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Introduction to the Distribution Theory

1.1
Short History

The theory of distributions, or of generalized functions, constitutes a chapter of
functional analysis that arose from the need to substantiate, in terms of mathemat-
ical concepts, formulae and rules of calculation used in physics, quantum mechan-
ics and operational calculus that could not be justified by classical analysis. Thus,
for example, in 1926 the English physicist P.A.M. Dirac [1] introduced in quantum
mechanics the symbol J (x), called the Dirac delta function, by the formulae

o0
5(x):{0’ *70 /6(x)dx:1. (L.1)
oo, x=0
—0o0
By this symbol, Dirac mathematically described a material point of mass density
equal to the unit, placed at the origin of the coordinate axis.

We notice immediately that 0 (x), called the impulse function, is a function not
in the sense of mathematical analysis, as being zero everywhere except the origin,
but that its integral is null and not equal to unity.

Also, the relations xd(x) = 0,dH(x)/dx = d(x) do not make sense in classical
mathematical analysis, where

0, x<0O

=00 w=0
is the Heaviside function, introduced in 1898 by the English engineer Oliver Heav-
iside.

The created formalism regarding the use of the function 6 and others, although
it was in contradiction with the concepts of mathematical analysis, allowed for the
study of discontinuous phenomena and led to correct results from a physical point
of view.

All these elements constituted the source of the theory of distributions or of the
generalized functions, a theory designed to justify the formalism of calculation
used in various fields of physics, mechanics and related techniques.
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In 1936, S.L. Sobolev introduced distributions (generalized functions) in an ex-
plicit form, in connection with the study of the Cauchy problem for partial differ-
ential equations of hyperbolic type.

The next major event took place in 1950-1951, when L. Schwartz published a
treatise in two volumes entitled “Théory des distributions” [2]. This book provided a
unified and systematic presentation of the theory of distributions, including all pre-
vious approaches, thus justifying mathematically the calculation formalisms used
in physics, mechanics and other fields.

Schwartz’s monograph, which was based on linear functionals and on the theory
of locally convex topological vector spaces, motivated further development of many
chapters of mathematics: the theory of differential equations, operational calculus
(Fourier and Laplace transforms), the theory of Fourier series and others.

Properties in the sense of distributions, such as the existence of the derivative
of any order of a distribution and in particular of the continuous functions, the
convergence of Fourier series and the possibility of term by term derivation of the
convergent series of distributions, led to important technical applications of the
theory of distributions, thus removing some restrictions of classical analysis.

The distribution theory had a significant further development as a result of
the works developed by J. Mikusinski and R. Sikorski [3], M.I. Guelfand and
G.E. Chilov [4, 5], L. Hérmander [6, 7], A. H. Zemanian [8], and so on.

Unlike the linear and continuous functionals method used by Schwartz to define
distributions, J. Mikusinski and R. Sikorski introduced the concept of distribution
by means of fundamental sequences of continuous functions.

This method corresponds to the spirit of classical analysis and thus it appears
clearly that the concept of distribution is a generalization of the notion of function,
which justifies the term generalized function, mainly used by the Russian school.

Other mathematicians, such as H. Konig, J. Korevaar, Sebastiano e Silva, and
I. Halperin have defined the notion of distribution by various means (axiomatic,
derivatives method, and so on).

Today the notion of distribution is generalized to the concept of a hyperfunc-
tion, introduced by M. Sato, [9, 10], in 1958. The hyperdistributions theory con-
tains as special cases the extensions of the notion of distribution approached by
C. Roumieu, H. Komatsu, J.F. Colombeu and others.

1.2
Fundamental Concepts and Formulae

For the purpose of distribution theory and its applications in various fields, we
consider some function spaces endowed with a convergence structure, called fun-
damental spaces or spaces of test functions.



1.2 Fundamental Concepts and Formulae

1.2.1
Normed Vector Spaces: Metric Spaces

We denote by I' either the body R of real numbers or the body C of com-
plex numbers and by R4, R, Ny the sets Ry = [0,00),RT = (0,00), Ny =
0,1,2,...,n,...}.

Let E, F be sets of abstract objects. We denote by E x F the direct product (Carte-
sian) of those two sets; where the symbol “x” represents the direct or Cartesian
product.

Definition 1.1 The set E is called a vector space with respect to I", and is denoted by
(E, I'), if the following two operations are defined: the sum, a mapping (x,y) —
x + y from E x F into E, and the product with scalars from I', the mapping
(4, %) = Ax from I" x E into E, having the following properties:

Vx,y€ E, x+y=y+x;

Vx,y,z€ E, (x+yp)+z=x+(y+2);

J0€ E, VxeE, x-+0=x,(0isthenull element);
VxeE, Ix=-x€E, x+(—x)=0;

VxeE, 1-x=x;:

VYiuel , VxeE, Aux)=(Au)x

Viuel, VxeE, (A+u)x=»Ax+ux;
Viel, Vx,yeE, Ax+y)=~ix+41y.

NN

The vector space (E, I') is real if I’ = R and it is complex if I' = C. The elements
of (E, I') are called points or vectors.

Let X be an upper bounded set of real numbers, hence there is M € R such that
for all x € X we have x < M. Then there exists a unique number M* = sup X,
which is called the lowest upper bound of X, such that

1. Vxe X, x<M*;
2. YaeR, a<M*, 3Ixe Xsuchthatx € (a, M™].

Similarly, if Yis a lower bounded set of real numbers, that is, if there is m € R such
that for all x € Y we have x > m, then there exists a unique number m* = inf X,

which is called the greatest lower bound of Y, such that

1. VxeY, x>m"*;
2. VbeR, b>m*, 3Ix e Ysuchthatx e [m™,b).

Example 1.1 The vector spaces R", C", n > 2 Let us consider the n-dimensional

space R" = R x--- x R (n times). Two elements x,y € R", x = (x1,..., %),y =
(Y1,---,yn), are said to be equal, x = y,if x; = y;,i = 1, n.
Denote x+y = (x1+y1, X2+ V2, .-, Xu+Vn), X = (ax1, axy,...,0%,), 0 €R,

then R" is a real vector space, also called n-dimensional real arithmetic space.
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The n-dimensional complex space C" may be defined in a similar manner. The
elements of this space are ordered systems of n complex numbers. The sum and
product operations performed on complex numbers are defined similarly with
those in R™.

Definition 1.2 Let (X, I') be a real or complex vector space. A norm on (X, ') is a
function || - || : X — [0, co) satisfying the following three axioms:

1. Vx € X, x| >0forx #0,]0]=0;
2. Yiel, VxeX, |ix| =A%
3. Vx,ye X, lx+yll = lxl + vl

)

The vector space (X, I') endowed with the norm || - || will be called a normed vector
space and will be denoted as ( 1.
The following properties result from the definition of the norm:

x| >0, VxeX,

Vxi,% € X,

HerF = 2l < [l

Va,e ', Vxie€ X, |layxi+- -+ apx,|| < lag|lxi)l + -+ |aulllxall -

Definition 1.3 Let (X, I') be a vector space. We call an inner product on (X, I') a
mapping (-,-) : E — I that satisfies the following properties:

Conjugate symmetry: Vx € X, (x,y) =
Homogeneity: Va € I',Vx,y € E, (ax, a(y, x);
Additivity: Vx,y,z € X, (x + y,z) = (x,z) + (y, 2);
Positive-definiteness: Vx € X, (x,x) > 0and (x,x) =0 < x = 0.

Y, %)
):

bl NS

An inner product space (X, (-, -)) is a space containing a vector space (X, I') and an
inner product (-, -).
Conjugate symmetry and linearity in the first variable gives
(x,ay) = {ay,x) =aly,x) = a{x,y),
(x,y+2)=(y+2zx) =(yx +(z,%)=(xy) +(x 2),

so an inner product is a sesquilinear form. Conjugate symmetry is also called Her-
mitian symmetry.

In the case of I' = R, conjugate-symmetric reduces to symmetric, and sesquilin-
ear reduces to bilinear. Thus, an inner product on a real vector space is a positive-
definite symmetric bilinear form.

Proposition 1.1 In any inner product space (X, (-, -)) the Cauchy-Schwarz inequal-
ity holds:

= vixx)-Viyy), VxyeX, (1.2)

with equality if and only if x and y are linearly dependent.
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This is also known in the Russian mathematical literature as the Cauchy—Bunya-
kowski-Schwarz inequality.

Lemma 1.1 The inner product is antilinear in the second variable, thatis (x, y + z)
=(x,y)+ (x,z)forall x,y,z € I and (x, ay) = a(x, y).

Note that the convention in physics is often different. There, the second variable is
linear, whereas the first variable is antilinear.

Definition 1.4 Let X be a nonempty set. We shall call metric (distance) on X any
function d : X x X — R, which satisfies the properties:

Di d(x,x)=0,¥x € Xid(x,y) > 0,Vx,y € X, x #y,
D, Vx,y € X,d(x,y) = d(y, %),
D; Vx,y,z € X,d(x,2) < d(x,y) + d(y, 2).

The real number d(x, y) > 0 represents the distance between x and y, and the
ordered pair (X, d) a metric space (whose elements are called points).

Let (X, d) be a metric space. We shall call an open ball in X a ball of radius r > 0
centered at the point %y € X, usually denoted B, (x,) or B(xo; r), the set

Bi(x%0) = {x € X | d(x, %) <} . (1.3)
The closed ball, which will be denoted by B, (x) is defined by
B, (%) = {x € X | d(x, x0) <1} . (1.4)

Note, in particular, that a ball (open or closed) always includes x itself, since the
definition requires r > 0. We shall call a sphere of radius r > 0 centered at the
point xy € X, usually denoted S,(xy), the set

Sr(x0) = {x € X | d(x,x0) =1} . (1.5)
Proposition 1.2 Any normed vector space is a metric space by defining the distance
by the formula

dix,y)=lx—yl, Vx,yeX. (1.6)

Proposition 1.3 Any inner product space (X, (-,-)) is a normed vector space if we
define the norm by

x| = V({x,x), VxeX. (1.7)

An inner product space is also called a pre-Hilbert space, since its completion with
respect to the metric induced by its inner product, is a Hilbert space.
The real vector space R" endowed with the inner product

(x,y) = inyl-,x =(%1,..-, %), y=(Y1,-..,yn) €R" (1.8)
i=1

is called the n-dimensional Euclidean real space.
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The norm in R" is called the Euclidean norm and is defined as

n 1/2
]l = (x, %) = (Z x?) : (1.9)

i=1

whereas the metric associated to this norm is given by

" 1/2
d(x,y) = lx -yl = (Z(xi - Yi)z) : (1.10)

i=1

1.2.2
Spaces of Test Functions

Let x = (x1,...,%,) € R" be a generic point in the n-dimensional Euclidean real
spaceandlet a = (ay,..., a,) € N} be a multiindex of order n; we denote by |a| =
ay+ -+ a, the length of the multiindex. If a = (as,..., an), = (B1,....0n) €
NJ, then we use the following notations:

a<pifa; <pii=1n; (1.11)
|
(ﬂ) = % ,  where a! = a;lay!...a,!, (1.12)
a al(f — a)!
x4 =x1%"x% . ox, Y (1.13)

We denote by D“ f the partial derivative of order |a| = a3 + -+ + a, of a
function f : Q CR" - T,

glal d
D% f = , D*=D"D%.. D%, D, =—, i=1,n.
f B,y ..x,f‘”f 12 " J 0% J

If |a| = 0,then a; = 0,i = 1, n, thatis, D° f = f.
If the function fhas continuous partial derivatives up to the order |a + ] inclu-
sively, then

D“*F f = DD’ f) = DF(D” f).

We shall denote by C™(£) the set of functions f : & C R" — I' with con-
tinuous derivatives of order m, that is, D f is continuous on £ for every a with
|a] < m. When m = 0 we have the set C°(2) of continuous functions on £;
C°°(L) is the set of functions on Q with continuous derivatives of all orders.
Clearly, we have C>°(Q2) C C™(Q) C C%(Q).

These sets are vector spaces over ©2 with respect to the usual definition of addi-
tion of functions and multiplication by scalars from 2. The null element of these
spaces is the identically zero function on € and it will be denoted by 0.
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Definition 1.5 We call the support of the function f : R" — I the set

supp(f) = {x € R, f(x) # 0}, (1.14)

hence the closure of the set of points where the function is not zero.

If %y € supp(f), then VB, (r), 3x € R" thus that f(x) # 0. In particular, if
supp(f) is bounded, then, since supp( f) is a closed set, it is also compact.

Proposition 1.4 If f,g: R" — I, then:

supp(f + g) C supp(f) U supp(g) , (1.15)
supp(f - g) C supp(f) Nsupp(g) , (1.16)
supp(4 f) =supp(f), A #0. (1.17)

Proof: If xy € supp(f + g), then V B,(x9) C R",3x € B,(xo) such that ( f + g)(x)
# 0, from which results f(x) # 0 or g(x) # 0. Consequently, either x, € supp(f)
or xy € supp(g), hence x, € supp(f) U supp(g). Regarding relation (1.16), we
notice that xy € supp(f - g) implies ( fg)(x) # 0, x € B,(x); hence f(x) # 0and

g(x) # 0. Consequently, xy € supp(f)and xo € supp(g), hence supp(f) Nsupp(g).
Because relation (1.17) is obvious, the proof is complete. O

Proposition 1.5 If the functions f,g € C?(2), 2 C R", then fge CP(£2)and we
have

al
D(f-g) = ZWDﬂﬂDVg, D = D' D$?...D%" (1.18)
By T
where a = (a1,...,a,) € N}, |a| < p.

The proof of this formula is accomplished through induction.

Definition 1.6 A function f : A C R"” — R is said to be uniformly continuous
on A if for any ¢ > 0 there is 0 > 0 such that for any x,y € A satisfying the
condition ||x — y|| < d(¢) the inequality | f(x) — f(y)| < € holds.

We mention that a uniformly continuous functionon A C R" is continuous at each
point of the set A. It follows that the continuity is a local (more precisely, pointwise)
property of a function f, while the uniform continuity is a global property of f. In
the study of the properties of spaces of test functions, the notion of uniformly
convergent sequence plays an important role.

Definition 1.7 We consider the sequence of functions ( fu)n>1, fn : A C R" —
R and the function f : A C R" — R. We say that the sequence of functions
(fu)n=1,x € A is uniformly convergent towards f,x € A, and we write f, 5
fix € AC R", if for every ¢ > 0 there exists a natural number N(¢) such that for
all x € Aandall n > N(¢) the inequality | f,(x) — f(x)| < € holds.
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In the case of uniform convergence, the natural number N(¢) depends only on
€ > 0, being the same for all x € A, while in the case of pointwise convergence the
natural number N depends on ¢ and x € A. Therefore the uniform convergence

. . . . s .
implies pointwise convergence f, — f. The converse is not always true.

Definition 1.8 We say that the function f : A C R" — C is absolutely integrable
on A if the integral [, | f(x)|dx is finite, hence [, | f(x)|dx < oo. The integral can
be considered either in the sense of Riemann, or in the sense of Lebesgue.

If the integral is considered in the sense of Lebesgue, then the existence of the
integral [, | f(x)|dx implies the existence of the integral [, f(x)dx.

The set of the Lebesgue integrable functions on A will be denoted L!(A).

If f is absolutely integrable on any bounded domain A C R", then we say that f
is a locally integrable function. We shall use Lj (A) to denote the space of locally
integrable functions on A.

The set A C R" is said to be negligible or of null Lebesgue measure if for any € > 0
there is a sequence (B;)i>1, B C R", such that U2 B; D A and the summed
volume of the open ball B; is less than e.

The function f : A C R" — I is said to be null a.e. (almost everywhere) on the
set Aif the set {x € A, f(x) # 0} is of null Lebesgue measure.

Thus, the functions f,g: A C R" — I are a.e. equal (almost everywhere equal),
denoted by f = ga.e, x € A, iftheset {x € A, f(x) # g(x)} is of null Lebesgue
measure.

The function f : A C R" — [ is p-integrableon A, 1 < p < oo, if | f|? €
L'(A). The set of p-integrable functions on A is denoted by L (A). In this set we
can introduce the equivalence relation f ~ gif f(x) = g(x) a.e. The set of all the
equivalence classes is denoted by L? (A).

The space LP(A) is a vector space over I'. The spaces L?(A) and L9(A) for which
we have p~! 4+ g~! = 1 are called conjugate. For these spaces, we have Holder’s
inequality

1/p 1/q
/ If(x)g(x)ldxf(/ If(x)lpdx) (/ |g<x>|‘de) . (119
A A A

In particular, for p = 2, we have g = 2, that is, [?(A) is self-conjugated and
Schwarz’s inequality holds

12 1/2
| f(x)g(x)ldx < ( |f(x)|2dx) : ( |g(x)|2dx) . (1.20)
/ / /

The norm of the space L?(A) is defined as

1/p
I fll, = ( If(x)lpdx) : (1.21)
/

We notice that the space L?(A) is normed.
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1.2.2.1 The Space D™ (£2)

Definition 1.9 Let 2 C R" be a given compact set and consider the functions
¢ : R" — I'. The set of functions D" (2) = {p|g € C™(R"),supp(p) C 2} is
called the space of test functions D™ ().

We notice that ¢ € C™(R") with supp(p) C £ implies supp(D*¢p(x)) C supp(¢) C
Q,]a| < m. Consequently, all functions ¢ € C™(£) together with all their deriva-
tives up to order m inclusive are null outside the compact £2. We notice that D™ (£2)
is a vector space with respect to I". The null element of this space is the identically
null function, denoted by 0, Vx € R", ¢(x) = 0.

Definition 1.10 We say that the sequence of functions (¢;)i=1 C D™(£2) con-

DM@
verges towards ¢ € D™(£2), and we write ¢; 28 ¢ if the sequence of func-
tions (D”¢;(x))i>1 converges uniformly towards D ¢(x) in 2, hence D* ¢;(x) 5
D%(x),0<|a| <m,Vx € Q.

We note that the space D™ () becomes a normed vector space if we define the
norm by

lellon = sup  [D%(x)| = sup sup |D(x)|,a € Ng. (1.22)

lal<m, x€Q 0<|a|l<mx€Q
In particular, for m = 0, the space D°(£2) will be denoted by C2 (). This is the
space of complex (real) functions of class C°(R"), the supports of which are con-
tained in the compact set £ C R". The test functions space C2(£) is a normed
vector space with the norm

lellco = sup le(x)] . (1.23)
x€Q

The sequence (¢;)i=1 C C2(£2) converges towards ¢ € C2(2) if lim;sup,cq
lp;i —@| = 0, that s, if (¢;);>1 converges uniformly towards ¢ in Q.
An example of functions from the space D™ (£2) is the function

= m41 Xi — @i _ -
sin ——— @, x €[a1,b1]x X [ay, by] = X[a;, bi]
o(x) = E bi—ai l=l_[1

0, x ¢ [a1,b1] X -+ X [ay, by

where
QD 1_[ X[ai,bi] .
i=1
It is immediately verified that ¢ € C™(R") and supp(¢) = []—, x[a:, bi].
Also the function ¢ : R — R, where

o= (x —a)*(b—x)", xe[a,b]y wB>m,

0, x ¢ [a, b]



10

1 Introduction to the Distribution Theory

is a function from D™ ([c, d)), [c, 4] D [a, b], because ¢ € C™([c, d]) and supp(¢) =
[a, b].
Let us consider the sequence of functions (¢,),>1 C D™ (L), defined by

Lsipm1 X8, , x€[-a,a],
Pp(x) =149 n 2a
0, x ¢[—a,a].
We have supp ¢, (x) = [—a, a] = £ for any n. This sequence, with its derivatives

up to order m inclusive, converges uniformly towards zero in €. So we can write

DEQ) .
@Yu(x) ——> 0in Q.
Even if the sequence of functions

1
—sinm+l%x/nn , ¥ e [—a,a],
on(x) =1 " a ;L
0, — ¢ [—a,a],
n

converges uniformly towards zero, together with all their derivatives up to order m
inclusive, it is not convergent towards zero in the space H™(L2). This is because
supplga(x)] = [—na, nal, thus the supports of the functions ¢, (x) are not bounded
when n — oo, hence ¢, (x), x € R, n € N, are not test functions from D™ (R).

1.2.2.2 The Space D(£2)

Definition 1.11 Let 2 C R" be a given compact set and consider the functions
¢ : R" — I'. The set of functions

D(Q) = {plp € C(R"), supp(¢p) C 2}
is called the space of test functions D (£2).
The space D(£2) is a vector space over I like D™(£).

Definition 1.12 We say that the sequence (¢;);>1 C D(£2) converges towards ¢ €

D@
D(£), and we write ¢; 2@ @, if the sequence of derivative (D“¢;(x));>1 con-
verges uniformly towards D” ¢(x) in 2, Ya € N§, hence D* ¢;(x) 5 D%p(x),
Vx e Q,Va e N{.

We remark that the test space £(£2) is not a normed vector space.

Example 1.2 If Q = {x|x € R",| x| < 2a}, then the function¢ : R* — R, having
the expression

a2
exp (—72 2) , lxll<a

P(x) = a” — ||l , a>0, (1.24)
0, x| = a
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is an element of the space D (), since ¢ € C°(R") and supp(¢) = {x|x € R",
=l <a} C Q.

The sets £2 and supp(g) are compact sets of R", representing closed balls with
centers at the origin and radii 24 and a, respectively.

