence the equation can
be readily integrated to yield the classical rocket equation Dv ¼ v� ln ðm0=mÞ (see
Eq. (2.2.2)). But dv ¼ dv0 is no longer valid for relativistic speeds. However, if we
identify dv ¼ ds, we can again directly integrate to obtain

Ds ¼ v� ln
m0

m
relativistic rocket equation ð1:3:10Þ

So the relativistic rocket equation is to the utmost extent complementary to the
classical rocket equation (2.2.2). In order to show that Eq. (1.3.10) is in accordance
with today�s more convenient form of the relativistic rocket equation, we apply
Eq. (1.3.5) and the algebraic equation for the free variable x,

arc tanh x ¼ ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ x
1�x

r

Figure 1.8 Energy scheme for a relativistic rocket with energy losses and expelled propulsionmass
and photons.
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to Eq. (1.3.10) and, with Eq. (1.3.6), we derive the common form of the relativistic
rocket equation

m0

m
¼ 1þDb

1�Db

� � 1
2b� ð1:3:11Þ

with b� ¼ v�=c.
From Eqs. (1.3.3) and (1.3.9), we can also derive the thrust F� of the relativistic

rocket in its rest frame

F� ¼ ma ¼ m
ds
dt

¼ �v�
dm
dt

¼ � _mv� relativistic rocket thrust ð1:3:12Þ

which is identical to the classical equation (1.1.3).

1.3.3
Exhaust Considerations

Because a portion of the converted energy propels the exhaust mass, the energy
obtained from the propellant dEm ¼ dge � dm � c2 has to equal the relativistic energy of
the propelled mass dme ¼ 1�eð Þdm, i.e.,

dEm ¼ dge � dm � c2 ¼ cedme � c2�dme � c2 ¼ ce�1ð Þ 1�eð Þdm � c2 ð1:3:13Þ
This implies that for a given d; g, the two terms ce (or be) and e are interrelated,
namely,

e ¼ ce�1
dgþ ce�1

or 1�e ¼ dg

dgþce�1
ð1:3:14Þ

or

be ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1�e

1�e 1�dgð Þ
� 	2s

ð1:3:15Þ

and

ce ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1�b2e

q ¼ 1�e 1�dgð Þ
1�e

ð1:3:16Þ

the other way around. We summarize by saying that internal energy considerations
determine the relativistic exhaust mass velocity.

If we insert these results into the effective exhaust velocity from Eq. (1.3.9) we
obtain

b� :¼ 1�eð Þcebe þ 1�dð Þge

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dge 2�2eþ dgeð Þp þ 1�dð Þge

effective exhaust velocity ð1:3:17Þ
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For a rocket that exhausts just mass, d ¼ 1, we find

b� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ge 2�2eþgeð Þ

p
@ d ¼ 1 ð1:3:18Þ

In case the rocket has 100% efficiency, g ¼ 1, we find the expression

b� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2e�e2

p
@ d; g ¼ 1

For a photon rocket, e ¼ 1 and d ¼ 0, we get

b� ¼ g ð1:3:19Þ

1.3.3.1 Matter–Antimatter Annihilation Drive
As an example, let us assume a matter–antimatter annihilation rocket (rather like
those in Figures 1.9 and 1.10). We assume that our rocket annihilatesH2 and anti-H2

( �H2) molecules stored as solid pellets in a storage tank below 14K, the freezing
temperature of hydrogen and hence also anti-hydrogen, typically at 1–2K to avoid
sublimation. In order to confine the neutral antimatter, either their diamagnetism
would hold them together in a strong external magnetic field or they would be
electrically charged and suspended in an array of electrostatic traps. Otherwise, we
neglect all the technical obstacles that come along with such storing devices. Upon
annihilation of an H and an �H atom, each having a total rest mass of 938.8MeV,
22.30% of them are converted into charged pions, 14.38% into neutral pions, and the
electron and positron into two c-rays. The charged pions can be deflected backward
by a magnetic field to provide propulsion force. Let us assume that this can be done
with 100% efficiency. The neutral pions are lost because after a 0.06 mm travel

Figure 1.9 Working scheme of a matter–antimatter annihilation drive.
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distance, they decay into 709.1MeV c-rays, which has to be considered as a major
hazard to the crew. As long as the c-rays cannot be directed backward as well (there
seems to be no practical way of doing that), thus adding to the thrust via photonic
propulsion, this drive is a purely mass-exhaust drive, d ¼ 1.

So, effectively, we have 418.8MeVof pion rest mass as propulsionmass, while the
rest is converted into energy, i.e., e ¼ 1�418:8= 2	 938:8ð Þ ¼ 0:7769. About
748.6MeV of the energy goes into the kinetic energy of the pions, eg ¼ 748:6=
2	 938:8ð Þ and therefore g ¼ 0:5132, and the rest is lost. From Eq. (1.3.18), we then
find with d ¼ 1 an ultimate effective exhaust velocity of

b� ¼ 0:5804 @ H� �H annihilation ð1:3:20Þ
For a given total rocket mass at a given time, this can be used to calculate the travel
speed at this instance from rocket equation (1.3.10) or (1.3.11).