Unlike the function ¢, the function ¥ : R — R,

=1 = (125)
X) = .
v exp(—x%), x>0,

does not belong to the space D(£2).
This function is infinitely differentiable, so 1 € C°°(R"), but the support is not
a compact set because supp(y) = (0, 00).

1.2.2.3 The Space £
Definition 1.13 The functions set

E={plp:R"—> T, e C®°MR"}. (1.26)
having arbitrary support is called the space of test functions £ = E(R").

With respect to the usual sum and scalar product operation, the space £ is a vector
space over ['.

Thus, the functions ¢(x) = 1, ¢(x) = x
ERM.

As regards the convergence in the space € this is given:

2, ¢(x) = exp(x2), x € R are elements of

Definition 1.14 The sequence (¢;);>1 C £ is said to converge towards ¢ € &, and
. £ . . .
we write ¢; — ¢, if the sequence of functions (D%¢;);>1 C & converges uniformly

towards D* ¢(x) € £ on any compact of R", Va € N§, thatis, D* ¢; = D%p.

The function (1.25) belongs to the space £ since ¥ € C°°(R"), its supports being
the unbounded set (0, o).

1.2.2.4 The Space D (the Schwartz Space)
Definition 1.15 The space D = D(R") consists of the set of functions

D ={plp:R" = I'p € C°(R"),supp(p) = 2 = compact} . (1.27)
Since V¢ € D, it belongs to a certain D(£2), it follows that O is the reunion of

spaces D () over the compacts 2 C R". Consequently, we can write the following
relations:

D=JD@Q),DQ)cDCE.
Q
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With respect to the usual sum and scalar product operations, O is a vector space
on I, its null element being the identically zero function. The support of this func-
tion is the empty set.

The convergence in the space D is defined as:

Definition 1.16 The sequence of functions (¢;);>1 C D converges towards ¢ € D,

. D . . .. .
and we write ¢; — ¢, if the following conditions are satisfied:

1. Vi e N, there is a compact 2 C R" such that supp(¢;), supp(¢) C £;

2. Va € N}/, D%yp; converges uniformly towards D* ¢ on £, thatis, D* ¢; 5 D%
on 2.

Thus, the convergence in the space D is reduced to the convergence in the space
D(Q).

The vector space D(R") endowed with the convergence structure defined above
is called the space of test functions or the Schwartz space. Every element of the
space D will be called a test function.

Example 1.3 The function ¢, : R" — R, a > 0, defined by

az
ew (- Ixll<a,
Palx) = PRy P (1.28)
0, ¥l >a,

is an element of D(R"), since ¢, € C°(R") and supp(¢s) = {x|x € R", ||x|| <
a} = compact.
Example 1.4 Let ¢ : R — R be a function defined by

exp (_|a7b|) , x € (a,b),
o(x) = (x—a)(b—x)
0, x ¢ (a,b).

(1.29)

It is noted that ¢ € C°°(R) has compact support [a, b]. At the points a and b, the
function ¢ and with its derivatives of any order are zero. Consequently, ¢ € D(R).
The graph of the function is shown in Figure 1.1.

AY

| —

\ &S

Figure 1.1
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Also, the function ¢ : R" — R, where

1_[ exp (—%) , X €(ai, b)),

QX100 %) = 3 1y (xi — ai)(b; — x;)
0, xi & (ai, bi),

(1.30)

is a function of the space D(R"), with the compact support 2,, = [a1, b1]X[a2, ba]x
oo X [y, by).

Example 1.5 Let (¢n)n>1 C O(R) be a sequence of functions

1 a?
1 —exp|—— > Ixl<a,a>0,
Pn(¥) = —@a(x) =1 1 a* —x (1.31)
0, |x|>a,a>0.

DR
We have ¢, el 0, that is, the sequence (¢,),>1 C D(R) converges towards
¢ = 0 € D(R) in the space D(R), because Vn € N,supp(¢,) C supp(¢.) =
compact and (d*/dx )@, (x) 50,Va € Ny, |x| < a.

Definition 1.17 We say that the function v : R" — I is a multiplier for the space
D if Vo € D the mapping ¢ — ¢ is continuous from D in D.

Hence, if 9 is a multiplier for space D, then ¢ € D,Vy € D and ¢; L, [0)
implies w(pigzp(p.
We can easily check that any function y € C°°(R") is a multiplier for space D.
Indeed, since yp € C°°(R") and ¢ € C®(R"), ¢ € D(R"), we apply for-
mula (1.18) and have

|

D(pg)e Y. %D'BlpDV@,D“ = DY ...D%, a = (ar,..., an) € N ,
pr=a PV

(1.32)

from which it results that ¢ € C*°(R").

On the other hand, we have supp(y¢) C supp(y) N supp(p) C supp(¢) = 2 =
compact.

D D
Next, we show that ¢; — ¢ implies y¢; — 1 ¢. From the expression of the
derivative D* (1 ¢) it results

ID*y (i — )| < Z A,|D"(p;i —¢)l, A, > 0constants .
IriI=llell

D D D
Since D%(p; — ¢) — 0, we obtain [D*¥ (¢; — ¢)| —> 0, hence Yo, — Y.

Theorem 1.1  The partition of unity Ifp € D and U;,i =1,2,..., p, are open and
bounded sets, which form a finite covering of the support function ¢, then there
exist the functions e; € D,i =1,2,..., p, with the properties:

13
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1. ei(x) €[0,1],supp(e;) C Uj;
p

2. ) ei(x) =1,x € supp(p);

i=1

We note that the partition theorem is frequently used to demonstrate the local prop-
erties of distributions, as well as the operations with them.

1.2.2.5 The Space S (the Space Functions which Decrease Rapidly)

Definition 1.18 We call the test function space S = S(R") the set of functions
¢ : R" — I, infinitely differentiable, which for ||x|| — oo approach zero together
with all their derivatives of any order, faster than any power of || x|~

If o € S, then Vk € N and Vf € N we have
lim |x|*Dfyp =0.

||x|| =00

This means that V¢ € S, we have ¢ € C®°(R") and Va,f € N§, lim);j—oo
|x*DPg| = 0, thatis, |x*DP¢| < C, 3, where C, 4 are constants.

Example 1.6 An example of a functionin Sis ¢(x) = exp(—a||x||2), a>0xeR"
On the other hand, the function ¢(x) = exp(—x), x € R, does not belong to the
space S(R), since lim|j,||——oo |%*@"(x)| = limy——oo |x|“ exp(—x) = 00, Va €
N, although lim |- 4 0o |x %@ (x)| = limy— 4 0o |¥|* exp(—x) = 0, Va € Np.

Also, the functions ¢;(x) = exp(x), p2(x) = exp(—|x]), ¥ € R do not belong to
the space S(R) because the function ¢; (x) does not tend to zero when x — oo, and
the function ¢, (x) is not differentiable at the origin.

Obviously, the space S is a vector space over I, having as null element ¢ = 0,Vx €
R". Between the spaces D, S, £ there exist the relations D C S C €.

Definition 1.19 Let ¢ € S and consider the sequence (¢;)i>=1 C S. We say that the

. . S .
sequence of functions (¢;);>1 converges towards ¢ and write ¢; — ¢ if
Ya,B € NI, xPD%; 5 xPD%, xeR". (1.33)

Consequently, if ¢; 5 ¢, then Ya,f € N} on any compact from R" we have
xPD%p; = xPD%p.
Comparing the convergence of the spaces D and S, D C S, we can state:

Proposition 1.6 The convergence in space P is stronger than the convergence in
space S.

D D@
Indeed, if ; — ¢, then there is D(2) C D so that ¢; 2 @, hence x#D%g;

. . s
converges uniformly towards x”D%¢ on any compact from R", that is, ¢; — ¢.
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Proposition 1.7 The space D is dense in S.

This means that V¢ € S there is (¢;)i>1 C D such that ¢; 5 ®.

Also, we can prove that the space D is dense in €.

Regarding the multipliers of the space S, we note that not every infinitely differ-
entiable function is a multiplier.

Thus, the function a(x) = exp(]|x|*) belongs to the class C°(R"), but it is not
a multiplier of the space S, because considering ¢(x) = exp(—| x|°) € S, we then
have a(x)p(x) =1¢ S.

We note Oy, the functions of class C°°(R") such that the function and all its
derivatives do not increase at infinity faster than a polynomial does, hence if y €
Oy, then we have

Va € Ny, [D*y| < cq(l + [x[)™, (1.34)

where ¢, > 0, m, > 0 are constants.

It follows that Oy, is the space of multipliers for S, because if y € Oy and
Vo € S, then ¢ € S and ¢; 5 @ involve Y g; 3 Y.

Thus, the functions f(x) = cos x, f2(x) = sin x, P(x) (polynomialin x), x € R,
are multipliers for the space S(R).

Consequently, if ¢ € S then Va, B € N/, x’D%p € S is bounded and integrable
onR", hence S C LP,p > 1.

The spaces of functions with convergence D™ (), D(R),D,E and S will be
called test function spaces, and the functions of these spaces, test functions.

Let @ be a test function space, so @ € {D"(2),D(L),D,E,S}.

We note that the function h(x) = e*, x € R is not a multiplier of the space S(R),
because it increases to infinity faster than a polynomial.

123
Spaces of Distributions

The concept by which one introduces the notion of distribution is the linear func-
tional one. This method, used by Schwartz, has been proved useful, with wide
applications in various fields of mathematics, mechanics, physics and technology.

Let (E, I'), (Y, I') be two vector spaces over the same scalar body I" andlet X C E
be a subspace of (E, I'). We shall call the mapping T : X — Y operator defined
on X with values in Y. The value of the operator T at the point x € X will be
denoted by (T, x) = T(x) =y € Y.

Definition 1.20 The operator T : X — Y is called linear if and only if

T(a1x1 + (12962) = alT(xl) + azT(Xz),Val, a) € I",Vxl,xz e X. (135)

Thus, if we denote E = C"(2)and Y = C°), 2 C R, then the application
T : E — Y defined by

(T, f)=aoD" f+aD" ' f+---+a,1D f+a,f, (1.36)
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where f(x) € E,D¥ = d¥/dx¥, ay(x) € C°(R2),k = 0,1,2,...,nis a linear opera-
tor on E.

The operator (1.36) expressed by means of derivatives D/ is called linear differ-
ential operator with variable coefficients or polynomial differential operator and we
also note P(D).

The operator T : C°a, b] — C[a, b] defined by

(T, f) = / f)dt, xefla,b], (1.37)

is an integral operator. It is shown that it is an integral operator.
A particular class of operators is formed by functionals. Thus, if the domain Yin
which the linear operator T takes values is I', Y = I', then the operator

T:XCE—T (1.38)

will be called functional.

The functional T will be called real or complex as its value (T, x) at the point
x € X is a real or complex number.

We say that the functional (1.38) is linear if it satisfies the condition of linearity
of an operator (1.35).

Definition 1.21 A continuous linear functional defined on a space of test functions
@ € {D™(RQ),D(R2),D,E&,S} is called distribution.

This definition involves the fulfillment of the following conditions:

1. To any function ¢ € @ we associate according to some rule f, a complex num-
ber (fi9) € I

2. Y, A2 € T.¥p1, 01 € D, (fiA191 + daga) = Ai(fi01) + 2a( f 02

3. If(gi)iz=1€ ©,¢p € ® and ¢; 2, @, then lim; ( f, ¢;) = (f, ¢)-

The first condition expresses the fact that it is a functional, the second condition
corresponds to the linearity of the functional, whereas the third condition expresses
its continuity.
The set of distributions defined on @ is denoted by @’ and can be organized as a
vector space over the field of scalars I".

For this purpose, we define the sum of two distributions and the product of a
distribution with a scalar as follows:

Vi, ged', Voe®, (f+g9)=(fo)+(g9), (1.39)
Yael ,YVoe®, VYfed®  (afg)=alfe). (1.40)

It can be verified immediately that the functional a f + (g is linear and contin-
uous, hence it is a distribution from @’.
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Definition 1.22 Let f € @’ and consider the sequence (f;)i=1 C @'. We say
that the sequence ( f;);>1 converges towards the distribution f and we shall write
lim; fi = fifand onlyif Vg € @ we have lim;( fi,¢) = (f, ¢).

This convergence is called weak convergence.

The vector space of distributions @’ endowed with the structure of weak conver-
gence is called distributions space and will be noted by @’.

It can be shown that the space @’ is a complete space with respect to the weak
convergence introduced.

If the sequence of distributions ( fi);=1 C @’ is such that, for any ¢ € @ the
numerical sequence ( f;, ) has a limit, then there is a single distribution f € @’
for which we have lim; ( fi, ¢) = (f, ¢).

The linearity and continuity properties of a distribution allow us to state:

Proposition 1.8 Let f € @’(R") be the distribution and ¢,(x) € @ (R") the
test function, depending on the parameter a € I C R. If dp,(x)/0a exists and

¢4 (x)/da € D, and (@atn(x) — @a(x))/ h ih_)(,(a)/(aa)%(x), Va € I C R, then
the following relation occurs

%(f(x),wa(x)) = (f(x), a%(x)) , aclCR. (1.41)

da
As an application of this proposition, we have:

Proposition 1.9 Let ¢ € @ = D(R") and the distribution f € &’ = D'(R").
Then, we have

i (s (2 2)) = (- S 5k (3) a0,

i=1

(1.42)

Let f € @’ be the distribution and the function ¢ € C(R"), multiplier of the
test function space @. Then the product ¢ f is defined by the formula

(Wfhe)=(fve), Yoecd. (1.43)

Obviously, (y f) € @’ is a distribution, because 1 being the multiplier for @ we
have ¢ € .

Various spaces of distributions are obtained by customizing the test function
space @. Thus, the distributions defined on D are called Schwartz distributions
and we note D’ = D’'(R").

If @ = D™ then the distribution D'™ are called distributions of finite order
< m, and the distributions defined on D° = C(R") are called measures.

Also, the distributions defined on the test functions space S = S(R") are called
tempered distributions.

Because £ C S and the convergence in the space D is stronger than the con-
vergence in the space S, then between the spaces of distributions &’ and D’ the
relation 8" C O’ occurs.
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Because S C £ and the convergence of a sequence from S implies the conver-
gence in the space &, it follows that between the spaces £’ and S’ there exists the
relation &’ C §’.

Consequently, any distribution from &’ is a distribution with compact support
and at the same time it is a tempered distribution.

Thus, the dependence of the spaces of test functions D,E,Sis D C S C € and
between the corresponding spaces of distributions occur the inclusions & C &’
co.

Let ¢ € @ be a complex-valued function test, hence ¢(x) € C, f € @’ represent-
ing a complex-valued distribution, that s, ( f, ¢) € C. Then, the product of, complex
distribution f and, complex function a : R” — C is defined by the relation

(afo)=1a(f o) = (fag), (1.44)

with the assumption that @p € @, where @ represents the complex conjugate of
the function a.

We note that to the complex-valued distribution f can be associated a complex
conjugate distribution f by the relation

(fr0)=(f9). (1.45)

As well, to each locally integrable complex-valued function f € L} (R") corre-
sponds a distribution from O, Ty = f € D’, defined by the formula
(fo)= [ Toots, (146)
Rnr

where ¢ € D represents a complex-valued function test.

An important distribution in mathematical physics is the Dirac delta distribution
04 = O(x — a),x,a € R", which can be defined on any test function space by the
relation

(Oa ¢(x) = ¢(a),Vp € D . (1.47)

One can easily verify, taking into account the uniform convergence properties,
that the functional 0, defined by (1.47) is a distribution.

We say that the Dirac delta distribution 0, is concentrated at the point a € R".

If the distribution 8, is defined on the space D°(R") = C2(R") of continuous
functions with compact support and if € C°(R"), then the product ¥ (x)0 (x — a)
makes sense and we can write

Vo e D, (p(x)0(x —a),p(x) = (0(x — a), (x)y (x)) = ¥ (a)e(a) .
(1.48)

Instead, the functional T defined on the space of test functions @ by the formula

(T.o(x)) = lp(a)l,¢ € @, (1.49)
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is not a distribution from @’, because although the functional T is continuous, it
is not linear.

An important class distribution are the distributions of function type or regular
distributions, which are generated by locally integrable functions.

We shall show now that to every locally integrable function f € Lj (R") corre-
sponds a distribution from £’(R") denoted by T or f, if it does not lead to confu-
sion.

We consider the functional Ty : & — I defined by the formula

(T9) = [ firotidnp e D. (150
Rn
The linearity of the functional being obvious, we show its continuity. If the se-

D . D)
quence ¢; — ¢, then there is the compact set Q so that the sequence ¢; —— ¢;

it results that supp(¢;) C 2, supp(p) C 2.
Taking into account (1.50), we get

(T, 9i) = (Tr.0)l = (T, i — ¢)| = suplei — ¢l / | f(x)|dx . (1.51)
@ Q
D) . .
Because ¢; —— ¢ we have lim; supy, |¢; —¢| = 0, hence lim;(Tf, ;) =

(T, @), which reflects the continuity of T}.

Therefore, the functional T associated by (1.50) with the locally integrable func-
tion f € L (R")is a distribution on £’, called a function type distribution or
regular distribution.

In general, if f € L} such that|f(x)| < Alx|/*,k > 0, for x| — oo, and
if o € S, thatis, [p(x)| < B|/x||~*T2, then the functional T given by (1.50) de-
fines a regular distribution on the space of test functions S, because | f(x)p(x)| <
AB|x| 2 and thus the integral (1.50) exists.

Consequently, T is a regular tempered distribution, from which Tr € S’.

The distributions which cannot be represented in the integral form (1.50) are
called singular distributions.

Such distributions cannot be identified with locally integrable functions. For ex-
ample, the Dirac delta distribution 0, defined by (1.47) is a singular distribution.

The function H : R" — R where

H(x) 1 forx;>0,%>0,...,x, >0, (1.52)
x) = .
0 otherwise ,

is called the Heaviside function and obviously generates a distribution of function
type that we denote by H and which acts according to the rule

(H(x),¢(x)) = /-u/go(xl,xz,...,xn)dxl...dxn, ped. (1.53)
o0
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We remark that this regular distribution can be represented as
H(x1,..., %) = H(x1)... H(%) , (1.54)
where H(x;) represents the Heaviside distribution of one variable, namely

0, X <0
H(xi) = , X € R. (155)
1, x>0

Proposition 1.10 Let (f;);=1 C L! (R™) be a sequence of locally integrable func-

loc
tions, uniformly convergent towards the function f : R" — I" on any compact

@/
Q CR";then f € L} (R")and Ty, — Ty.

Proof: Since f; converges uniformly to f on any compact 2, then f € Lj and
Jo fidx = [, fdx. For Vo € D with supp(¢) C £ we have
(o) = (T < [ lol-1fi = flds
Q
= mes(-Q)SgP lo(x)] - Sup | fi(x) = f(=)I, (1.56)

where mes(£2) denotes the measure of . Since mes(2), sup, |¢(x)| are bounded
and lim; supy, | fi(x) — f(x)| = 0, it follows that lim;(Ty,, ¢) = (T¢, ¢), thatis, T,
converges towards Ty on D’. O

1.2.3.1 Equality of Two Distributions: Support of a Distribution

Definition 1.23 The distribution f € D’ is said to be null on the open set A C R"
if Vo € O with supp(¢) C A we have ( f,¢) = 0; we write f = 0,x € A.

Also, we say that the distributions f,g € D’ are equal on the open set A, and we
write [ = g,x € A, if Vo € D with supp(¢) C A we have (f — g, ¢) = 0.
Hence, in particular, f = g on R" if the condition

(fo)=(g9).YpeD, (1.57)
is satisfied.

Definition 1.24 We call support of the distribution f € D’(R") and we note
supp(f) the complement of the reunion of open sets which nullify the distribu-
tion f.

If the support of a distribution is bounded, and since it is closed, then we say that
the distribution is with compact support.

Hence, if %y € supp(f), then the distribution f is not nullified on any open
neighborhood of x;.
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If %o ¢ supp(f), then there exists a neighborhood of point x, where f = 0.

For example, for the Dirac delta distribution J, given by formula (1.47) it fol-
lows: supp(d,) = {a}, so 0, is a distribution with compact support, the support
being formed from a single point a € R" in which we say that the distribution is
concentrated.

From the definition of equality of two distributions on an open set it results that
0, = 0for x # a.

Indeed, V¢ € D(R") with the property a ¢ supp(¢) we have (0,4, ¢) = ¢(a) =0,
hence the distribution ¢, is zero on the set A = R" — {a}.

The complement of it is Crn A = {a}, that is, supp(d,) = {a}. In other words,
the distribution d, does not vanish on any neighborhood of the point a € R",
hence 6, =0, x # a.

From the physical point of view, the distribution 0, expresses the density of a
material point of mass equal to the unit and placed at the point a € R".

An important property of the distribution §, = d(x—a), x € R", called the filter
property of the Dirac delta distribution, is given by the relation

P(x)O(x —a) = p(a)d(x —a), (1.58)

where 9 is a continuous function in the vicinity of the origin.
Indeed, we have

(¥ (%)0(x = a), ¢(x)) = (0(x — a), p(x) ¥ (x)) = ¢(a)p(a)
P(@)(d(x = a),¢(x)) = (Y(a)o(x —a).¢), YeeD, (1.59)

from which follows (1.58).

We will show now that the Dirac delta distribution d, is a singular distribution
that cannot be identified with a locally integrable function.

Indeed, otherwise there is f € LL such that

loc

/ f(x)p(x)dx = (0(x — a),¢(x)) =¢(a), VoeD. (1.60)

Because ¢ € O is arbitrary, in its place we consider the function ||x — a2y (x),
where 1 € D is arbitrary; from (1.60) we obtain

[ fE)w(x)llx —al’dx =0,Yy € D . (1.61)

It follows that |x — a||® f(x) = 0 almost everywhere on R", which implies
f(x) = Oa.e., from which we have f(x)¢(x) = Oa.e. But f(x)p(x) = Oa.e.
involves [, f(x)¢(x)dx = 0, which contradicts relation (1.60).

If T is a distribution of function type generated by a continuous function f, then
their supports coincide, that is, we have

supp(Ty) = supp(f) = {x € R", f(x) # 0} . (1.62)

21
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Regarding the Heaviside function H(x),x € R", defined by (1.52), we have
supp(f) = R =[0,00) x [0,00] x -+ x [0, 00) = supp(Tr), where Ty € D'(R")
represents the distribution generated by the Heaviside function, which is a locally
integrable function.

Let the function f : R — R, f(x) = 0,x € R\{x;}.

This function is piecewise continuous and its support is

supp(f) = {x € R, f(x) # 0} = () = {x1} . (1.63)

The support of the distribution function type Ty € D’(R), generated by the
function f, is the empty set @, that is, supp(Ty) = @. Indeed, V¢ € D(R) we have
(Tr,¢) = Jg f(x)@(x)dx =0, hence Tf = 0 onR.
An analogue of the Dirac delta distribution 0, is the distribution 05 = (S),
where S C R" is a piecewise smooth hypersurface.
The functional 65 : & — C, acting according to the formula

(0s.9) = /w(x)dS,Vw €D, (1.64)
S

represents the Dirac delta distribution concentrated on the hypersurface S, where
dS is the differential area elementon S C R".

For any ¢ € O whose support does not contain points from S, the distribution
O is null, thatis, 65 = 0,x ¢ S. The support of this distribution is the set of all
points of S.

From the physical point of view, the distribution 05 expresses a mass density
equal to unity, distributed on the hypersurface S.

For this reason, the distribution d g is called Dirac delta distribution concentrated
on S CR".

If S = S; U S,, then from (1.63) we obtain

0s,us, = 05, + Os, . (1.65)
Indeed, we have
Osuseo) = [ owds = [omasi+ [ o,

S1US; S1 Sy
= (05, +0s,,9), YoeD, (1.66)
from which, on the basis of the equality of two distributions, we get (1.65).

Obviously, supp(ds) = S because if x ¢ S then 65 = 0. In general, if fis a
piecewise continuous function, given on the surface S, we have

(fOs,9) /f(x x)dS, Vo € D(R"). (1.67)

In addition to the distribution 05 € D’(R") concentrated on piecewise smooth
surface S C R", the distribution dsxr € D(R" x R) associated to the surface
S C R" and to the temporal variable ¢t € R is important in mechanics.
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This distribution is defined by the formula

(OsxRr, @(x,t)) = /dt/(p(x, t)dS, Vo € D(R" xR), (1.68)
R S

where [, is the surface integral, and d S the differential element of areaon S C R".
For the continuous real function f(x,t) € C/(R" x R) the distribution f{(x, t)
Osxr € D'(R" x R) acts according to the formula

(for 1195z (3, 1) = Bz fx, o) = [ o [ fix gt s
R S
(1.69)

We note that dsxr = 0, for x ¢ S,Vt € R, hence supp(dsxr) = S x R.

In general, the local nonintegrable functions cannot be associated with distribu-
tions. However, in some cases, by the regularization process, we can correspond
local nonintegrable functions with distributions, on which we can apply linear dif-
ferential operators.

To illustrate this point we will consider the following.

Example 1.7 Let 4 € R and the function f; : R\{0} — R, where

cos Ax
fa(x) = (1.70)
We show that the functional Ty, : & — C defined by the formula
T cos i
cos Ax
(Tf,. ¢) = pv. / @(x)dx, 9 € D(R) (1.71)
—o0
is a distribution of first order which satisfies the relation
lim fi(x) =0, (1.72)

A——+o0

where the notation p.v. represents the Cauchy principal value. The distribution T,
will be denoted as p.v. (cos 1x)/x € D’(R).

Proof: We note that the function f; is not integrable in the neighborhood of the
origin, hence f; ¢ LI (R) and the integral (1.71) is considered in the sense of

loc
Cauchy principal value; we thus have

7 cos Ax . N cos Ax OQcos Ax
p-v. / ¢(x)dx = lim / . <p(x)dx~|—/ " (x)dx | .

p4 e—>—40
—0o0 —0oQ &
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Since x — (cos Ax)/x is an odd function we obtain

T cosi
pv. / Cosx Ydx =0. (1.74)

—0o0
Therefore, relation (1.71) can be written as

[eo]

— (0

(Tr,.¢) = pv. / coslxwdx , peDR). (1.75)

x
—0o0

Ty, is obviously a linear functional.

We shall prove its continuity. Applying the mean value formula, we can write

(%) —(0) = x¢' (&), & €(0,x), or & €(x,0). (1.76)

Therefore, considering supp(¢) C [—a, a], a > 0, from (1.75) we obtain

a

|(Tf4’(p)| = |p-V /Coslxwdx

—a

dx <2a sup |¢'(x)|. (1.77)

x€[—a,a]

o(x) — ¢(0)
X

< pw~. /|cos/1x|

Hence, V¢ € D (R) with supp(¢) C [—a, a] and we have

(Tf.0)| <c sup l¢'(x)],c=2a; (1.78)
x€[—a,a]
the relation shows that the linear functional Ty, defined by (1.71) is a first-order
distribution, hence Ty, = f; € D'(R).
The distribution p.v. (cosAx)/x is a regularization of the function f; =
(cosAx)/x.
We note that for ¢ € D(R) one can write

cosdx cosAx
X p.V. , =(pw X
p " ¥ p " @

= p.V./go(x)cos(/Ix)dx = /cos(/lx)w(x)dx = (cos Ax, ¢(x)), (1.79)
R R

from which we obtain

cosAx

X p.V. = cosAx . (1.80)

Hence, for x # 0 the distribution p.v. (cos Ax)/x coincides with the function
(cos Ax)/x.
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To show that f; converges to zero on H’(R) when 4 — +o00 we note that we can
write

X

o) = 00) = [ ¢ (1.81)

0

Making the change of variable t = xu, relation (1.81) becomes

1
@(x) —9(0) = x / @' (xu)du . (1.82)
0
We denote
1
Y(x) = /(p/(xu)du, (1.83)

0

which is a function from D (R), because ¢ € D(R) and supp(y) C [—a, a].
Taking into account (1.75) and (1.83), we obtain

(Tr,. ¢) = pv. /w(x) cos(Ax)dx

= / Y(x)cos(Ax)dx, Voe D, supp(y)C[—a,a]. (1.84)
Integrating by parts, we have

(Tr.0) = % {(lp(x) sin(Ax))|%, — / sin(Ax) - lp/(x)dx} , (1.85)

—a

from which the inequality [(Ty,, ¢)| < A/|A|, where A is a positive constant which
depends on a > 0; therefore, lim; oo(Ty,,¢) = 0,Ve € D,supp(p) C [—a, a],
hence lim; o0 Ty, = 0.

The last relation shows that the family of distributions Ty, = f; converges to
zero on O’(R) when 1 — +o0. O

Example 1.8 We consider the function f(x) = 1/x% x € R\{0}, to which we
assign the functional p.v. 1/x? : D — C defined by the relation

(p.v. %,(p) = p.v. /wdx
R

= lim [/ der/de} . (1.86)

e—>—+0
—0Q &
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Let us show that the functional p.v. 1/x? is a second-order distribution from
D'(R).

Because the linearity of the functional is evident we shall test only its continuity.
Thus, taking into account that g(x) — @(0) = x¢’(0) + x2¢” (E)/2, &Ex € (0, x) or
& € (x,0), we have

(PV ,QZ)) = p.v. / ( x)) dx = %/go”(&x)dx , (1.87)
R

because p.v. [ (dx/x) = 0.
Consequently, considering supp(¢) C [—a, a], a > 0, the previous relation be-
comes

1 1 ;
‘(p.v. —zw)’ =3 |:/ (p”(&x)dx} <a sup |¢" (%), (1.88)
e a x€[—a,a|

from which results the continuity of the functional p.v. 1/x? and that p.v. 1/x? is a
second-order distribution from D’(R).
For Vo € D(R) we have

1 1
(xzp.v. F,(p) = (p.v. F,xzq)) = p.~. /go(x)dx = /go(x)dx =(1,¢),
R R

(1.89)

hence x2 p.v. 1/x2 = 1, which shows that, except at the origin, the distribution
p.v. 1/x? coincides with the function 1/x2.

We associate to the function f = 1/x2, x € R\{0}, the functional Pf1/x?
D(R) — C, called a pseudofunction, defined by the relation

(o) = | [ S0 [oocat ] o

One can show as in the previous case that Pf1/x? is a second-order distribu-
tion from D’(R) and that x>Pf1/x% = 1. Also, the distributions PfH(x)/x and
PfH(—x)/x are defined by the relations

2] - | 2o |
[pf@“p] :el—iﬁo{/ @dx—ga(mlne} . (1.92)

One easily verifies the relation p.v. 1/x = PfH(x)/x + PfH(—x)/x
We remark that the concept of finite part of an integral and the concept of pseud-
ofunction were introduced by J. Hadamard.
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1.2.4
Characterization Theorems of Distributions

To test whether a functional defined on the test space @ is a distribution, we check
the linearity and continuity of the functional. In general, the linearity of the func-
tional is easy to verify, but we have difficulties verifying the continuity, because it
involves the use of the convergence introduced on the test space @.

In the following we give a condition equivalent to the continuity of the linear
functional defined on @, which is particularly useful in applications, which can be
considered also as definition of the distribution of the space @’ [6, 11, 12].

Theorem 1.2 The linear functional T : & — I is a distribution of O’ if and only
if for any compact 2 C R” there exist the constants C(22) and m(2) € Ny such
that

(T,o)l = C(2) sup [D%], VgeD(Q). (1.93)
lal=m(2)
x€Q

Theorem 1.3 The linear functional T : D — [ is a distribution of D’™ if and only
if, for any compact 2 C R", there exists the constant ¢(2) > 0 such that

(T )| = C(Q)lslup ID%l¢, Ve € D(LQ). (1.94)
xE_Qm

Theorem 1.4 The linear functional T : D — I is a measure if and only if any are
the compact 2 C R" there exists the constant ¢(£) > 0 such that

(T,¢) < o(Q) sup lp(x)|, Vg € D(Q). (1.95)

x€Q

Below, we give some applications of the characterization theorems of distributions.

Example 1.9 We consider the function f € L} (R") and the functional Ty : & —
C defined by the formula

(Tr. @) = / flx)p(x)dx, @eD. (1.96)
RYL

Using Theorem 1.2 of the characterization of distributions of O’, we shall show
that the functional T associated to the locally integrable function f is a distribution
of D', referred to as distribution of function type.

The functional T is, obviously, linear and we have

(Tr,¢)] < / | F)llo(x)ldx < sup [o(x)] / | fl)ldx . (1.97)
Rn

x€R®
supp(¢)
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For ¢ € D(R) C D, the previous relation becomes

(Tf )| < sup lo(x)] f | f(x)ldx . (1.98)
xeEQ o

Putting ¢(Q) = [, | f(x)|dx, we have

[(Tr, )| < c(£2) 51615 lp(x)|, VYoe D). (1.99)

If f # 0, and taking into account Theorem 1.4, it follows that T is a zero-order
distribution and that the constant ¢(£2) > 0 depends on the compact 2 € R™.
Hence, Ty = f € D°.

For f = 0 we have ¢(£) = 0, and relation (1.99) becomes |(Tf,¢)| < 0 <
sup,.co |¢(x)|, which shows that, in this case, any positive number can be consid-
ered as constant ¢(£2).

In conclusion, any locally integrable function f € L] (R") can be identified with
a zero-order distribution, hence Ty = f € D”.

In general, let f € L} (L), 2 € R" be a compact set, and the linear functional

(Tr. @) = / f(x)D%(x)dx , Vo e D), aeNj, (1.100)
Q

where D“ is the operator of derivation.
For Vo € D(£21) C D(£2), V21 compact set and for £2; C £ from (1.100), we
obtain

I(Tr.¢)l < sup ID“sﬂ(x)l'/lf(x)ldx, (1.101)
xE€Q 2,
hence,
(Tr. @) <c sup ID%p(x)|, Vo € D(21), (1.102)
XEQ

where ¢ = [, | f(x)|dx.

From relation (1.102) it follows that the linear functional Ty associated with the
function f € L} (£2), by formula (1.96), is a distribution of function type of order
k=lal.

Example 1.10 Let 8, : CL(R") — C, a € R", defined by the formula
(0a¢) =9(a), ¢e€CeR"), (1.103)

where C2 = D°(R") is the continuous function space with compact support. Ob-
viously, 0, = O(x — a) represents the Dirac delta distribution concentrated at the
point a € R". Using Theorem 1.4 we shall show that functional ¢, is a zero-order
distribution of O’.
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The linearity of the functional 9, is evident. To prove the continuity of the func-
tional, from (1.103) we have

0w 9)l = lo(@)] < suple(x)], Vo e Ce(9Q). (1.104)
xE

This relation shows that the linear functional 0, is a zero-order distribution,
because k = 0 and ¢(2) = 1.

Example 1.11 Let the functional 5 be associated to the piecewise smooth hyper-
surface S C R", by the formula

(0s,9) = /(p(x)dS , pedD. (1.105)
s

The functional 05 : & — I is called the Dirac delta distribution concentrated
on S.

We will show that d 5 is a zero-order distribution. Since the linearity of the func-
tional O s results from the surface integral linearity, we shall show the continuity of
it.

From (1.105), we obtain

(05, 9)| < sup |o(x)| - / dS, VeeD(Q). (1.106)

x€Q
SMsupp(¢)

Noting ¢(2) = .[Sﬁsupp(w) dS, the previous relation becomes

I(0s,9)l = csuplo(x)|, VoeD(Q), (1.107)

x€Q

which shows that J 5 is a zero-order distribution.

Theorem 1.5 The linear functional T : S — I is a distribution of & if and only if
there exist the constant ¢ > 0 and the integers m, £ € Ny such that

{
(T, @) < ¢ sup I(1+ [lx[I*) D*p(x)], VeeS. (1.108)
al<m
xeR"

Theorem 1.6 The linear functional T : £ — I is a distribution of £’ if and only if
there exist a compact 2 C R" and the constants ¢ > 0, m € Ny such that

(T, )| <c sup sup |[D%(x)|, Vee&R". (1.109)

lal=m xeQ

Example 1.12 Let 6%’) :S(R") — I' be a functional, p € N, a € R", defined by the
formula

(8¥.¢) = (~1)D (), Vg eSR™), lal=p, (1.110)

where D“ is the derivation operator.

29
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The linearity of the functional results from the relation

(5511’), argr + az@z) = (-1)’D*(a191 + a2902)
= a1(~1)’ D% + as(~1)’ D%, = a; (é‘f’,wl) ta, (é‘f),goz) . (L1111

Vo1, € S(RM,and Vay,a; € I
Regarding the continuity of the functional 0% ons (R™) we have, from (1.110),

(0%.¢)] = ID%0(a)] = sup [Dp(x)] . Vo € S(R"), (1112)
xE

lal=p

which, on the basis of Theorem 1.5, show that the linear functional 65}“ )is contin-
uous, hence 0\ € &,

A particular class of tempered distributions consists of locally integrable functions
with slow growth to infinity, that is, the functions f € L] (R") that satisfy to
infinity the relation | f(x)| < ¢(1 + || x[)*,¢ >0,k > 0.

In this case we associate the functional Ty = f defined by the formula

(f0) = [ fwenpes, (1.113)
Rn
to the function f, from which we obtain

|(ﬁ<ﬂ)|i/|f(x)||¢(x)|dx§/C(1+||x||)k|<ﬂ(x)|dx§A sup g, A>0,
R R x€ER™M

(1.114)

because (1 + ||x]))¥|o(x)| € LY(R™).

Since the linear functional f defined by (1.113) is bounded, according to The-
orem 1.5 of characterization of distributions of &', it means that Tf = f is a
distribution of function type of S’.

Also, the absolutely integrable functions, f € L'(R"), and the functions with
polynomial growth f(x) = x™ = x"'x,"?...x",x € R",m; > 0, generate
temperate distribution of function type on &’(R").

Conversely, the locally integrable function f(x) = e*cose*,x € R, f ¢
L; (R™), although it is not with slow growth (polynomial) generates a temper-
ate distribution of function type, which is defined by the formula

(fl(x), 0(x)) = /e" cose’p(x)dx , Ve e S(R). (1.115)
R
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Indeed, the integral on the right-hand side does exist and we have

/e" coseg(x)dx| = /(p(x)(sine")'dx

R R

@(x) sine* |2 —/sine"ga’(x)dx
R

< f ¢/ () ldx = f L+ )¢/|(1+ %) 'dx < Asup(L+27)[¢|, (L116)
x€R
R R

/(p/(x) sine*dx

R

where we take into consideration that ¢(x)sine* € S(R), hence lim|,|— o sine*
@(x) = 0and 3 [ |¢’(x)|dx < co. According to Theorem 1.5, f € S'(R).

1.3
Operations with Distributions

1.3.1
The Change of Variables in Distributions

In geometry, mechanics and mathematical analysis the transformations of inde-
pendent variables are frequently used [13], so as to simplify the calculations and
interpretation of the results.

These changes, applied to functions, lead to new functions.

The methodology of these changes of variables can be extended from functions
to distributions.

Let T : R"® — R" be an application defined by the relation x = h(u), hence

X =hi(us,...,uy), i=1n, (1.117)
which represents a transformation from Cartesian coordinates (xi, %3, ..., %) €
R" to the coordinates (u1, Uy, ..., u,) € R™

We see that the functions h;,i = 1, n, are of class C°°(R") and that the punc-
tual transformation is bijective. Therefore, the transformation (1.117) allows for the
inverse punctual transform T~! : R" — R", defined by the formula

u=h"Yx) & u;=h"x,..., %) . (1.118)

The Jacobians of the transformations T and T~ are d(x)/d(u) and d(u)/d(x) for
which we have d(x)/0(u) = (3(u)/d(x))", (3(u)/(x)) # O.

To see how to approach the definition of the change of variables, we shall con-
sider the case of a locally integrable function which can be identified with a distri-
bution of function type.

Let f € L] (R")and ¢ € D(R"). We have

(F(h(u) () = Rf Fb(w)p(u)du = R/ f(x)ga(h—l(x))‘%‘dx- (1.119)
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This equality can be transcribed as

(f(x), 9 (x)) = (f(h(w), p(u) , (1.120)
where ¢ (x) € D(R"), and has the expression
— o= (x)) | 2
ye) = o) |5 (L121)
Noting (T f )(u) = f(h(u)), relation (1.120) becomes
(f(x), ¥ (x) = (T )(u), o(w) (1.122)

and sets the dependence between the function given in the variable u, namely
f(h(u)), and its correspondent (T f )(x), obtained by means of the punctual trans-
formation (1.117).

Since ¥ and ¢ are functions on D, relation (1.122) is adopted for defining the
change of variables in the case of distributions.

Definition 1.25 Let f(x) € H’(R") be a distribution in the variable x € R". Then,
the corresponding distribution in the variable u € R", defined by the transforma-
tion (1.117), will be denoted (T f )(u) € H’(R") and is given by the formula

(f(x), ¥ (%) = (Tf)(u).e(w), ¢ DR, (1.123)
where 1 (x) € D(R") and has the expression
1

Y(x) = ¢(”(x))m . (1.124)

We note that if the punctual transformation is not bijective, hence d(x)/d(u) = 0
at some points, then the change of variable formula (1.123) is inapplicable. Such
cases will be analyzed for the transition to spherical coordinates on R" and for the
transition to cylindrical coordinates on R3.

To illustrate the change of variables for the Dirac delta distribution o =
O(x1,. .., x,) concentrated at the origin. According to formula (1.123), we have

(0(x), ¥ (x)) = (O(h(u),(u)) = »(0), @D, (1.125)
where

_ (p(u(x)) 8(]1) _ 8(]11,...,11”)
YO = Bmyaw B a(un ) (1.126)

From (1.126), we obtain

d(h)

¥ (0) = ¢(uo) U—

—1
3 MZMJ , (1.127)

where 0 = h(uo) and x = h(u), h € C>°(R"), is the punctual bijective transforma-
tion.
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Taking into account (1.125) and (1.127), we can write

B B O(u — uo)
(0(x), ¥ (x)) = (0(h(u)), p(u)) = (7|8(h)/a(u)|u=uo’(p(u)) , (1.128)
from which we obtain the formula
(TO) (1) = O(h(u)) = O(hy(w),..., ha(w) = _O(u=uo) (1.129)

~13(R)[3(w) =
In particular, for the Dirac delta distribution of a variable, we obtain, from (1.129),

O(u — uog)

O(h(u) = W ()]

neR. (1.130)

Thus, we have 6(e** — 1) = d(u)/|a|, a # 0, because x = h(u) = e** — 1 and
h(u)=0= u=0,0dh/du = ae*.