1.3.4
External Efficiency

As for a classical rocket in Section 2.7, we want to derive the external rocket efficiency
gext of a relativistic rocket that was defined by

Figure 1.10 Artist view of a relativistic proton–antiproton annihilation drive rocket.
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gext :¼
rocket kinetic energy at burnout

generated thrust energy
¼:

Ekin

E�

From Eq. (1.3.13) plus the photon energy, we have

E� ¼ ce�1ð Þ 1�eð Þmpc2 þ 1�dð Þgempc2 ¼ ce�1ð Þ 1�eð Þþ 1�dð Þge½ �
�
mi

m
�1

�
mc2

¼ g ce�1ð Þ
dgþ ce�1

es=ve�1
� �

mc2 ¼ ge es=ve�1
� �

mc2

In the second line, we have applied Eq. (1.3.14) and the relativistic rocket equa-
tion (1.3.10). And trivially,

Ekin ¼ cmc2�mc2 ¼ c�1ð Þmc2

Employing the definition, we derive

gext ¼
c�1
ce�1

dgþ ce�1
g es=v��1ð Þ ¼

1
ge

c�1
es=v��1

relativistic external ef f iciency ð1:3:21Þ

For non-relativistic speeds, i.e., c! 1�v2=2c2, s! v, and for d ¼ 1, we recover the
classical external rocket efficiency (see Eq. (2.5.10))

gext ¼
v=v�ð Þ2
ev=v��1

Note that while the external efficiency in the relativistic regime depends on the
internal efficiency g, this does not hold for classical speeds.

1.3.5
Space–Time Transformations

It is an important and well-known feature of special relativity that observed values for
space and time intervals depend on the reference frame of the external observer. This
is what the word �relativity� actually refers to. With the concept of proper speed, it is
easy to derive the space–time transformation equations between the proper (abso-
lute) reference frame spacecraft and that of an external observer, which we now
denote ðs; tÞ and ðx0; v0; t0Þ, respectively. From Eqs. (1.3.1) and (1.3.5) and denoting
w :¼ s=c, the so-called rapidity, we find

c � dt0 ¼ cosh w � cd t
and because

dx0 ¼ v � dt0 ¼ c � tanh w � dt0 ¼ c � tanh w � coshw � dt ¼ sinh w � c � dt
we can write in shorthand vector notation

dx0

c � dt0
� 	

¼ sinh w
cosh w

� 	
� c � dt ð1:3:22Þ
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Note that because dx ¼ 0 for the rocket in the rest frame, we do not have a
transformation matrix as in the general case. In order to derive the space–time
transformations for any rocket–observer relation, we have to determine the rapidity
(proper speed) and then solve the twodifferential equations (1.3.22). Thiswill be done
now for the two most simple cases.

1.3.5.1 Cruising Rocket
For a cruising (non-accelerated) rocket, coshw ¼ cosh ðs=cÞ ¼ c ¼ const and
Eq. (1.3.22) can easily be integrated to give the well-known space–time transforma-
tion between inertial observers:

t0 ¼ 1
c
t ð1:3:23aÞ

x0 ¼ v
c
t ð1:3:23bÞ

v
c
¼ tanh

s

c
ð1:3:23cÞ

As an example: a rocket that travels 90% the speed of light as seen from an external
observer or s ¼ 1:47 � c of proper speed would cross our Milky Way with diameter
d ¼ 100 000 ly within t0 ¼ d=v ¼ 111 000 year or t ¼ 48 000 year in proper time.

1.3.5.2 Constant-Acceleration Rocket
If the acceleration a is constant, s ¼ cw ¼ at. By integrating Eq. (1.3.22), we find

at0

c
¼ sinh

at

c
¼ sinh

s

c
ð1:3:24aÞ

Also, with Eq. (1.3.24a) and cosh x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2 x

p
, we have

ax0

c2
¼ cosh

at

c
�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ at0

c

� �2
s

�1 ð1:3:24bÞ

Applying Eq. (1.3.24a) with tanh x ¼ sinh x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2 x

p
to Eq. (1.3.5) yields

v
c
¼ tanh

s

c
¼ at0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ at0ð Þ2
q ð1:3:24cÞ

From Eq. (1.3.24b), we find

x0 þ c2

a

� �2

� ct0ð Þ2 ¼ c2

a

� �2

This denotes that the space–time trajectory of a rocket with constant acceleration is a
hyperbola.

22j 1 Rocket Fundamentals



Let us reconsider the case of an ultimate manned H� �H annihilation rocket with
b� ¼ 0:5804, which we assume to cross the Milky Way (x0 f ¼ 100 000 ly) with a
comfortable acceleration of a ¼ 1g. According to Eq. (1.3.24b), this would take only
tf ¼ 11:9 year in proper time of an astronaut. His final proper speed would be
sf ¼ atf ¼ 12:2c and the rocket�smass ratio can be calculated fromEq. (1.3.10) to be
mi=mf ¼ 1:35	 109. If the final spacecraft mass is, say, 100 metric tons (Space
Shuttle), then the launch mass is mi ¼ 1:35	 1014 kg. Moreover, if we assume that
theH; �H fuel is stored in liquid form with density 70 kgm�3, the two tanks together
must have dimensions of 14	 14	 14 km3! Not to say anything about the engines
that would have to propel such a gigantic space ship at 1g.

Problems

Problem 1.1 Balloon Propulsion
Consider a balloon that is propelled by exhausting its air with density
r ¼ 1:29 g dm�3. The balloon has a volume of 2 dm3, the exit (throat) diameter is
At ¼ 0:5 cm2. Let us assume the balloon exhausts the gas with constant mass flow
rate within 2 s. Show that the momentum thrust Fe ¼ 0:026 N and the pressure
thrust Fp ¼ 0:013 N and hence the momentum thrust is roughly twice as big as the
pressure thrust.

Hint: Observe that the exhaust velocity at the throat does not reach the speed of
sound. Make use of the Bernoulli�s equation pþ 1

2rv
2 ¼ const.

Problem 1.2 Nozzle Exit Area of an SSME
The thrust of a Space Shuttlemain engine (SSME) is at 100%power level, 1.817	 106

N at sea level, and 2.278	 106 N in vacuum. By using only this information, derive
that the nozzle exit area is Ae ¼ 4:55m2.
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