We note that formula (1.130) can be generalized to the case in which the
equation h(u) = 0 allows a finite or infinite number of simple roots, that is,
ay, 0,...,0,,...and h'(a;) # 0.

By definition, we write

Slu—
O(h(w) =" W : (1.131)
p

For example
1
o(u? —a®) = o —a)+o(uta), a>0, (1.132)
a

d(cosu) =Y 0 (u— 2n + 1)%) . (1.133)

Let us look at the case of the punctual transformation x = pcos 0, y = psin 6,
p > 0,0 € [0,2x), which expresses the transition from Cartesian coordinates
(x,y) € R? to polar coordinates (p, §), and the Jacobian of the transformation is
J(p, 0) = (x,)/3(p, ) = p.

In all points (x, y) € R? where J(p, 6) = p # 0, the considered transformation is
locally bijective, that is, except at the origin (0, 0) for which p = 0, and 0 is arbitrary.
Consequently, the considered punctual transformation is inapplicable to the Dirac
delta distribution d(x, y) € D’(R?), which is concentrated (has the support) at the
point (0, 0), but it may be applied to the Dirac delta distribution d(x — a,y — b)
which has the support at the point (a, b) # (0, 0).

Passing to polar coordinates in the formulae (1.123) and (1.124), we can write

(0(x—a,y—b), 9 (x,y)) = ¥(a,b) = (d(pcos 0 —a, psin 0 — b), ¢(p, 0)) ,
(1.134)

where ¥ (x,y) = ¢(p, 0)/p, ¢ € D(R?).
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From here, we obtain v (a, b) = ¢(po, 6o)/popo, because (po, o) represents the
polar coordinates of the point (a, b), hence a = pocos by, b = ppsin by, po =
va* + b?, 0y € [0,2m), tan Oy = b/a.

Ultimately, we obtain the relation

w(a,b) = ¢(po, bo) _ (5(/0—/00»9 — o) , g0(/0’0))
Po Po

= (0(pcos O —a, psin @ — b),¢(p, 0)), (1.135)

resulting in the formula
6(/)_ Lo, 0 — 60)
Po .

Forwards, we shall treat the transition from the Cartesian coordinates (x, y, z) €
IR? to the spherical coordinates (r, ¢, 8), given by the formulae

O(pcos @ —a,psin @ — b) = (1.136)

x =rsingcos@, y=rsingsinf, z=rcosg, (1.137)

where r > 0, ¢ € [0, 7], 6 € [0, 2m).

The Jacobian of the transformation is J(r, ¢, 8) = (x, y, 2)/d(r, ¢, 0) = r’sing
and shows that the punctual transformation is locally bijective everywhere on R?
with the exception of the points on the Oz-axis, for which ¢ = 0 or ¢ = . At the
origin (0, 0, 0) we can consider r = 0 and ¢ arbitrary.

Consequently, the transition to spherical coordinates cannot be achieved for the
Dirac delta distribution d(x, y, z) € D’(R?) concentrated at the point (0, 0, 0).

For the Dirac delta distribution d(x — a,y — b, z — ¢) concentrated at the point
(a,b,c) ¢ Oz, where a’> + b* > 0, we can apply the considered transformation
since J(r,¢, 8) # 0. On the basis of the formulae (1.123) and (1.124), we have

(O(x—a,y=b,z—0),p(x,y,2))
= (O(rsingcos @ —a,rsingsin @ — b, rcosg —c),¢(r,¢,0)),  (1.138)

where (x,y,2) = ¢(r,9,0)/r*sing, ¢ € D(R3).
If (o, o, By) represents the spherical coordinates of the point (a, b, ¢) ¢ Oz, a*+
b? > 0, then we have the relations

a=rpsingycosby, b=rosingysinby, c¢=rocosgy, (1.139)
b c
ro=+va*+b*+c?, tanby = —, 6y €[0,2m), @o = arccos — , ¢ € [0, 7],
a o
(1.140)

and thus we obtain

» 00, 0 O(r—ro, 0 — ¢, 60 — 0
w(ab, o) = <.0(7’20 %o o) _ ( (r—ro ;0 . %o O),ga(r,(p,O))
r? sin @ 15 sin g
(O(rsingcos O —a, rsingsin @ — b, rcos @ — ¢), ¢(r, ¢, 0)) .

(1.141)
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There results the formula

O(r — 10,9 — @0, 0 — 6)

2

O(rsingcos @ —a, rsingsin @ —b, rcosp—c) = -
15 sin g

(1.142)

The punctual transformation (p, 6, z) — (x, y, z), given by formulae
x =pcos®, y=psinf, z=z, p>0, 0€[0,2m), zecR,
(1.143)

expresses the transition from Cartesian coordinates (x, y,z) € R3 to cylindrical
coordinates (p, 6, z) € R>.
The Jacobian of this transformation is

dx 0dx Ox
dp 00 0z p 0 o
G750 N A A d B e S A I
](p,@,z)—m— p 96 9z|= su(;@ pC((J)SB (1)—p.
dz 0z 0z
dgp 390 0z

(1.144)

Consequently, the punctual transformation is locally bijective everywhere on R?
with the exception of the points on the Oz-axis, where p = 0.

Thus, for the Dirac delta distribution d(x, y, z) concentrated at the point (0, 0, 0),
we cannot apply the considered punctual transformation, but we may apply it to the
Dirac delta distribution 0 (x — a, y — b, z — ¢), concentrated at the point (a, b, ¢) ¢
Oz, hence a? + b? > 0.

We can write

(O(x—a,y—bz—c)yp(xy,2)
= (0(pcos O —a,psin® — b,z —c),p(p, 0, 2)), (1.145)
where y(x,y,2) = (¢(p, 0,2)/](p, 0,2) = (¢(p, 0,2)/p), ¢ € D(R).
Noting with (po, 6o, zo) the cylindrical coordinates of the point (a, b,c) ¢ Oz,

we have a = pycos by, b = posinby, ¢ = zg, po = ~a?+ b?, tany = b/a,
0y € [0,2m], zop = ¢ € R and thus we obtain

(a,b,c) = ¢(po, 0o, 20) _ (5(0—;00,0 - 00,2—20)’(;7

.0,z
Lo Po (v ))

= (0(pcos @ —a,psin6 — b,z —c),(p, 0, 2)) .
(1.146)
It results in the formula
O(p—po, 0 — 0y, z—c)
Po

=0(pcosO —a,psin€ —b,z—c). (1.147)
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1.3.2
Translation, Symmetry and Homothety of Distributions

In applications, it is important to consider the punctual linear transformation de-
fined by the equation

x=au+b, xubeR", (1.148)
that is,
xi= ) anue+ bi, (1.149)
k=1

where the transformation matrix is

a1 G2 ... OGip
a a a

a=(aj)=|"" "7 L, deta#0, (1.150)
anl An2 Aun

while ¢! is the inverse matrix.

Because deta # 0, the linear transformation (1.148) is bijective and therefore
the conditions of application of the formula (1.123) are satisfied.

Consequently, if f(x) € D’(R"), in accordance with (1.123), then we have

(f(x), w(x)) = (f(au + b), (), (1.151)
_p(u(x)) @t (x — b))
V)= Tdetal = |detal (1.152)

because d(x)/d(u) = det a.
By customizing the formula (1.151), we obtain the transformations: translation,
symmetry, homothety.

Translation Let a = (J;;) be the diagonal matrix, where

P e N B O (1.153)
0, i#J,
represents Kronecker’s symbol.

In this case, the linear transformation (1.148) takes the particular form x = u+b
which represents the translation of the variable u by the vector b € R" and for
which deta = 1.

As a consequence, the formula (1.151) becomes

(f(x), ¥ (x)) = (flu+b)ew), ¢, (1.154)

where ¥ (x) = ¢(x — b).
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We shall note with 7, the symbol of the operator of translation by the vector
b € R".Then 7, f = f(x + b), 7,90 = ¢(x + b) represent the translation, by the
vector b, of the distribution f and of the test function ¢ € D, respectively. With the
formula (1.154) it can be written

(o fr9) = (S 7-59) (1.155)
that is,
(f(x +b),¢(x)) = (f(x), ¢(x — b)) . (1.156)

The equivalent formulae (1.155) and (1.156) express the translation formula of
the distribution f(x) € O’(R"). From (1.156), there results the manner of applica-
tion of the translation operator 7, namely

Tatpf = Ta(tp f) = 15(ta f), (1.157)
hence
Tatp = TalTp) - (1.158)
For the Dirac delta distribution we have
(O(x —a),¢(x)) = (0(x), ¢(x +a)) = ¢(a), ¢€D, (1.159)
hence
(T—40,9) = (0,T40), T—_40 =0(x—a)=0,. (1.160)
If f e D'(R") and y € C>°(R"), then we have the relation

(¥ f) = (y)(Tnf), beR". (1.161)
Indeed, we have
(To(¥ £),9) = (LY 7-09) = (S T-b(0ToY)) = (Ts foTr¥) (1.162)
hence
(¥ £).0) = (T fTotp, 9) (1.163)

from which results the relation.

By means of translation, we can define the periodic distributions.

Let f € D’(R"). We say that the distribution f is a periodic distribution if there
is T € R", T # 0, with the property 1 f = f. The vector T € R" is called the
distribution period.

Based on this definition, any periodic distribution f € £’ satisfies the relation

(f(x). 0(x) = (r1 f9) = (f(x), o(x = T)) . (1.164)
It is immediately verified that the periodic distributions satisfy the relation
‘L'Tf: ‘L'_Tf. (1165)

Indeed, we have (71 f,¢) = (f, T—1(t1¢)) = (=1 f, T—19) = ([, T—T9), Which
gives the required relation.
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Symmetry towards the origin of the coordinates The symmetry towards the origin
of the function f : R" — I" will be noted f* and defined by the relation

(f')%) = f(=%), xeR". (1.166)
From (1.166) we obtain the properties

(f")" = f, supp(f’) = supp(f). (1.167)

If f € D'(R"), then the symmetry of this distribution is given by the relation

(fYo)=(f¢"), 0D, (1.168)

hence

(fl=%), 0(x)) = (f(x),¢(=x)) - (1.169)

This formula is obtained from (1.151) by considering a = (—d;;) and b = 0, for
which deta = (—1)".

Therefore, the formula (1.151) takes the form (f(x), ¥ (x)) = (f(—u), (u)),
P (x) = ¢(—x), that s,

(f(x),0(=x)) = (f(=%).9(x)), ¢ € DR"). (1.170)

We say that the distribution f is even if (f¢") = (f ¢) and odd if (f ¢") =
—(f9)

For example, in the case of the Dirac delta distribution J(x) € D’(R") we have

(0(=x),¢(x)) = (3(x), ¢(=%)) = ¢(0) = (0(x),¢(x)) , VoD, (L171)

which leads to the relation d(—x) = d(x), which shows that the Dirac delta distri-
bution 0(x) is an even distribution.
If f e D'(R") and y € C>°(R"), then we have

Wf) =v"f. (1.172)
Indeed, (¥ f)".¢) = (¥ f¢") = (fwe") = (f (¢9")"), hence
(@) o) =("ey)=(f"v"¢9), VoedD. (1.173)

Homothety The transformation through homothety is obtained from the linear
transformation (1.148) considering b = 0 and the matrix transformation of the
forma = (aijé,vj).

By specifications, the homothety transformation takes the form

xi=au;, i=1n, (1.174)

and the determinant of the transformation has the value deta = a{1a2; ... ap,.
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Taking into account (1.174) and the formula (1.151), the homothety transforma-
tion of the distribution f(x) € H’(R") is given by

(f(x), (%) = (flau), o(u) , (1.175)

where

p(a”! %)

a~l. "
P(x) = Tdeta] deta =[] ai#0, (1.176)

i=1
that is, we have

1
| detal

(flx),0(a™" - x)) = (flau), o(u)) . (1.177)
In particular, if a;; = B # 0,i = 1, n, then deta = 8", and
x=ausx=0u, a x=—-x; (1.178)

thus, the formula (1.177) becomes

(f(Bx), o(x)) = |ﬂ1|n (f(xw (%)) : (1.179)

For the Dirac delta distribution 6 = d(x) € O (R") we obtain

(OB ). 0(x) = | ﬁlw (6<x>,¢ (%)) = fﬂ‘f) = (?ﬁ(ﬁ,sa(x)) . (1180)

leading to the relation

1
1B1"

The homothety transformation allows for the introduction of the notion of ho-
mogeneous distribution.

Let f(x) € OD’(R") be a distribution and a > 0. We say that the distribution f is
homogeneous and of degree 4 € R if it satisfies the relation

d(fx) = ——0(x). (1.181)

flax) = a* f(x). (1.182)

Substituting this in (1.179), we obtain the formula for characterizing the homo-
geneous distributions of degree 4, namely

(fe o) = a7 (fee(Z)) . veD. (1.183)

Taking into account (1.181), it results that the Dirac delta distribution J(x) €
D’(R") is a homogeneous distribution of degree —n.

Obviously, the homogeneous and locally integrable functions in the ordinary
sense will be particular cases of homogeneous distributions of function type having
the degree of homogeneity equal to the locally integrable function.
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1.3.3
Differentiation of Distributions

Among the distribution operations, the operation of derivation has a special impor-
tance because of its effectiveness. Unlike the functions that do not always allow for
derivatives, the distributions have derivatives of any order. Therefore, any locally
integrable function considered as a regular distribution and, in particular, the con-
tinuous functions will have derivatives of any order in the sense of distributions.

This essentially changes the issues of the series of functions and of the Fourier
series; this is because on the space of distributions any convergent series of locally
integrable function can be differentiated term by term and the Fourier series are
always convergent.

To find the natural way of introducing the concept of derivative, we consider the
distribution function f € C(R), which obviously generates a regular distribution
Tf = f € D'(R).

To the function f’ € C°(R) also corresponds a regular distribution Ty» = f’ €
D’(R), which is defined by

(f0) = [ P, voe D). (1184
R

Integrating by parts, we can write
(S 0) = f()e() =% - / fx)g'(x)dx (1.185)
R

but as the function ¢ has compact support, the first term on the right-hand side is
zero and thus we obtain

(f9)=—(f¢), YocDR). (1.186)

Relation (1.186) is adopted for the definition of the first-order derivative of a dis-
tribution from D’ (R).

Hence, if f € D’(R), then the functional f’ given by (1.186) is called a derivative
of the distribution f.

It is immediately verified that the new functional f’, defined on O(R), is linear
and continuous, hence f” € D’(R) is a distribution.

Thus, if H is the Heaviside function of one variable, then we have, in the sense
of distributions,

dH(x)
dx

where d(x) € D’(R) is the Dirac delta distribution concentrated at the origin.
Indeed, since

=0(x), (1.187)

0, x<0,
H(x) = ) 0 (1.188)
, x=0,
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we have

dH
(Gr0) =~ 070 = = [ Hxpg ey

= —/¢’(x)dx =¢(0) = (0(x),¢(x)), Vo€ D[R), (1.189)
0

resulting in the formula (1.187).

We note that, in the ordinary sense, the function H is differentiable everywhere,
except the point x = 0, where there is a first type discontinuity.

Noting with d /dx the derivative in the classical sense, we have d H/dx = 0,
x # 0.

We note that, due to the translation operator 7, the derivative f’ of the distribu-
tion f € H’(R)is given by the following limit on the space D’

h—0 h h—0 h

(1.190)

This definition of the derivative of a distribution coincides with the classical one.
Indeed, because of the continuity of the functional f, we have

h) — —hy—
(P g ) = (s, =)
(1.191)

giving

lim Lf -

lim === = f'(x). (1.192)

As a generalization of the differentiation formula (1.186) of one-variable distri-
butions, we have the following definition.

Definition 1.26 Let f € D’(R") and D* = D!l /3x"" ... dx %" the derivative opera-
tor of order |a| = >_I'_; «;. We call the derivative of order || of the distribution f,
the distribution denoted D“ f and given by the relation

(D* o) = (-1)!“(£D*¢), VoeDR"). (1.193)

We note that this definition is correct, because the functional given on D“ f by
the formula (1.193) is linear and continuous, which is easily checked. On the other
hand, formula (1.193) contains, as a particular case, formula (1.186).

We emphasize that the distributions’ derivative does not depend on the order of
derivation, so that there is the relation

Dt f =DD! f)=DF(D* f), feD . (1.194)
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Let H(x, y), (%, y) € R?, be the Heaviside function on R?, namely:

1, x>0,y>0,
H(x) = : (1.195)
0, otherwise.
We have
9 H(x, y)
TV _ six ), 1.196
i = Ot (1.196)

where d(x, y) € D’(R?) is the Dirac delta distribution concentrated at the origin.
Indeed, V¢ € D we can write

?H _ Y)
[W,go(x,y)} = (H 8x3y) // H(x,y)—————dxdy
T < _7°a<o<o,y)dy

0

I §<a¢>dxdy—/dy< )

—0(0,y)I5° = ¢(0,0) = (4(x, y), ¢(x, y)) (1.197)

0'\8

giving the formula (1.196).
The general formula can be proved in the same way, that is,

A" H(x1, %2, ..., %)

=0(x1,..., %), 1.198
0%10%; ... 0%, (1 *n) ( )
where d(x1,...,%,) = 0 € D'(R") is the Dirac distribution and H(x) is the Heav-
iside function

His) 1, x120%2>0...,%2>0, (1.199)
x) = '
0, otherwise.

Below we will denote D¢ the derivation operator in the sense of distributions and
D” the derivation operator in the usual sense, where it exists for the regular distri-
butions.

Thus, in the case of the Heaviside function, we have

" H(x1, ..., %) " H(xq, ..., %)
—————— =0, —]—————————— =0(x1,%,...,%n), 1.200
0x1...0%, 0x1...0%, (31, %2 *n) ( )
also,
(D*8(x — a),¢(x)) = (=1)“!(D“ ¢)(a), V¢ € DR"), (1.201)
where 0, = O(x — a) is the Dirac delta distribution concentrated at the point

a € R".
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Now, we have the function a € C°°(R") and the distribution f € D’(R"); the
derivation formula of a product, known in the classical case, remains valid, that is,
we have

ad da af .
—(af)=— — =1,2,...,n. 1.202
8xi(af) 8xif+a8xi’ i=12..,n (1.202)

For distributions defined on H™ and S the formula is the same so long as the
product between a function and a distribution makes sense.

Example 1.13 Let the function f(x) = In|x|, x € R\{0}. This function is locally
integrable, so f € Li (R). To the considered function we assign the linear func-
tional defined by the formula

(In]x|, @(x)) = /(p(x)ln|x|dx , peDR). (1.203)
R

We shall show that the functional Ty = In|x| is a distribution on D’(R).
We have

—¢& o0
(In|x|,¢) = /(x)1n|x|dx = hrﬂl-o / go(x)ln|x|dx+/<p(x)ln|x|dx
R ‘ —00 €
= gl_l)rﬂl_()/[w x)]lnxdx . (1.204)

Considering supp(¢) C [—a, a], a > 0, then we can write

(infxl,¢) < lim / l(x) — o(~)| | Inx|dx . (1.205)

Because

xl—i>n£1|—0[¢( )—@(—x)]Inx =2 hm [(p (Ex)xInx] = 2¢/(0) l_i>rr_il_0(xln x)=0,

(1.206)
we have
(In|x|,¢)| <2 sup [xInx| sup |¢'(x)|, (1.207)
x€[0,a] x€[0,a]
hence
|(In|x|,9)| < ¢ sup |¢'(x)|, where c =2 sup |xInx]|. (1.208)
x€[0,a] x€[0,a]

Consequently, the functional Ty is continuous and as it is obviously a linear
functional, it results that Ty = In|x| is a first-order distribution on O’ (R).
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The derivative of this function is given by
d, |x| ! 1.209
—In|x| =pv. —. .
dx TP Y ( )

Indeed, we have

(0 1), ¢) = —(in|x|, ¢') = — / ¢/ (%)In |x|dx
R

=— lim [[¢'(x)— ¢ (—x)]Inxdx

e—>—+0
| [ 9(x) = o=
L o(x) — o(—x
= ggr%)[(p( ) —o(—¢)]lne + E}I{lf_o/ " dx . (1.210)
Because lim, _,¢[¢(¢) — ¢(—¢)]Ine = 0 and
T 1
lim de = (p.v. —,(p) = p.v. /de
e—>0 X X X
€ R

we can write
, 1
(Inlx)).¢) = {pv. —.¢

from which we get the formula (In |x|)’ = p.v. 1/x.

Example 1.14 Let the distribution p.v. 1/x? € D’(R), defined by the formula

1y o) —00) / x)
(p.v. xz,q)) = p.v. / ") ————dx = gkfﬂl_o dx, ¢ € DR).
R |x|>¢
(1.211)
The relation d/dx p.v. 1/x = —p.v. 1/x%, where the distribution p.v. 1/x is de-
fined by
(p.v. l,(p) = p.v. / de = lim de . (1.212)
P P e—>—+0 P
R |x|>¢

Indeed, since V¢ € D (R) we have

d oy L) o) ¢'(x)
(EP'V' ;,go) =— (p.v. ot ) = —p.V. / de = _ggrﬂl-o de
R
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Integrating by parts, we obtain

—&

d 1 L P(x) p(x)|> / ¢(x)
(dx p-¥ x’(p)_ gl—lgl-o x _Oo+ x|, * x? dx
[x|=e
S B R T g B
e——+0 € € X | oo x|, x
|x|=e
(1.214)
Therefore, we can write
d 1N P(e) —¢(0) (=€) —¢(0)
(dx P x’(p) N gl—lgl-o[ € —&
~ lim ¢(x)_z(p(0)dx. (1.215)
e—>—+0 X
|x|=e

Because lim,.— 1o((¢(€) — ¢(0))/& — (¢(—€) = ¢(0))/(—¢)) = ¢'(0) —¢’(0) = O the
previous relation becomes

d 1 . x) — (0 1
(a p-v. ;(p) = — lim wdx = (—p.v. F,(p) , (1.216)

e—>—+0 x2
[x|=e

resulting in d/dx (p.v. 1/x) = —p.v. 1/x2.

1.3.3.1 Properties of the Derivative Operator
Let D* be the derivative operator in the sense of distributions, and 7,, v the opera-
tor of translation and the symmetry operator, respectively.

The following properties occur:

D“Af +ug) =AD" f+uD%g, fge®dD , Aduel, (1.217)
i), i), ’ ’

fi— f=D*fi—D"f, (fifiexCD', fed, (1.218)

supp(D* f) C supp(f), feD, (1.219)

(7o f) = 7a(D" f), VaeR", DUf')=(-1)I(D )", feD
(1.220)
The first relation expresses the linearity of the operator of derivation and its demon-
stration is easy. Relation (1.218) shows the continuity of the operator and, for its
justification, we can write (D f;,¢) = (=1)1*( f;, D% ¢).
On the basis of the completeness theorem of the space D', we obtain

lim(D* fi,¢) = (~1)“'lim(f;, D ¢) = (-1)“/(f D" ¢) = (D f¢), (1.221)
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hence lim; D* f; = D“ f. For the proof of formula (1.219), we allow for f = 0,
x € A C R" Then, for any ¢ € D with supp(p) C A, we have (D* f¢) =
(=1)!“l( £, D* ¢) = 0, because supp(D® ¢) C A. From the last equality, it follows
D* f =0, x € A, and considering the complementaries of the sets on which the
distributions f and D* f vanished, we get the required relation.

Example 1.15 We have

flx) = H(x), supp(f)=[0,00] supp( f’) = supp(d) = {0} (1.222)
f(x) = 0d(x), supp(f’) =10} C supp(f) =[0,00] . '

As to formulae (1.220), the first equation shows the commutativity of the derivation
operator with respect to the operator of translation 7,, a € R".
For this, we can write

(D“(va f).0) = (-1)*!(f1—a D* ) = (=1)!*/( £ D*(v—u9)) . (1.223)

because D*(7,¢) = 74(D“ ¢).
The second formula of (1.220) expresses the relation between the derivation op-
erator and the symmetry operator v with respect to the origin of the coordinates.
Because Yg € D, we have D*(¢") = (—1)1*/(D* ¢)”, hence we can write

(D*(f*),¢) = (£D(¢") = ((=1)“'(D* f)", ), (1.224)
which proves the required formula.

Proposition 1.11 Let the function ¢ € C°°(R"), the distribution f € D’(R"), and
a € N§. Thus, the formula occurs

! al

Pipfi= Y —pfy.Dr f=Y L _phy.pehf
Bt+y=a Bly! f=a Bla—p)!

(1.225)

The formula (1.225) represents the Leibniz’s formula for the derivation of a product in
the space of distributions.

In applications, the point of interest is the calculation of the derivatives of the
function type distributions which have discontinuities of the first type, distributed
at some points or on certain types of manifolds of R".

We can state the following.

Proposition 1.12 Let f be a function of the class C!(R) except at the point xy, where
it has a discontinuity of the first order with the jump

so(f) = f(xo +0)— f(xo—0), (1.226)

where f(xo + 0) = limy_— 40 f(%), f(% — 0) = limy_—y,—o f(x). The formula
occurs

= f +50(f)0x - (1.227)
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Proof: For any ¢ € D(R), we can write

(f0) = ~(f¢) == lim / foldx + / fo'dx
xo+e

= so()e(x0) + (f/,0) = (F + (50 f) 00 ) - (1.228)
m

According to the adopted convention, f’ = d f/dx is the derivative in the sense
of distributions and f '=d f/dx represents the function type distribution corre-
sponding to the derivative f in the ordinary sense.

Generalizing the formula (1.227), we obtain the following.

Corollary 1.1 Let f € C(R) except for the points x;, i = 1,2,..., p, where it has
discontinuities of the first type with the jumps sy, (f) = f(x;i +0)— f(x; —0), then

5 p
=7+ salf)ox - (1.229)

i=1

Corollary 1.2 Let f € C*(R) except the point x, where both the function and its
derivatives up to order £ — 1 have discontinuities of the first type with the jumps
54 (1), corresponding to the function f), i = 0,1,2,...,¢ — 1. Then, we have
the formula

) = ”’+sto NoP= =0y =1,2,...,0. (1.230)

This last formula is obtained from (1.227) by successive derivation.

Example 1.16 Let the operator be P(D) = (d?/dx?) + (d/dx) — 2 and the function
type distribution

f =] P =0 (1.231)
X) = .
—e /3, x>0.

The relation then follows

PD)f=f"4 f—=2f=0d(x). (1.232)

We note that f is a continuous function on R, hence f € C°(R) and, in accor-
dance with the formula (1.227), we have

—e¥/3, x <0,

fix) = fix) = 23 x>0, (1.233)
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The distribution f/ = f is of function type which has at the origin a disconti-
nuity of the first order with the jump so( f') = (2/3) — (-1/3) = 1.
Taking into account that
~ ~2
- d d —e¥/3, x <0,

e — fl=— f= 1.234
f dx f dx2 —4e72/3, x>0, ( )

and applying (1.227), we obtain f” = f” + d(x), from which we obtain that
P(D) f = ().

Let 2 C R" be a bounded domain and u :  x [0,00) — R a real function of the
class C?(L2 x [0, 00)). We define the function type distribution u* € D’(R" x R),
that s,

% u(x,t), (x,t)e L x[0,00),
u*(x,t) = , (1.235)
0, otherwise .
This function type distribution can be written in the form
uw¥(x,t) = y(x)H(t)u(x,t), (x,t) e R"xR, (1.236)
where

1, Q CcR"*,

(%) = reLc (1.237)
0, x¢Q,

is the characteristic function corresponding to the domain 2 C R", while H is the
Heaviside function.
We can state the following.

Proposition 1.13 The formulae

qu*  du* "

S = 5 T He(x)x0(), (1.238)
Put Pur .

T = g T ho(¥)x0() +ug(x) x o(F)., (1.239)

exist for the function type distribution u* € D’(R" x R), where

" " iy = 0T () .
o (%) = U7 (%, li=to = x(¥)uo(x) . Uo(¥) = —— = x(x)ho(x) ,
t=-+0
(1.240)
and where the conditions ug(x) = u(x,t)i=40 € C°%Q), io(x) =

[Bu(x, t)/0t]|;=ro € CO(K2) are satisfied.
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Proof: For any ¢(x,t) € D(R" x R) we have

( ,(p) <u E) = / u (x,t)atdxdt

at
RrxR

—/dx/u*(x,t)g—(fdt = —/x(x)dx/H(t)u(x,t)i—fdt. (1.241)
R» R

Rn R

On the other hand, we can write

5 AN .
/H(t)u(x,t)a—‘fdtzfu(x, t)a—(':dt - u<p|g°—/a—”:¢(x,t)dt

<Y} 1
| g

o0 ~ (o)
—u(x,0 + 0)p(x, 0) — /a—” dt = —uo(x)e /
0 0

(1.242)

Thus, the previous relation becomes

(E,q)) = /X(x)uo(x)go(x,O)dx—l- / x(x)H(t)g—zdxdt. (1.243)

ot
Rn Rr xR
But we have
f 7 uof)o(x, 0)dx = ((x(x)uo(x)) x S(t), p(x, 1)) . (1.244)
Rn
because
(2 () mo() % O(2), 0(x, 1)) = (wo(%)(x). (3(8), (. 1))

(1.245)
Consequently, we obtain
(%»w) = ((x(%)uo(x)) x O(t), (x, 1)) + (x(x)H( )?;:,w)
B (ua‘(x) X O(t) + Ma(fyt)’ﬁ") ’ (1.246)

from which results the first formula of the sentence, because y/(x)H(t)(du/0t)

(@u*/3t) and uo(x)y(x) = ul(x).
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To get the second relation, we can write

yur_ 9 5L*+* X O(t _ du” +ug(x) x O (¢
9t2 ot | ot Ho(x)x0(t) | = 9t | ot tho (%) ()
d (ou* d . ,
t=-40

hence

32 2 52 2 .k * /

;Bt = Fat + g (x) X O(t) + ug (x) x 8(t), (1.248)
and thus the proposition is demonstrated. O

We note that this proposition generalizes the formula (1.227) and has important
applications in mechanics [14-18], because the variable may be interpreted as a
time variable.

Remark 1.1 For the functions uw*(x, t) = y(x) H(t)u(x, t) and

(x,t) e R" xR,

the hyperplane t = 0, (x,t) € R" x R of R" x R represents a discontinuity hy-
perplane. When crossing the hyperplane in the direction of the increasing of the
variable ¢ € R, the jumps of the two functions are:

uS(x) = u(x, 0+ 0) — u*(x,0— 0) = ul(x,0 4 0) = y(x)uo(x), (1.249)

a0k Ak a0k

() = T ,040) = 2 (6,0 -0 = 2 ,0.40) = (x)ialx)
(1.250)

where x € R".
Particularly, if 2 = R", the obtained formulae are simplified, because y(x) = 1;
we have uj(x) = uo(x) and § (x) = io(x), where ug, g € CO(R").

In connection with the distributions supports, we have the following properties:

1. supp(a f + fg) C supp(f) Usupp(g), fgeD'(R"), apfeR;
(1.251)

m

2. supp (Z aifi) C U supp(fi), fi€ D'R"), a;€R; (1.252)

i=1
3. supp(D” f) C supp(f); (1.253)

4. supp(a(x)D* f) Csupp(f), a(x)e€ CR"); (1.254)
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5. Let

P(x,D)= Y aq(¥)D*, a.(x)e C®(R")
la|=0

a linear differential operator with variable coefficients. Then, we have

supp(P(x, D)) C supp(f) . (1.255)

Proposition 1.14 Let f be a function of the class C! on R", except for a piecewise
smooth hypersurface S, where it has a first discontinuity; we have

of _of

— = — 4 0;cosa;0g , 1.256

8xi 8xi toi s ( )
where 0 is the Dirac delta distribution concentrated on the hypersurface S, o;
is the jump function across the hypersurface in the positive direction of the Ox;-
axis, and a; is the angle between the Ox;-axis and the normal to the hypersurface
oriented in the direction of its crossing.
To establish the formula, we see that f is locally integrable and thus we have

(0) == (#55) =~ ] s
R
0

o0
= (1) / dxy...dxj—dxy4q...dx, / f(x)ajdxi. (1.257)
—00 '

T PR T
/ f(x) aQ‘C’fdxl: lim / F) 2 d; + / F(x) 22 4,

i e—>—+0 0x; 0x;
B x+e
= lim | (fx)e@) [ e’ + (fx)0)Z,, — / /<ﬂ(x) ’ flx)dx;
e—>—+0 e X +e dx; i
—0o0
- / o) 5 fx)dx | = —oig(x™) - / 0(x) gz(;)dxi, (1.258)
x e —oo
where 0; = f(%,..., x5t 0K, xr) = flef, ..., x*,xF =0,
% 1.+, %) is the jump of the function f at the point x™ € S, when crossing the

hypersurface S in the positive direction of the Ox;-axis.
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Thus, we get

d d .
(ai,go) = / gif)w(x)dx—i—(—l)’_]/Oigo(x)dxl...dxi_ldxi+1...dxn.

Rn S

(1.259)

If we note with «; the angle formed by the Ox;-axis with the normal to the
hypersurface directed for increasing x;, then

(—1)i_1/Oiga(x)dxl...dxi_ldxi+1...dxn = /oiga(x)cos a;dS, (1.260)
S s
where d S is the area element.

Taking into account the definition of the Dirac delta distribution concentrated on
the hypersurface S, the previous formula becomes

/ oip(x)cos a;dS = (o;cos a;0s,¢) . (1.261)
s
Substituting this in (1.259), we obtain
of o (S
(8xi ,<p) = <3xi’¢) + (0icosaids, ), (1.262)

from which we obtain formula (1.256).

We notice that this formula is a generalization of the formula (1.227) established
for the case n = 1.

In particular, for the real function f of class C(R?), with the exception of the
piecewise smooth surface S C R3, where it has discontinuities of the first order
(Figure 1.2), we have the formula

af(x,y, df(x,y,
fley.2) S0 2) Lo cosass (1.263)
0z 0z

where a3 is the angle between n and k, 05 = f(x,y,z + 0) — f(x,y,z —0)and

(03cos a3ds, @) = /03 cos azp(x,y,z)dS , ¢ € DRY). (1.264)
s

Regarding formula (1.256), an important case in mechanics is when the hyper-
surface S C R" is a cylindrical hypersurface.

Let I' C R? be a piecewise smooth curve in the Ox y-plane and let us denote by
S = I'xR C R3 the cylindrical surface with generators parallel to Oz with respect
to the orthogonal reference system Oxyz (Figure 1.3).

The curve I' of the Oxy-plane is the director curve of the cylindrical surface
S = I' x R C R? and the normal unit vector n at the point M(x,y,z) € S
is equal to the normal unit vector n* at the point P(x,y) € I'. Hence, between
the differential element of area dS of the cylindrical surface S = I’ x R and the
differential element ds of the curve arc I leads to the relation dS = dzds.
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J Y
9] - >
i H(2,9,0)
T
Figure 1.2
A? —
M(z,y, )
n
S
Y
o P(x,
/ n*
T T
Figure 1.3

Proposition 1.15 Let the function f : R® — R of the class C}(R?3), except for
cylindrical surface S = I' x R C R3, where it has a first-order discontinuity. Then,
the following formula results

f(x.y.2) _ 3f(x.y.2)
dy dy

+ o, cos(n, y)os, (1.265)

where 9/dy, d/dy are the derivatives in the sense of distributions and in the ordi-
nary sense, respectively, O s is the Dirac delta distribution concentrated on the cylin-
drical surface S = I' xR, 0y = f(x,y+0,2)— f(x,y—0,2) = lim, 1o f(x,y+
€,2) = limy— 49 f(x,y — €,2),(x,y,2) € S, is the jump of the function f at the
crossing of the cylindrical surface in the positive direction of the Oy-axis, and
cos(m, y) is the cosine of the angle between the Oy-axis with the normal to the
surface S, oriented in the direction of its crossing.

The Dirac delta distribution 05 = 0 rxr € D’(R%) acts according to the formula

(0s,9) = /(p(x,y,z)dS = /dz/(p(x,y,z)ds, Yo € D(R?) . (1.266)
S R T
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Hence, V¢ € D(R3) we have

(0ycos(n, y)ds,¢) = (ds,cos(n, y)p) = /dz/cos(n,y)w(x,y,z)ds. (1.267)
R T

Proof: Forany ¢(x,y, z) € D(R?) we get

af B dg . , . ,
(5,(/)) =- (f, 5) = —R[ feoydxdydz = —]R{/dz]k!2 flx,y,2z)¢,dxdy .

(1.268)
On the other hand, we can write

Y

'—e oo
[ sojaxay = [ax [ gojay= [ax{vm | [ sy + [ fopay
R2 R R —

R o'e) Y/+€
(1.269)
There results
Y —e oo
1- / / — 1 Y_/—g
e_l)rio / f(deY + / f(pydy e—lglf—o fx,y,2)e(%, ¥, 2)| =00
AN Ve

'—e o .
df df
oo — — — —
+ flx, v, 2)e(x, . 2) 17 /way dy /way dy
e he

B
= —¢(x,7. 2)[ f(x,y" +0,2) — f(x,y" —0,2)] —/90(% y,z)a_){dy
R

B
= —wa(x,y’,Z)—/w(x,y,Z)%dy, (1.270)
R
where

oy =0y(x,y,2) = f(x,y +0,2) = f(x,y - 0,2)

li "+e,2z)— li Y —£,2), 1.271
Jm fley'tez)— im flxy'— e 2) (1.271)

represents the jump of the function f at the crossing of the cylindrical surface
S = I' x R C R? in the positive direction of the Oy-axis. Thus, we get

/fgu;dxdy = —/gu%dxdy—/o),(p(x,y/,z)dx, (1.272)
R? R2 R
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and the following relation occurs
(Z—f,(p) = /dz/ay(p(x,y’,z)dx ~|—/<p(x,y,z)g—fdxdydz. (1.273)
Y R R R? '

If we denote with ds the element of arc on the curve I, then dx = dscos(n, y),
where (n, y) is the angle between the O y-axis and the normal to the curve I" at the
point (x, y’).

Consequently, we have

/dz/oyga(x,y',z)dx = /dz/oyga(x,y',z)cos(n,y)ds, (1.274)
R R R T

which allows us to define the Dirac delta distribution 0 rxg € D’(R?), concen-
trated on the cylindrical surface S = I' x R C R?, by the formula

(Orxr,@(x,y,2)) = /dz/go(x,y,z)ds, Yo € @(R3). (1.275)
R r

Consequently, we can write

y cos(n, y)o(x,y, z)dS

-/
/d /OY cos(m, y)p(x,y, z)ds . (1.2706)
R

r

(0y cos(n, y)O rxr, @)

With these results, one gets

9 d
(%w) = (8_;[ + oy cos(n,y)és,go) , (1.277)

giving the requested formula. O

The obtained derivation formula can be generalized as

8f(x,2) _ 3f(x 2)

Bxi 8xi

+ oy, cos(n, x;)0s , (1.278)

where = S x R € R"t! is the cylindrical surface with generators parallel to
the Oz-axis with respect to the orthogonal reference system Ox;x;...x,z and
S C R"is a piecewise smooth surface.

The function f : R"*! — R is considered to be of class C'(R" 1) except for the
cylindrical surface ¥ = S x R, where it has a first-order discontinuity.

Obviously, o; is the jump of the function f at the crossing of the cylindrical sur-
face X in the positive direction of the Ox;-axis and (n, x;) the angle between the
Ox;-axis and the normal to the surface ¥, oriented in the direction of its crossing.
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The Dirac delta distribution 0y = 0 xR, concentrated on the cylindrical sur-
face ¥, acts according to the formula

(0s,9) = /(pdsz = /dz/(pds, Vo € DR"TY) . (1.279)

z R S

Example 1.17 Let the function f : R? — R

—aj2 for|x|<ay,y>0, a>0,

flx,y) = — 2 H(y)H(ay — |x) =
(x,y) = 5 () H(ay )= 0 otherwise .

(1.280)

We shall demonstrate that the function type distribution Ty = f € D’(R?) is
the fundamental solution of the operator
9? 1 9

P(D) = —

92 — ﬁa—yz , a>0 , (1281)

thatis, P(D) f(x,y) = O(x, y), by using formula (1.256).

We observe that the function f has the value —a/2 inside the cone I'T (Fig-
ure 1.4) and is zero outside it. The frontier of the cone I'T is the curve I" which
consists of the branches I and I, I' = I'7 U I, defined by the parametric equa-
tions

IN:x=at, y=-t, te(—00,0],
I:x=at, y=t, tel0,00). (1.282)
The curve I' = I U I, represents the discontinuity curve at the crossing of

which the function f has a first-order discontinuity. The derivatives in the ordinary
sense will be

5 .
I TN 123
dax ay

Applying the formula (1.256), we obtain
af
T Ox|r cos(n1, %) Oy + 0x|r, cos(ny, x) |00,

0
% = 0yl cos(ny, %) O, + 0y, cos(ny, %) n,0r, . (1.284)

Figure 1.4
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In Figure 1.4, ny and n, are the normals to I and 75, respectively, oriented in the
rising sense of the variable x, and ny, n} are the normal to I} and I3, respectively,
oriented in the rising sense of the variable y. Taking this into account we obtain for
the function jumps and the directors cosines the values

a a 1 1
Oxlr, = 5 Oxlr, = 3 cos(ny, x)|ry = it cos(ny, x)|r, = Niewrnk
a a a
oyln = oyl = 5 cos(n, y)lr, = Nk cos(ny, )|, = Nk
(1.285)
hence
of —a a of —a? a?
— = or+ or,, =— = or— or, .
0x 21+ a? 2414 a? dy 2J1+a? 24/1 + a2
(1.286)
For the second derivative we have
02 f —-a 9 a )
— =) _——9r, 1.287
%2 2J/1+ a? 0x r1+2v1+a2 ox (1287
wherefrom, Vo € D(R?) it results
PE N6 (s Y & (s O
00 ) T ot e " ix) T 2w a T ix
0 0
= ¢ ¢ ¢ (1.288)

—— | —dsy — —— | —ds,.
2«/1-|—a2r ax 2«/1-|—a2r ax
1 2

Taking into account the parametric representations (1.282) of the curves /7 and
I, we obtain

ds; = V1+a2dt, ds; =1+ a2dt. (1.289)

Therefore, the expression (1.288) becomes

(5)-

9 T
w(at’_t)dt_ E/ (p(at’ t)dt

lwla
8'\0

ax 2 0x
0
[Too(-att)  dg(at, 1
_ o @(—at,t B @(at,t
= 2/|: 9 o ]dt. (1.290)
0

Proceeding similarly, we have

2 f —at 0 a? 0

°f_ AP S Ll 1.291
W 2itardy ' 2J/Itatdy (290

57



58 | 1 Introduction to the Distribution Theory

hence
0 f 2y 2 Ty
a a
(a—yzt/)) = > / Ew(at,—t)dt-l—T/E(p(at,t)dt
AN o
o0
—a—Z/i—mﬁt—i-i at,t) | dt 1.292
=5 | [gyetann+ g et di. (1.292)
0
Because
d _ dg(at,t)  dg(at,t)
dt(p(at’ f=a ax + ay
dp(—at,t)  dp(—at,t) = dp(—at,t)
T T S W (1.293)
from (1.288) and (1.292) we get
az_f iaz_f — lfi tt tt dt
Ix2  a? 3))2#) ) dt[(p(_a 1) T elat )]
0
=¢(0,0) = (9(x, ) (. y)) , (1.294)
that is,
02 1 9?
P(D)f = % - ﬁ% =0(x,y). (1.295)
1.3.4

The Fundamental Solution of a Linear Differential Operator

Let the linear differential operator with constant coefficients be P(D) : D’(R") —
D’(R™), having the expression

PD)= Y a,D*, aeNy, xeR", (1.296)

lal=<t
where the scalars a, € I represent the operator coefficients.

Definition 1.27 We say that the distribution E(x) € D’(R") is the fundamental
solution for the operator P(D) if it satisfies the following relation:

P(D)E(x) = 6(x) . (1.297)

Based on this definition, we can say that the distribution of function type given
by (1.231) is the fundamental solution for the operator P(D) = (d?/dx?) + (d/dx) —
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2. Itis verified that the distribution of function type f; = H(x)(e*—e™2¥)/3,x € R
is the fundamental solution for the same operator.

It follows that the fundamental solution of an operator is generally not unique.
Thus, if f € D’(R") satisfies the equation P(D) f = 0 and E is a fundamental
solution for P(D), then E; = f + E is the fundamental solution, because on the
basis of linearity of P(D) we can write

P(D)E, = P(D)(f + E) = P(D)f + PD)E =0 . (1.298)

Proposition 1.16 Let there be a linear differential operator with constant coeffi-
cients P(D) having the expression

n dn—l

d d
P(D) = a0 — +a1q—— +- -+ a1+ an, a0 #0. (1.299)

Then, the distribution of function type E € O’(R"), that is,
E(x) = H(x)Y(x), (1.300)
is the fundamental solution for P(D), where H is the Heaviside function and Y the
solution of the homogeneous equation P(D)Y = 0, verifying the initial conditions

1
Y(0)=0,Y'(0)=0,...,Y*20) =0, Y"V0)= —, ag#0. (1.301)
ag

Proof: We note that the function Y is infinitely differentiable and HY is also in-
finitely differentiable, except at the origin where it has a first-order discontinuity
with the jumps

1
so(HYP)=YP(0), p=012,....,n—2, soHY" ))=v0""D0)=—.
ao
(1.302)
We can write
p—1
(HY)P) = HYW) 43 " so(HY o= 0, p=1,2,..,n.  (1.303)
i=0
Consequently, we have
1
(HY)P = HY" |, p=1,2,...,n—-1, (HY)"=HY" 4+ —0.
ao
(1.304)

Because P(D)Y = 0, we have P(D)(HY) = HP(D)Y + 6 = 6.

The fundamental solution E = HY is a function of class C°°[0, 00) and is
unique because of the uniqueness of the solution Y of the Cauchy problem for
the equation P(D)Y = 0. Thus, the proposition is proved. O
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For example, for the operator
d2

P(D) = 7

+w?, oeR\{0} (1.305)
we have Y = (sinwx)/x, because P(D)Y = 0 and Y(0) = 0, Y/(0) = 1 and thus
the fundamental solution is

0, x <0,
E = H(x)Y(x) = { sinfwx) o (1.306)
—— x=0.

Example 1.18 Let there be the linear differential operator

PD——3—2+£+2i+1 x,y) € R2 1.307
( )_ axz 8Y2 8Y ’ ( ’Y) ’ (' )

and the distribution of function type E(x, y) € D’(R?),

0, y<0, xeR,

Ex, =
) je V[H(x+y)—H(x—y)], y=0, xeR,

(1.308)

where H € D’(R) is the Heaviside distribution.

We will show that the distribution E € D’(R?) is the fundamental solution of
the operator P(D), namely P(D)E(x, y) = O(x, y).

We notice that E(x, y) has the value e 77 /2 inside the cone I' T and is zero outside
it (Figure 1.5).

For any ¢ € D(R?) we have

- Pe P e dgp
ro)E 0 = - (5.55) + (5.55) -2 (5.5) + )

¢ ’¢ dg
=— | B2 E=* -2 | EE E .
/ 2 dxdy + / oy? dxdy / By dxdy + / pdxdy
r+

r+ r+ r+

Figure 1.5



By calculation of the four integrals, we obtain:

9? 9? 1 Y 0
- 2 79 L
( E, 8x2) /Eaxzdxdy Z/e dy/
0

- [aw(y,y) 3<p(—y,y)] dy

0x 0x

e [aw(t, H (-t t>] i

oo
1 _,[de(—tt)  Odp(tt)
= [ —-= —t
/ 2e [ 7y + + o(—t,
0

dy

1
R —

r+

1.3 Operations with Distributions

t) + o(t, t)i| dt

0 [es)
1
—2E,a—¢ =—2/ —e_Ya—wdxdy=— / dx/e_ya—(pdy
ay 2 ay ay
r+ e X

- 7dx fe_y a%0)211}) = 7e_t[<p(—t, t) + (b, 1))dt

0 x

—/e_}’(p(x,y)dxdy,

r+
1 _
(E, @) = / Ee Yo(x,y)dxdy .
r+

Consequently, we obtain

0

oo

ad
(PO)E9) = [ 37 [ott.0+ ot - 22

0x
0

_0p(t, 1) n dp(—t, t)  dp(—t, t)j|dt.

ay dx ay

(1.309)
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Taking into account the relations

do(=t.t) _ dpl=tt) _ dp(—t,1) de(tt) _ de(tt)  d(t)
= — = 1.31
dt ox oy & o T oy o (1310

the previous one becomes
[eo]
0

namely P(D)E = d(x, y).

(P(D) ¢ _t(¢ tt) + ¢ (=t 1)ldt = ¢(0,0) = (d(x,y), ¢(%, ¥)) »

I\Jln—t
Q—A|Q_‘

(1.311)

1.3.5
The Derivation of the Homogeneous Distributions

The distribution f € D’(R") is homogeneous and of degree 1 if for a > 0 it
satisfies the relation

flax) = a* f(x), xeR", (1.312)
or, equivalently
" tr(f), o) = (fixne (Z)) . 0 DRY). (1313)

It is known that the homogeneous functions of degrees A and of class C!(R")
satisfy the Euler equation

> of =Af. (1.314)

0x;
i=1 '

In fact, (1.314) fully characterizes the homogeneous functions of degree 4, since
this equation represents the necessary and sufficient condition for a function to be
homogeneous of degree 4.

This result is valid for functions which translate to the homogeneous distribu-
tions. Suppose that f € O’(R") is a homogeneous distribution of degree 4.

Then, we can derive the equality (1.313) with respect to @ > 0, on the basis of
Proposition 1.9, and we obtain

1 " 3 n
(n+ l)a"—’—}'_](f(x)yQﬂ(x)) = —? <f(x1,,,,,xn),;x a;pl (a S %)) .
(1.315)

Considering a = 1, the relation (1.315) becomes

"9
(n+A)(fe) = (Z g(xif),w) . Vo e DR"), (1.316)
i=1 '
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wherefrom
Xn:i(xvf)—(njui)f (1.317)
i—1 Bx,v ! - ’ ’
hence
ins—f =1f, feD'R". (1.318)
= oM

Let us now show the converse. We acknowledge that the distribution f € O’(R")
satisfies (1.316). Differentiating with respect to a > 0 the fraction

a;,1+n (f(x)’tp (%%)) (1.319)

and taking into account (1.316), it results that the derivative is zero. This means
that the fraction is reduced to a constant.
Hence, we can write

(f(x),st7 (%%)) =ca’t". (1.320)

To determine the value of the constant, we take ¢ = 1 and we obtain ¢ =
(f(x),¢(x)), hence

(fere(2)) =TSm0, YoeD, (1.321)

which shows that the distribution f € D’(R") is homogeneous and of degree 1.
The homogeneous distributions with the singularities generated by homoge-
neous locally integrable functions are of interest in applications.
Let there be the homogeneous function f : R"\{0} — I" of degree 1, with a
singularity (discontinuity) at the point x = 0, to which we assign the functional
Tr: DR") — I by the formula

(Tf,p(x)) = lim / flxlplx)dx, Vg e DR (1.322)

llxll=e

Obviously, in the case of the convergence of the integral (1.322), the functional
T is linear and continuous, hence Ty € D’(R").
We note by F,(¢) the integral

Flg) = / fe)p(x)dx, ¢ e DR"), supplg) C Bo,  (1323)

e<l|lxll<a

where B, is the open sphere of radius a, centered at the origin of the coordinates.

63



64

1 Introduction to the Distribution Theory

We pass to spherical coordinates, expressed by the relations

x; =rsin6;sinb,...sin6,_,sinb,_,
X, =rsinf;siné,...sin6,_,cos b, ,

x3 = rsinf;siné,...sin6,_3cosb,_,,

Xp—p = rsin 6y sin 0, cos 05,
X,—1 = rsin 6; cos 6, ,

Xp = rcos Oy, (1.324)

where
r>00¢el0n], i=1,n—2, 0,_1€e[02m), (1.325)

and where the Jacobian of the transformation is

B(xl,xz,...,xn)
1 01,0,,...,0,_1) =
Jr 01, 02 )= 5061, 0, 00)
= " l5in"20;sin" %0, ...sin 0,5 : (1.326)

the expression (1.323) becomes

a m T 2®
Fe(p) = ////f*(r, O1,..., 0u—1)@™(1,01,...,0,—1)r" 1drds; , (1.327)
£ 0 00

——
n—2
where ds; is the element of area of the unit sphere, and f*, ¢* are the expressions
in polar coordinates of the functions f and ¢.
Because f is a homogeneous function of degree 4, the formula (1.327) becomes

a w m 2m
B = [ [ [ [P 00 00 (0 00 s
e 0 00
A,—J

n—2

(1.328)

Taking into account that the functions f*(1, 0y,..., 0,—1) and @™ (1, 01, ..., 0,,—1)
are bounded, it results that the integral (1.322) is convergent together with the in-
tegral lim, o [ r**"~1dr.

Thus, the functional T, given by (1.322), does exist if A + n — 1 > —1, namely
A>—n.

In particular, if A > —n + 1, then the homogeneous distribution of function type
Ty exists.
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We shall establish the formula for the derivative of the homogeneous distribution
T of degree A > —n + 1, taking into account (1.322), we have

Ty dp\ . e
(axi"”) (Tf o )“ﬂfﬁo / J() g, 0

[[xll=e

] 9
=— lim / 8—xi(f<p)dx— / —f(/)dx , (1.329)

e—>40 axl
lIxll=e lIxll=e

where 9/dx; is the derivative in the usual sense.

We consider ¢ € D(R") with supp(¢) C B,, where B, is the open sphere of
radius a centered at the origin. Because ¢ > 0 is arbitrary, we will take ¢ < a.
Thus, the integrals of (1.329) are performed on a spherical crown ¢ < r < 4, so
that we can apply the Gauss—Ostrogradski formula.

Therefore, we can write

/ 5, (o —/fwcosaidse, (1.330)
1 Ss

lIxll=e

where S, is the sphere centered at the origin, of radius ¢ > 0, dS, is the corre-
sponding area element and «; is the angle formed by the outer normal to S, and
the Ox;-axis.

We mention that the functions ¢ and d¢/dx; are zero on the sphere B, and
beyond it.

Substituting (1.330) in (1.329), we obtain

9Ty df
= 1. - 1. i .
( 0x; ,W) e—lﬂl-o 0x; pdx + g_l)rr_il_()/ focosa;dS,
llxll=e
of
=|3? + hm focosa;dS, (1.331)
Xi e—>—+
55,

In connection with the evaluation of the second term from the right-hand side of
the formula (1.331) we introduce:

Definition 1.28 We call residue of the homogeneous function f of degree A > —n+
1 at the singular point x = 0, corresponding to the Ox;-axis, the number given by
the expression:

(res f)i(0) = / f(x)cos a;dS; . (1.332)
s

Proposition 1.17 Let the homogeneous function f : R"\{0} — I of degree A have
the origin, x = 0, as a singular point. Also, if 4 > —n + 1, then the derivative

65



66

1 Introduction to the Distribution Theory

of the homogeneous distribution of function type Ty given by (1.322) is calculated
according to the formula

of
Ty ] 0x;
ax; N éf

8xi

, A>—-n+1,

(1.333)
+ O(x)(res f)i(0), fAl=-n+1.

Indeed, passing to polar coordinates and taking into account that dS, = £"~'dS;
and that f is homogeneous, we can write

lim / focosa;dS,
S

e—>—+0
1 T 2m
= lim /...//f*(s,01,02,...,Bn_l)go*(e,91,92,...,0n_1)cosaie”_1d51
e—>—+0
0 00
= lim [ """ f(x)g(ex)cos a;dS; , (1.334)
e—>—+0
S1

where x € Sy, S is the unit radius sphere.

Since the integral from the right of (1.334) is taken on the unit sphere and the
functions cos @;, f(x) do not depend on the radius ¢ of the sphere S, from (1.334),
we obtain

0, ifAl>-n+1,
egfflf_o/ flx)cos a;idS, = (p(O)/ f(x)cosa;dS,, ifA=—-n+1,
Se 5

(1.335)
namely
lim / f(x)g(x) cos a;dS, = 0 R
ey (8(x)(res f)i(0),¢), ifA=—n+1.
(1.336)

Substituting (1.336) in (1.331), we obtain the formula (1.333) and the proposition
is proved.

We note that, using the exterior product A, the Gauss—Ostrogradski formula can
be written

/ZdelAwAdxn
= O
o

= /(—1)i_1ai(x)dx1 A Adxig Adxigq Ao Adx, (1.337)
EYe)
where Q C R" is a bounded domain, and 9% is its border.
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Using the Gauss—Ostrogradski formula, the residue (1.332) can be written in the
form

(res £):(0) = (—1)i—1/ Fle)dxy A-o- Adxi—g Adxipr A Ada, , (1.338)
T
where U, is the closed sphere of the unit radius centered at the coordinates origin,

because cos a;dS; = (—1)""dx; A -+ Adxi—g Adxi4q Ao Adx,.

Example 1.19 To illustrate the application of the formula (1.333), we establish the
following relations

231?”/2 N
A—s = —(n=2)0(x)$1 = —(n—2)6(x)r(n/2) . xeR", n>3, (1339
Alnr =2nd(x), n=2, (1.340)
where r = ||x||, I'(z) = fooo e 't*7ldt, Rez > 0, is the Euler gamma function,
z = x + iy, S; is the area of the unit radius sphere in R” and A is the Laplace
operator.

We consider the function f(x) = 1/r"2, x € R*\{0}, n > 3, which is homoge-
neous and of the degree A = —n + 2.
Taking into account (1.333), the function f is locally integrable and we have

of _of
il (n—|—2)—. (1.341)

We observe that the function g(x) = x;/r" is also homogeneous and of degree
—n+ 1
Consequently, we can apply the formula (1.333), thus we may write

PfPf
ﬁza—xizjt —n+2)0 /—cosadsl
r? — nx} 5
= () — 5+ (En+2)0(x) [ x7dS (1.342)
S1
From (1.342) we obtain, by summing,
1 -
S = A (n +2)0() /ds1 —n+2)510(x), (1.343)

because A = 1/r" 2 =0, A = (32/dx2) + --- + (3/0x2).

Observing that S; = 2t™/?/I"(n/2), we obtain the formula (1.339).

Particularly, for n = 3 we have Al/r = —4md(x).

As regards the formula (1.340), we consider the locally integrable function
hix) =1Inr, r = /x2 + y2, (x,y) € R2\{0}, for which we can write

d d 2x
_1 2 2__1 2 2\
I n(x +Y)_3x n(x®+y°) =
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Because the function F(x) = 2x/(x? + y?) is a homogeneous function of degree
A = —1, we can apply the formula (1.333) and read

2

9 2, .2 d 2, .2 x
wh’l(x +Y ) = wln(x +Y )‘I—Z(S(X,Y)/ m Ccos ad51 , (1345)
S1

where S; is the unit circle and cos a = x//x2? + y2.

Consequently, we get

92 In(x? + y?)

32
o = wm(xz + %) +20(x, y)/x2d51 : (1.346)

S1
Similarly, we have

PIn(x? +y?)  PIn(x? +y?)
dy? B dy?

+26(x,y)/ y2ds; . (1.347)
S1

By summing up, and because A In(x2 + y2) = 0, we obtain the formula (1.340).
The function f(x,y) = y3/(x? + y%)?, (x,y) € R*\{0} has an integrable singu-

larity at the origin of coordinates and is a homogeneous function of degree 4 = —1.
Consequently, we can apply the formula (1.333) and get

af 4xy3

of ___A4xyT 134

b it (1.348)
2242 _ 2

O ¥y Bx =v) 3Ty, (1.349)

dy (¥ +y) 4

because (res f).(0) = 0 and (res f), (0) = 3m/4.

The formula (1.339) can be derived using the Green second formula. In this
case, because the function f(x) = 1/r""2, x € R"\{0}, n > 3,r = ||x| is locally
integrable, for ¢ € D(R") we have

1 1 1 . 1
(A rn_—zﬂﬂ) = (rn_z,Aw) = / pr= Apdx = 81_1>rr_‘1_0 pr= Apdx . (1.350)
Rn

r>e

Further, we shall apply the Green second formula
_ do _ of
/(fA(p—guAf)dx—/( %—q)ﬁ)ds, (1.351)
Q S

where n is the outer normal to the surface S, bordering the bounded domain 2 C
R", S being the spherical crown ¢ < r < a, with supp(¢) C B,; the support of ¢
included in the sphere centered at O and of radius a.



1.3 Operations with Distributions
We have
1 1 1 d¢ ad 1
/ rn_zAgadx = / rn_zAgadx:—/ [rn—ZE_(‘aﬂ (rn—Z)] ds,
r>e e<r<a

B

(1.352)

where S, is the sphere centered at the origin and of radius e.

This occurs because A(1/r""%) = 0 for r > &, and ¢, dp/dr are zero on the
sphere U, and beyond. We notice that (d/dn)¢ = gradg - n = (9/dr)p and
(O/0m)(1/r"2) = (@/0r)(1/r").

Consequently, we get

0 -
/ rnl—z Agdx = — [8n1_2 o), 2 Zw(S)] Se, §€U., (1353

ar en—1
namely
1 _en™? dp(E)  (n—2)m"/?
/WA*”dx__r(n/Z) o T 6 (1.354)

because S, = "~ !x™?/I'(n/2) is the area of the sphere of radius & from R".

For ¢ — Owe have & — 0, hence (A(1/r"™2),¢) = —((n — 2)x"?/ T (n/2))p(0) =
(—(n = 2)("/?/ T (n)2))d(x), @) giving the formula (1.339).

We note that this result is correct because the distribution A(1/r"~2) has as sup-
port the origin.

1.3.6
Dirac Representative Sequences: Criteria for the Representative Dirac Sequences

The Dirac delta distribution 0 (x) € D’(R") plays an important role in operational
calculus, in the theory of electrical systems and the construction of fundamental
solutions of linear differential operators with constant coefficients.

In many theoretical or practical problems (Fourier series, Fourier integral, elas-
ticity problems, and so on) occur sequences of locally integrable functions that are
convergent in the sense of convergence in the distribution space, having as a limit
the Dirac delta distribution 0. Such sequences of the locally integrable functions
are called the representative sequences. The functions which form the representa-
tive sequences O are also called the impulsive functions.

We can say that any term of such a sequence represents a certain approximation
of the Dirac delta distribution 0; this is very important from the practical point
of view. Indeed, assuming that we want to obtain numerical values in a problem
in which the results are expressed as distributions, we can substitute — for the
calculations — a singular distribution by a term of a corresponding representative
sequence. Thus, the obtained formulae can be used in calculations by the com-
puter, obtaining a desired approximation, depending on the chosen term of the
representative sequence.
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Definition 1.29 Let f; : R" — C,i € N, be a sequence of locally integrable func-
tions. We say that ( fi);>1 is a Dirac representative sequence if on the space O’(R")
we have lim; .o fi(x) = 0(x), thatis,

Vg € DR") = lim (fi(x),0(x) = (3(x). ¢(x)) = ¢(0) (1.355)
We will show that continuous functions and locally integrable functions with cer-

tain properties allow for the construction of the representative Dirac sequences.
Thus, we mention the following proposition.

Proposition 1.18 Let there be f € C%R"), f : R* — C with the property
Jr» f(x)dx = 1; then the family of functions f., ¢ > 0, having the expression

1
fe(x)z—f(i) , xeR", e>0, (1.356)
en £
forms a representative Dirac family; hence

lim fe(x) = 0(x). (1.357)

e—>—+0

Proof: For any ¢ € D(R") we have

(fe (). 0() = — / F(E)oxdx, e>o0. (1.358)

e &
]Rn

Performing the change of variable x = eu, x;, = €uy, k = 1, n, the Jacobian of
the transformations is

8961 8x1 8x1
3 3 e
(%1, %2, ..., Xn) %Ll 1:¢2 u
J(u)=m= : : : :
0x, 0x, 0x,
ou;  duy  duy
e 0 0 0
0 ¢ ... 0 O
=1 ¢ 1 i =et (1.359)
0 0 e
0 0 0 ¢
thus we can write
(fe(x)ﬂﬂ(x)):/f(u)w(w)du- (1.360)
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Hence, it follows that

hm (fe(x), @(x)) = hm/f(u )o(eu)d

/f(u J¢(0)du = ¢(0) = (9(x), ¢ (x)) - (1.361)

Example 1.20 Let there be the function

n 1
X)=————, xeR", n>2, 1.362
f( ) S (”xnz + 1)(n+2)/2 — ( )
where S; represents the area of the unit radius sphere from R". Obviously, f is a
continuous function, hence f € COR").
Using the polar coordinates (r, 61, 60,,...,6,—1) € R", whose connection with
the Cartesian coordinates (x1, x, ..., %,) € R" is expressed by the relations

x; =rsinf;sinb,...sin6,_,sin6,_,

X, = rsinf;sinb,...sin6,_,cos 6,

x3 = rsinf;sinb,...sin6,_3cos b,_,

Xp—2 = 1 sin 6y sin 6, cos 65

X,—1 = rsin 6 cos 6,
X, = rcos 6, (1.363)

where

r>0, 6;€[0,n], i=Ln—-2, 6,_1€[0,2n), (1.364)
we have

oo oo
n pn—l
/ flx)dx = 5_1/ r2 + 1)t /dQ dr = n/ (r + 1)(n+2)/2d
R» 0 0

(1.365)

where dQ represents the area element of the unit radius sphere from R", centered
at the origin.
We observe that the Jacobian of the transformation (1.363) is

(X1, X2, ..., %)
8(1’ 01,02,... Bn 1)

= " lsin"20;sin" 20, ...sin 0,—; , (1.366)

J(r,601,0,,...,0,—1) =
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so that d© has the expression
de = %dﬁldez...dﬁn_l . (1.367)
r

Regarding the volume element dx = dx; ...dx, in polar coordinates (1.363) it
has the expression

dx =dv = J(1,04,...,0,-1)drd6;...d0,_; = r"'drdQ . (1.368)

Making the change of variable t = 1/2, t € R, we have

oo [eo]

n—1 n—1
I= ridr = r dr
(1’2 + 1)("+2)/2 pnt2 1+ (1/1’2))("+2)/2
0

0
e} 0
_/ dr _ / dt
- 3 e t22 — | 21 £ e t22
s (14 (1) J 21+
oo
= l/(1 + 1)~ FAR2Gy = L (1412 - (1.369)
2 2 (=n)/2 0 '
0

Taking into account (1.365) we can write [, f(x)dx = landas f € C°(R")
follows that the two conditions of Proposition 1.18 are fulfilled. With this on the
basis of (1.356) we have

_ 1 n €y 1 n nb2 1
fg(x) - en S]f(n) - en Sl € (||x||2+€2)(n+2)/2
n ¢ >0 (1.370)
= ——— ¢ .
— ,
St (|lx|? + e2)"

@/ n
and thus lim, 4o fe(x) = 0(x), namely f, (—R_FL O(x).
e—>—+0

Thus, the family of functions f.(x),e > 0,x € R" is a representative Dirac
family.

Particularly, for n = 2 we obtain

f 2 e >0 1.371
Y =———, ¢ , .
e(x Y) 2 (xz + Yz + 82)2 ( )
hence
1 2

lim ——— = d(x,y). (1.372)

e—>—+0 TT (xz + Y2 + 52)
Example 1.21 Let there be the function

1 —isr? n
flx) = —e , xeR". (1.373)
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Obviously, f € CO(R") and
_ 1 2 _
R/n‘f(x)dx NGE k];llR/exp( xp)dxp = 1.

According to Proposition 1.18, we have

11 [Eds ;
fi(x) = Ty (— ’;2 ) , xeR", (1.374)

and lim,— ¢ fe(x) = O(x).
In the Fourier integral theory, the Dirichlet function is used in the form

sin nx
lim = 0(x).
n—0o0 X

Particularly, for n = 1 we obtain

2
81_1510;7 (—x) = d(x). (1.375)
Particular forms of Dirac sequences of one variable have been used in connection
with Fourier integrals, heat propagation, wave theory of light, representation of
concentrated loads, and so on.
Thus, G.R. Kirchhoff, formulating Huygens principle in the wave theory of light,
mentions the function

fulx) = \/ZneXp (—nx;) : (1.376)

which is obtained from (1.375), thus lim, oo fu(x) = O(x).
Lord Kelvin used this function to represent the point heat sources in the form

xZ

1 .
qt(x):mexp(—m), k>0, t>0, }Lrgqt(x)—é(x).

(1.377)
We also mention the impulsive function of Stieltjes
f, 2_" neN (1.378)
w(x) = = , .
() 7t cosh nx
and the Cauchy impulsive function
1 €
For these functions we have
lim fu(x)=0(x), lim g.(x)=0(x). (1.380)

n—00 e—>0
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Example 1.22 Let there be the function

-2 1
‘R’ >R, =<, , 2. 1.381
f - flx,y) I (x2+Y2+1)p/2 p> ( )

This function is obviously continuous, thus f € C°(R?) and we obtain

/ flx,y)dxdy =1. (1.382)
R2

Indeed, passing to polar coordinates x = pcos 6,y = psin 6,6 €[0,2x],p >0
we can write

_p—2 dxdy
[ sty =222 (
R2 R2

x2 + Y2 + 1)1’/2

p—Z/dQ/ pdp i p—
27 (2 + 1)
0 0

0\8

,o +1)dp
-2 2 1 _(p/2)+1 -2 1
_p2 ) y Saly =1. (1.383)
2 1—p)2 2 —1+p)2
Thus, the conditions of Proposition 1.18 are fulfilled and we can build the func
tion
B p—2 ep
fg(x, Y) - 82 f( ) 27 - €2 (xz + Y2 + ez)p/z
p—2 eP—?
= S, >0, p>2. (1.384)
27 (xZ + YZ + 82)1’/
Consequently, the relation follows
) p—2
im 2 ¢ _=0(xy), p>2. (1.385)
e—>+0 27 (x2 4+ y2 + gz)p/

We note that the family of Dirac representative functions (1.384) plays an impor-

tant role in the construction of the fundamental solution of the elastic half-space
problem [19].

Particularly, for n = 3 and n = 5 we obtain
€ 1 .38 1
lim — =

— =1 —_— = (5 , .
e—>40 231: (x2 + Y2 + 62)3/2 g_lfﬂl_o 27 (X2 + y2 T 82)5/2 (X Y)

(1.386)
Also, taking into account improper integrals values
o . oo . . S
sin x sin x sin“x sin”x
/ dx=2/ dx =m, / 2dx=2/ —dx =m,
x x x x
—oo 0 —oco 0

(1.387)
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based on Proposition 1.18, we get

. 1 . x . £ . ,x
1. lim —sin— =0(x), 2. lim ——sin®— = d(x). (1.388)
e—>—+0 TTX & e—>—+0 JTX &
Thus, for 1., the continuous function f(x) = (sinx)/(7tx), x € R is considered,
resulting in f(x/¢)/e = (sin /ex)/(mx).
For 2., the continuous function g(x) = sin’x/(wx?),x € R is considered. It
follows
1l oxy e
ge(x) = Eg(;) =
Another criterion for the Dirac representative sequences is given by the follow-
ing.

Proposition 1.19 Let there be f. € L}

loc®™), & > 0, a family of locally integrable
functions with the properties:

1. fe(x)>0, VxeR"Ve>0,

2. [gn fe(x)dx =1,
3. VR >0wehavelim,— 4o [, =g fe(¥)dx =0;

then
i D'(R")
Jim fe(x) = 0(x) & fe(x) ——>0(x) - (1.389)

Proof: Taking into account 1 and 2 for V¢ € D(R") we have

[(fe, ) — @(0)] =

/ Fo(®)p(x)dx — ¢(0) f fudx
R Rn

[ Fol)lio(x) — p(O))dx | < / 19(%) = 9(0)] fo(x)dx
R R

(1.390)

Based on the continuity of the function ¢(x) € H(R") in the origin, we can write
l(x) — 0 ()] < €0/2,1x]| < ..

Consequently, for the integral on the right-hand side of the relation (1.390) we
obtain

/ (%) — p(O)] . (x)dx = / (%) — ()| . (x)dx
Rn

T ll<neq

b [ -l fmae =S [ e - w0 .
[lxll=7¢, [lxll=7¢,

(1.391)

75



76 | 1 Introduction to the Distribution Theory

But

|9(x) = ¢(0)] fe(x)dx

llxll=ne,

Esuﬂgnlw(x)—w(o)l / fe(x)dx = M* / fe(x)dx,  (1.392)
=7 llell= e

where M™* = sup, cr» [¢(x) — ¢(0)| > 0 (which exists because it is continuous and
has compact support).
Substituting (1.392) in (1.391), we obtain

/ lo(x) — (0)] fe(x)dx < % + M* / Sfe(x)dx . (1.393)
R =72

On the other hand, condition 3 of the proposition means the following: V& > 0,
IM,, > 0 so that for ¢ < M, we have

&0

felm)dx < o (1.394)

IxlI=R
The relation (1.393) becomes
€0 | o
|§0(x) _¢(0)|fe(x)dx < 7 + 7 = €0, ”x” < Neo > and0 < e = M€0 .

(1.395)

Taking into account (1.395) and (1.390), it follows that Veo > 0,35, > 0 and
M,, > 0 so that

[(fe, @) —@(0) <&, for|x||<mn.,, and0<e< M, . (1.396)

The last relation is equivalent to lim,— o [(fe, ¢) — @(0)] = 0, thus lim,— 49
(ferp) = = (0(x), p(x)), namely lim, 4o f(x) = O(x), and thus the propo-
sition is proved. O

We consider the family of functions (1.384), namely
p—2 g2

27 ’ (xZ + YZ + 62)1’/2 ’

folx,y) = e>0p>2. (1.397)

We note that f;(x, y) > 0and, according to (1.383), we have [, fe(x,y)dxdy =
1, so that the conditions 1. and 2. of Proposition 1.19 are satisfied. We will show
that condition 3. is satisfied, namely V R > 0 we have

lim // fe(x,y)dxdy =0. (1.398)

e—>—+0

— S =R
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Indeed, we have

// Suepddy = tim [ for ey

x2+Y2>R rn=r=R

_P=2 o2 gy /f dxdy - (1.399)
2 r—>00 xZ + Y + & )P/

R<r<n

Using the polar coordinates x = pcos 6,y = psin 0, we obtain

// dxdy /‘/ pdpd 6
(xz + Y + 8 p/2 )O + 82)}7/2

R<r=<n

— 2 _ _
_ n/(p2+8z) P2 4 ey dp = Z_Tﬂp [(r%Jrgz)(z PR _ (R 4 ) p)/Z] _
(1.400)

Substituting in (1.399) we have
/f fe(x, y)dxdy = p=2 P2, I I:—(R2 + 82)(2—;;)/2]
27 2—p
r=o/x>+y? =R

e\p—2
= ePTH(R? 4 YR < gPT2(RZ)CTRIZ (E) , p>2, (1401)

giving lim,— 4 [, p fe(x, y)dxdy <0, hence lim,— 4o [, p fe(x,y)dxdy =0
because f. > 0.

We showed that the conditions of Proposition 1.19 are fulfilled, hence lim,_, 4,
fe(x,y) = O(x, y), aresult that was obtained using Proposition 1.18.

Example 1.23 Let there be the sequence ( f,(x))n>1 (Figure 1.6) where

n—n?x/2, x¢€[0,2/n],
Ju(x) = / 19.2/1] (1.402)
0, x ¢10,2/n].
We note that the three conditions of Proposition 1.19 are satisfied.

Indeed, fu(x) = 0, [ fu(x)dx = 1and limy—co f|,j= .o fu(¥)dx =0, Vr >
0, because

/ Sa(x)dx = / Su(x dx+/fn dx—/fn x)dx , (1.403)

|x|=r>0

and for 2/n < ritresults [ f,(x)dx = 0, hence lim, oo Jixi=rs0 fn(x)dx = 0.
Consequently, we have lim, oo fu(x) = O(x).
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In

lo 2/n
Figure 1.6

Example 1.24 Let there be f, € L} (R), & > 0 a family of locally integrable func-
tions, where f.(x) = (2H(x)/x) - (e/(x* + €?)), ¢ > 0 (Figure 1.7), and H is the
Heaviside function.
D'(R)
We shall show that f, —— .1 0(x).
Indeed, we note that the first two conditions of Proposition 1.19 are fulfilled
because:

1. fo>0, Ve>0, VxeR, f el (R):
T 26 1 2
oo I
2. /fg(x)dx:/i‘gdx:—g-—arctanf =—--=1.
n(x? + &) T« elo T2
R 0

Regarding the third condition, we have

[ee)

2e
li = 1li —
o / felx)dx o w(x? + sz)dx
VR>0 |x|>R R

. 2e 1 x
= lim — - —arctan —

‘OO
e—>—+0 TT & EIR

. 2 (m R
= lim —[——arctan— | =0. (1.404)
e——+0 T \ 2 £

Thus, the conditions of Proposition 1.19 being fulfilled, we have lim, . ¢ f.(x) =
O(x).

Example 1.25 Let there be the sequence of locally integrable functions f,(x) =
nH(x)e™"*, x € R (Figure 1.8). We shall show that lim,— 4 oo fu(x) = O(x).

Figure 1.7
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fn

lo
Figure 1.8

We will use Proposition 1.19, because the function f, is discontinuous at the
origin. We note that f,(x) > 0,Vn € N,Vx € R. Also

o0

/fn(x)dxzfne_”dx - e
R

—n
0

o0

=" =1, (1.405)

0

Thus, the first two conditions of the proposition are met. We will check the third
condition, namely hm'ﬁfﬁfg Jixi= r fn(¥)dx = 0. We can write

T ne= " |°
lim / fu(x)dx = lim /ne_""dx: lim
n—>0Q n—00 n—00 —n R
[x|=R R
= lim [—e™")|F = lim e "R =0. (1.406)

Consequently, the conditions of the Proposition 1.19 are fulfilled, so we have
lim, o0 fu(x) = O(x).

Example 1.26 We shall show that the sequence (g, (%)) n>1, gn(x) = %
x € R is a Dirac representative sequence, hence lim,— o g,(x) = O(x).
Indeed, f,(x)>0,Vx € R, and we have

oo ) o0
/fn(x)dx = nZ/xe_""dx = n—n/x(e_”")’dx
R 0

0

o0 o0
ne"x |
=-n xe_”"|f)’°—/e_""dx = n/e_""dx = =1. (1.407)
—n
0 0 0
As regards the third condition of the Proposition 1.19 we have
o0
lim gn(x)dx = lim nZ/xe_”"dx
n—>0Q n—00
VY R>0 Ix[>R R
o0
1 _ —nx |00 __ —nx
_nli)rgo( n) | xe” "} /e dx
R
o0
= lim (—n) |:—R exp(—Rn) — exp(nx) ]
n—00 —-n R
= lim [e7®" + Rne™ "] =0. (1.408)

n—00
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With this, the conditions of the Proposition 1.19 are fulfilled, so we have
limy,— oo gn(x) = O(x).

Below, we will give another criterion for Dirac representative sequences that com-
plement the Proposition 1.19.

Proposition 1.20 Let there be the sequence of functions ( fi(x))ien C D(R"),
which satisfies the conditions:

i(x)>0, VieN, VxeR";

fi
2. /fi(x)dle, VieN;
RVI

3. Vi e N,supp(fi) C U, = {x|x €eR",||x|| < &;}and lim & =0.
1—>00
Then lim; o fi(x) = O(x) .

Proof: Forany ¢ € D(R") we have

I(fi- @) —0(0)] = / fi(x)|<ﬂ(x)—<ﬂ(0)ldx5”5ﬁ1p lo(x) = @(0)] . (1.409)
ﬁgi x|| <&

On the basis of the uniform continuity of the function ¢ € D(R") and because
ifi — oo, then &; — 0, we have sup|, | <., l¢(x) — ¢(0)] — 0, hence lim;( fi, ¢) =
©(0) = (O(x), ¢(x)), namely lim; f;(x) = O(x). O
Example 1.27 Let there be the family of sequences p,(x), ¢ > 0, x € R", namely

o (- ). Iel <
CXp\ ————75 | X ,
pe(x) =14 &2 — || x| (1.410)
0, =l = ¢,

where the constant ¢, has the expression

1
ce=¢ " e —|d
/ Xp( 1—||x||2) ¥

llxll<1

—1

We observe that the function p, > 0,& > 0, is a test function of Schwartz’s
space, hence p, € D(R"). The support of the function p, is the closed ball B, =
{x|x €R", || x|| < &}, hence supp(p.) = B..

Due to the value chosen for the constant c,, the function p.(x) has the property
Jirn Pe(x)dx = 1. Consequently, the family of functions p,, &€ > 0, has the proper-
ties p, > 0,& > 0, [g. pe(¥)dx = 1 and supp(p;) C B,, hence ¢ — +0 involves

supp(pe) — 0.
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Thus, the conditions of the Proposition 1.20 are fulfilled and we can write
lim,— 40 p:(x) = O(x); namely p,, & > 0, is a family of Dirac representative
sequences, but from the space of test functions D(R").

Example 1.28 Let there be the family of sequences of polynomials L,(x), & > 0, x €
R", where

1
—(32 - ||x||2)p , lxll<e, peN fixed,

Lx)=1 < (1.411)
0, %]l > e,
p
and ¢, = fllxlls (e — [|x]|%)" dx.

We shall show that lim, ¢ L.(x) = (x).

Indeed, L, > 0,Ve > 0, [g. Le(x)dx = 1, supp(L.(x)) = U, = {x|x €R",
x| < e} andlim,— 4osupp(L:(x)) = 0.

The conditions of the proposition are fulfilled, hence lim,— 4o L¢(x) = 0(x).

We note that L,(x) are polynomials of degree 2p, but with compact support,
which tends to zero when ¢ — 0 [20, p. 51].

1.3.7
Distributions Depending on a Parameter

1.3.7.1 Differentiation of Distributions Depending on a Parameter

The different quantities encountered in the mathematical-physical problems are
generally functions of space variable x € R", but they may also depend on certain
parameters of real or complex variable, such as the temporal variable t € I C R.

This requires considerations on distributions depending on a real or complex
parameter t € 2 C C™.

In the following, we consider the real parameter t, hence t = (t1,t5,...,tm) €
© C R™. For example, the Dirac delta distribution d(x — t) = O0(x1 — t1, % —
ty, x3 — t3) € D’(R3) depends on the real parameter t = (t1, 5, t3) € R>.

Ifforany t € 2 C R™ we can associate, after a certain rule, a single distribution
fi(x) € D’'(R"), we say that this distribution depends on the real parameter ¢ €
Q CR™.

Definition 1.30 We say that the distribution f € D’(R") is the limit of the distri-
bution f; € D'(R"),t € 2 C R™, when t — 1, t, being the accumulation point
for 2 C R™, and we write lim,_, fi(x) = f(x), if V¢ € D(R") the function
(fi(x),0(x)),t € 2 CR™, converges to ( f(x), ¢(x)), that is, we have

i (fi(x), @(x)) = (f(x), 0(x)) - (1.412)
Proposition 1.21 Let there be the distributions f;, g, € D’(R") depending on the
parameter t € 2 C R™. Iflim, ., fi(x),lim,—, gi(x) € D'(R") exist, then we
have

tlirrtl(aft +pg)=a tlirrtl fi+p tlirrtl g, Ya,peR. (1.413)
—to —to —to
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Indeed, noting lim; ., fi(x) = a(x),lim;—, gi(x) = b(x), V¢ € D(R"), we can
write

tli_r)rtlo(aft(x) + Bgi(x), ¢(x)) = tlgrgo[a(fm) + Bl ¢)]

= a lim (fi,¢) + B lim (g, ¢)

= a(a(x),¢) + B(b(x),¢) = (aa(x) + fb(x),¢) , (1.414)
which leads to (1.413).

Definition 1.31 The distribution f;, € D'(R"),t € 2 C R™, is continuous with
respect to the parameter t on the set 2 C R™ if Vi, € Q, we havelim,_,,, fi(x) =
f1o(x), hence

lim ( f(x), ¢(x)) = (fio (%), @(x)), Vo € DR") . (1.415)

t—>to

From the definition of continuity and the limit property with respect to the param-
eter t € 2 C R™, it follows that Va, f € R the distribution a fi(x) + fg:(x) is
continuous on R if the distributions fi(x), g:(x) € D’(R™) are continuous on 2.

Definition 1.32 Let f;, € D’(R") be a distribution depending on the parameter
t € @ C R™. We call derivative of the distribution f; with respect to t; € R,
j=1m,t=(t,t,..., tm), the distribution d f;(x)/dt; € D’(R"), defined by

9 fx) = lim f(tl,tz,...,tj+Atj,...,tm)(x) — f(tlthwmtjthm)(x) , (1.416)
8tj b0 Atj

if the limit exists and is unique.

This means that Vo € D(R") we have

(BtJ fr(x), o(x )

(St At (%), @%)) = (St t) (%), 0(%))

= lim
Atj—)() Atj
-2 t t t —if 1.417
i Pt tn) = G (i) o) (1.417)
where
Wty eeortjeeotn) = (fil%), 0(x)), t€Q CR™. (1.418)

Proposition 1.22 The necessary and sufficient condition that the derivative 9 f;(x)/
dt; € D'(R") does exist is that the function 1 (t) = ( fi(x), ¢(x)) be differentiable
with respect to the variable t;, j = 1, m.
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We note that the existence of the limit (1.416) implies the existence of the limit

lim (f(tl Lt AL, tm)(x ﬂtl,...tj,...,tm)(x),(p(x)) (1.419)

Atj—0 At;

and, on the basis of the completeness theorem of the distribution space D’(R"), it
defines a distribution depending on the parameter t € 2 C R™.

Consequently, 0 f;(x)/0t; is a distribution from D’(R") depending on the pa-
rameter t € Q.

Proposition 1.23 If the derivative d f;(x)/dt; € D'(R"), t € 2 C R™, then (9/0t;)
(0 fi(x)/0x;) exists and the following formula occurs

o (dfilx)y_ 0 (9 o
E( dx; ) 0w (8_tjf‘(x)) . i=1Ln. (1.420)
Proof: For any ¢ € D(R"), we have
9 fi1(x) _ dg(x) i
( x; ,w(x)) = (ft(x)»_ ox, ) , teQ CR™. (1.421)

From the existence of the derivative d f(x)/dt; and taking into account (1.417)
it results that the function defined by (1.418) is differentiable with respect to t;;
hence we get

" (m—;;;) - (St ie) = (5 o)

3, 9 9f,
- (Z 1.422
=t (8x1 ¢) (atj axi"”) : (1.422)

wherefrom we obtain the relation (1.420). O

Proposition 1.24 Let there be the distribution f; € D'(R"),t € Q C R™ If
lim, ., fi(x) exists, then

. 0
th_r)rtlo (Bxl fi(x ) = |:t11_r>rt10 fi(x) ] . (1.423)

Indeed, if we note lim; ., fi(x) = a(x) € D' (R"), then V¢ € D(R") we have
lim, 4 (fi (%), @(x)) = (a(x), ¢(x)), and, consequently, we obtain

ad
tli—>rrtlo (axl ft ) - tli—r>rtlo (ft(x), B ?9(26))

ad ad
(o0 (3

lim ift(x) _ dax) aii [hm ft(xi| . (1.425)

0x; t—>to
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Proposition 1.25 Let there be the distribution f;(x) = F(u) € D'(R), u = ax +
a(t), x € R, where a € R\{0} and a € C!(I), I C R. We have

%F(ax + a(t) = o’ () F'(ax + a(t), (1.426)
2

50w F(ax + a(t)) = ad () F'(ax + a(t)) . (1.427)

Example 1.29 Let there be the distributions fi(x) = 6(x — at) € D'(R), gi(x) =
H(x — bt) € D’(R) depending on the parameter t € R, where a,b € R, and H(u)
is the Heaviside distribution. We have

%6@ —at) = —ad’(x — at), %H(x —bt) =—bo(x —bt). (1.428)
Indeed, the relations (1.428) are obtained directly by applying the formula (1.426),
because H'(u) = O (u).

1.3.7.2 Integration of Distributions Depending on a Parameter
For the distributions depending on a real parameter t € I C R we can define the
integral with respect to the corresponding parameter.

Let there be f, € D'(R),t € I C R, a distribution depending on the real pa-
rameter t. If the distribution f; is continuous on I C R with respect to the pa-
rameter t, then, according to the continuity definition, V¢ € D(R), the function
¥ : I C R — R, having the expression,

P (1) = (filx) 9(x)) . (1.429)

is continuous on I.
Consequently, the functional F : D(R) — R, defined by

b b
(Feo) = [wide = [ (fioede, tefabicr, (1430
exists Yo € D(R) and it represents a distribution from D’(R).
Indeed, according to the definition integral (1.430) we can write

b n n

(F¢) = / p(de = lim > w(m)At = lim > (fux)e(x)At
p i=1 i=1
(1.431)
where m = {ty = a,t1,..., ti,..., t, = b} is a partition of the interval [a, b] C I,

with the norm v(1t) = maxi<i<, At;, At; = t; — tj—y,and 7; € [ti—1, 1], 1 =1, n,
are the intermediary points of the partition.
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Denoting o4 ( f;) € D’(R) the distribution depending on the parameter ¢ € [a, b],
namely o, (fi) = D.'—; fr.(x)At;, then we have

(0x(f) @(x)) Z(fn X)Ati, p(x)) =Y P(T:)Ati, VYo D(R).
i=1
(1.432)

Thus, (1.431) becomes

V(T

b b
(Fig) = lim (0:(f0.00) = [ (e = [ (fimpbnds. (1433

Because, the limit of (1.433) exists, according to the theorem of completeness of
the distribution space D’(R), we obtain

lim o.(fi(x)) = F(x), (1.434)

v(m)—0

hence the functional F(x) is a distribution from D’(R).
The distribution F € D’(R) is denoted by

b
F(x) = / fi(x)dt, (1.435)

and will be called the integral of the distribution f; € D’(R) depending on the
parameter t € [a,b] C I CR.

Obviously, the distribution (1.435) exists if f; € D’(R) is continuous for ¢ €
[, b], and its mode of action on the test functions space D(R) is given by the
formula (1.430), that is,

b b
( / ﬂ(x)dt,w(x)) — [(Fimptnds, voe D). (1.436)

We note that the distribution (1.435) exists even if the distribution f; € D'(R) is
not continuous, but the function 3 defined by (1.429) is integrable on [a, b] C I.

Proposition 1.26 Let there be the distribution f; € D', continuous for ¢ € [a, b] C
R. Then, we have F(x f filx)dt € D,

Proposition 1.27 If the distribution f; € D’(R) is continuous on [a, b] C R, then
we have

b

b
d 0
—x/ft(x)dt =/a—xft(x)dt. (1.437)

a
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Proposition 1.28 Let there be the distribution f € £’(R) and the integrable func-
tion g : [a,b] C R — R. Then, for the distribution fi(x) = f(x)g(t) € D'(R)
depending on the parameter ¢ € [a, b], the following results:

b b b
[ sde= [ g = i [ gtoa (1439

Example 1.30 Let there be the distributions 6 (x —t), H(x —t) € O’(R), depending
on the parameter t € R, where H is the Heaviside distribution. The following
relations take place

b 0, x<a<b,
Fl(x)=/H(x—t)dt= b—a, a<b<x, (1.439)
p x—a, a<x<b,
b
1, x¢€la,b],
F = O(x —t)dt = H(x —a)— H(x—b) = 1.440
(%) /(x e = Hiv—a) = H{s—B = ) 1 %S0 (Laao

Obviously, H(x — t) € L}

loc(R), and, using the definition of the Heaviside func-
tion, we obtain

b 0, x<a<b,
Fl(x):/H(x—t)dt: b—a, a<b<x,

x—a, a<x<bh.

As regards the formula (1.440), this is obtained by applying the definition of the
integral of a distribution depending on a parameter.
Thus, V¢ € D(R), we can write

b b

b
(/ O(x — t)dt,(p(x)) = / (O(x —t), p(x))dt = /(p(t)dt . (1.441)

a a
Because ¢ has compact support, the expression (1.441) may be written as

[e o] [e o]

f¢(t)dt = /ga(t)dt - 7<p(t)dt = 7(,0(x + a)dx —/(p(x + b)dx
a b 0

a 0

= /[(p(x + a) — o(x + b)Jdx = (H(x),¢(x + a) — ¢(x + b)) . (1.442)
0
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Consequently, (1.441) becomes

b
( [ 8(x - t)dt,w(x)) = (H(x), ¢(x + ) — ¢(x + b))
= (H(x — a) — H(x — b), ¢(x)) , (1.443)
wherefrom results (1.440).

We note that the main properties of the defined integral are maintained for distri-
butions depending on a parameter.

Proposition 1.29 Let there be the distributions f;, g, € D’(R) depending on the
real parameter t € [a, b] C R.

1. If 9 fi/0t € D'(R) exists, then we have

b
d
/aft(x)dt = fi®)5 = fulx) = falx), (1.444)

which is an analogue of the Leibniz—Newton formula.
2. If f; € D'(R) is continuous on [a, b] C R, ¢ € [a, b], we have

b c b
/ft(x)dtz/ft(x)dt~|—/ft(x)dt, (1.445)
ah a . c
/ fi(x)dt = —/ fi(x)dt . (1.446)
a b

Particularly, [ fi(x)dt = 0 and
%/fu(x)du: filx), telab]. (1.447)

Example 1.31 The relation (1.440) is obtained by applying the formula (1.444). In-
deed, because 0H(x — t)/dt = —H'(x — t) = —0(x — t), we have

b b
Fy(x) :/6(x—t)dt :—/%H(x—t)dt

= —H(x —1)|> = H(x — a) — H(x — b). (1.448)

87



88

1 Introduction to the Distribution Theory

1.3.8
Direct Product and Convolution Product of Functions and Distributions

The direct (or tensor) product of two distributions is a new operation with distribu-
tions which extends the usual product of two functions.

Let there be R" and R™ two Euclidean spaces with the dimensions n, m, respec-
tively, and let x = (x1,%2,...,%,) € R", y = (y1,y2.---, ym) € R™ be points of
these spaces. Then the Cartesian product of these spaces is R” x R™ = R"T™ and
represents a new n + m-dimensional Euclidean space with generic point (x, y) €
R,

Let f and g be two complex functions defined on R" and R™, respectively, with
the generic points x € R", y € R™.

Definition 1.33 The function f x g : R"t™ — T, defined by the relation
(f xg)(x,y) = f(x)g(y) is called direct or tensor product of the function f by
the function g.

So, the direct product of two numerical functions coincides with their usual prod-
uct.

Proposition 1.30 Let there be the functions f € C¥R"),g € C¥R™). Then, the
following properties occur

1. fxge CHR"T™);
DY Dj(f(x) x g(x)) =Di f xDyg, |pl<k, |4l <k,
where DY, D are derivation operators of orders |p|, |q|, respectively, in relation
to the variables x € R" and y € R™;

3. supp(f x g) = supp(f) x supp(g).

Proof: Indeed, we have D} D(f x g)(x,y) = DX f(x)D{g(y) = (D} f x Dig)
(x,y), wherefrom results the properties 1. and 2.

Let there be (xo, yo) € supp(f x g). Then V U,(xp, yo),3(x,y) € U, (%0, yo), SO
that (f x g)(x, y) # 0 which implies f(x) # 0 and g(y) # 0, hence x, € supp(f)
and y, € supp (g), wherefrom results 3. O

We note with D(R"), D(R™), D(R"™ x R™) the indefinitely derivable test func-
tions spaces with compact support on R”, R™, R"T" and with D'(R"), D'(R™),
D’(R"F™) (the space D’ of corresponding distributions).

We note that D(R") x D(R™) is a vector subspace of D(R"T™), generated by
functions of the form u x v, u € D(R"),v € D(R™).

Proposition 1.31 The space D (R") x D(R™) is dense in D(R"T™).
This means that Vo(x,y) € D(R"T™), there exists the sequence of functions
(@i(x, ))ien of the form ¢;(x,y) = YV _, wir(x)vie(y), with u;, € DR"), vy €

DR
D(R™) so that ¢; DRT, ®
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This result can be generalized, so that D(R") x D(R™) x D(RY) is a vector sub-
space of D(R" "1 and is dense in it.

Let f and g be locally integrable functions on R" and R™, respectively. Then, their
direct product h(x,y) = f(x)g(y),(x,y) € R"T™ is a locally integrable function,
which generates a regular distribution on the test functions space D (R"*™). Then,
Yo € D(R"T™), on the basis of Fubinis theorem of interchange of the order of
integration, we can write

(F(x)  gly) @(x, y)) = f F)g()e(x, y)dxdy

Rnrt+m

- / Flx)dx [ gl )y = (F2), (glp) @(x, 1) (1.449)
Rn Rm

namely

(f(x) x g(v). 0(x. 7)) = (f1). (8(y) 0(x.¥) . Vo € DR"F™) . (1.450)

This relation will be adopted as the definition of the direct product of two distri-
butions.

Definition 1.34 Let there be the distributions f € D’(R") and g € D' (R™). We
call direct or tensor product of the distribution f with g, the functional f x g :
D(R"T™) — I defined by the relation

(f(x) x g(y). 0(x, 7)) = (f1). (8(y) @(x.¥) . ¢ € DR™T™). (1451)

Proposition 1.32 The direct product f x g of the distributions f € D'(R"),g €
D’(R™), defined through the relation (1.451), exists and is a distribution from
D'(R"F™), namely f x g € D' (R*T™).

In particular, if ¢(x, y) € D(R"T™) is of the form ¢(x, y) = ¢1(x)¢a(y), where
o1 € DR, @, € D(R™), then the formula (1.451) becomes

(f(x) x g(y), e1(x)9a(y)) = (f(x), @1(%)) - (8(1), ¢2(¥)) - (1.452)
From the formula (1.452) we obtain the following.

Proposition 1.33 The necessary and sufficient condition for f x g = 0, f €
D’(R"), g € D'(R™) is that one of the factors be null.

Indeed, if f(x) = 0, then V¢; € D(R") we have (f(x),¢1(x)) = 0 and,
from (1.452), itresults f x g = 0.

Conversely, if f x g =0, then V¢;(x) € D(R") and Ve, (y) € D(R™) we have

(f(x) x g(y), e1(x)9a(y)) = (f(x), ¢1(%)) - (8(¥) ¢2(y)) = 0, (1.453)

wherefrom it results that one of the factors is zero. Thus, if ( f(x), ¢1(x)) = 0 (p1(x)
is arbitrary), then we get f(x) = 0.
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1.3.8.1 Properties of the Direct Product

Proposition 1.34 The direct product is commutative, associative and distributive
with respect to the addition of distributions from the same space. Namely, we have

1. fxg=gx f,VfeD(R", geDR™;

2. fx(gxhy=(fxgxhVfeDR, geDRM),heD R

3. fx(agxph)=oa(fxg+p(fxh),VYfeDR",ghecDR", apcl.
Proposition 1.35 Let there be the distributions f € D’(R"),g € D’(R™), v the

symmetry operator and D¢, Dg the derivation operators. The following relations
take place:

supp( f x g) = supp(f) x supp(g) ,

DYDY (f(x) x g(y)) = D& f(x) x D} f(y)
(fxg'=f"xg",

a(x)b(y)(f(x) x g(y)) = a(x) f(x) x b(y)g(y) ,
a(x) € C®(R™, b(y) € C®(R™).

Example 1.32 Let H(x),x € R" be the Heaviside distribution of n variables. By
means of the direct product, it can be written as

H(x1,...,%,) = H(x1) x H(x) x -+ x H(x,) . (1.454)

Because d H(x;)/dx; = d(x;), we obtain

0"H(xy,..., Xn)

:6 , yeees X
0x10%...0%, (1, %2 *n)

_dH(w) dH(x)  dH(x)

= “dn X i, 'xd—xnzé(xl)xmxé(xn),
(1.455)

hence
O(X1, .., %) = O(x1) X O(22) X -+ X O(%) - (1.456)

Definition 1.35 We say that the distribution g(x, y) € D’(R"*™) does not depend
on the variable y € R™ if it is of the form

g(x,y) = f(x) x1(y), f € D'(R"). (1.457)

This distribution will be denoted by f(x) € D’(R"*™) and should not be con-
fused with f(x) € D’(R"), which is defined on the test functions space D(R").
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ForV f € D'(R"), the relation follows

f (Fx) ¢(x, y)dy = (f(x» f (p(x,y)dy) . Vpe DRMM) . (1.458)
Rm

Rm

Indeed, on the basis of the direct product, Vo(x, y) € D(R"T™) we can write

(f(x) x 1p) @ (%, y)) = (f(x), (Ly) ¢(x, y))) = (f(x)y/W(ny)dY)

Rm

= (10 b ) = [ (ot dy (1459
Rm™

giving the formula (1.458).
If the distribution g(x, y) € D’(R"T™) does not depend on the variable y € R™,
then we have

Dig(x,y) = 0,D; = ai . (1.460)

Yi

Indeed, Dig(x, y) = Di(f(x) x 1(y)) = f(x) x Di1(y) = f(x) x0=0.
In general we have the following: The necessary and sufficient condition for the
distribution f € D’(R") should not depend on the variable x; is 9f /dx; = 0.

Proposition 1.36 The necessary and sufficient condition for the distribution f €
D’(R") to be a constant is

if _
8xi o

i=Tn. (1.461)

Proposition 1.37 Let there be the distribution f(x) € D’(R) and the Dirac repre-

sentative sequence gy(t) 2, O(t), where go € L1 _(R). Then, we have

loc

lim (f(x) % ge(t) = f(x) x O(¢). (1.462)

{—o00

Indeed, Yo(x, t) € D(R?) we can write

(f(x) > ge(t), o(x, 1)) = (8e(1), (f(), ¢(x, 1)) (1.463)

where ( f(x), ¢(x,t)) = p(t) € D(R).
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Consequently, we obtain

lim (f(x) x ge(t). ¢ (x, 1)) = lim (ge(t), y(t) = (9(t). ¥ (1))

{—00
= (0(x), (f(x), ¢(x, 1)) = (f(x) x O(1), ¢(x, 1)) ,
(1.464)

giving the formula (1.462).
In general, we can write the formulae

lim (f(x) % ge(t — tr)) = f(x) x O(t — t&) ,

/j—>oo
hm (f x g (t—t) = f(x)x ' (t—ty), (1.465)
because
lim go(t—t) = O(t—t;), and lim gj(t—t;) = O'(t — &) . (1.466)
{—00 {—o0

1.3.8.2 The Convolution Product of Distributions

In order to extend the convolution product to distribution, we will consider the
functions f,g € LY(R"). Then, f * g € L'(R"), hence it is a regular distribution
and, Vg € D(R"), we have

(f * §)(x), 0(x)) = f (f * g)(x)o(x)dx = f o(x) L/ f(t)g(x—t)dt} dx .
R* Rn» n

(1.467)

Making the change of variables u = x — t, v = t, the previous relation becomes

(f * g)(x). 0 /f (x — p(x)dxdt
/f o(u+ v)dudy . (1.468)

Taking into account that f(v)g(u) = f(v) x g(u), formula (1.468) can be written
in the form

((f * 8)(x). 9(x)) = (f(x) x g(y), ¢(x + ¥)) - (1.469)

This relation is considered to be a definition formula of the convolution product
of two distributions.

Definition 1.36 If f g € D’(R"), then their convolution product f * g represents a
new distribution from D’(R"), defined by the formula

(f*ge)=(f(x)xgy)elx+7y), YoecDR". (1.470)
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We note that the distribution f % g € D’(R") does not exist for any distributions
fge DR,

Indeed, when ¢(x) € D(R") the function ¢(x + y) is indefinitely differentiable
on R2", but does not have compact support, hence ¢(x + y) ¢ D(R?").

The convolution product f = g exists if the sets supp(f(x)x g(y)) and
supp(¢(x + y)) have a compact intersection.

Proposition 1.38 Let there be f g € D’(R"). The convolution product f % g €
D’(R") exists if one of the distributions f, g has compact support.

Proof: Let us assume that the distribution f € D’(R") has compact support,
hence supp(f) = 2 = compact. We notice that Va € D’(R") the func-
tion y(y) = (a(x),¢(x + y)) is indefinitely differentiable. In particular, the
function (f(x),¢(x + y)) = wi(y) has compact support, because x € Q2 =
supp(f) is bounded; it means that, for |y| large enough, ¢(x + y) = 0. Hence,

(f(x). ¢(x +)) € DR").
Consequently, formula (1.469) makes sense and we can write
(f *8¢) = (flx) x g(y). o(x + 7)) = (8(y). (fx). ¢(x +¥))
= (f(x). (8(y). o(x +y)), Vo e DRY). (1.471)
O

Proposition 1.39 Let there be the distributions d(x), f(x) € D’(R") and D* the
derivation operator. Then, we have

D0« f=D"“Ff, (1.472)
O(x —a)* f(x) = f(x—a) (1.473)
Proof: Because D“0(x) has as support the origin, it means that the product
D*d(x) * f(x) € D'(R™) exists and for any ¢ € D(R") we have
(D0 * fi¢) = (D*O(x) x f(y), ¢(x + Y))
= (1" 1), (0(x). D (x + y)) = (=) f(y). DUp(y)
= (D f(y) ¢(y) = (D* f(x), ¢(x)) , (1.474)

giving the formula (1.472).
Also, we have

(0(x — a) * f(x),¢(x) = (0(x —a) x f(y)¢(x +y))
= (f(y), (0(x —a), o(x + 7)) = (f(1), (0(x), ¢(x + a + y))
= (f(y).ela+y) = (fly —a) o), (1.475)

hence

(O(x —a) % f(x),¢(x)) = (f(x — a), @(x)) : (1.476)
thus, the relation (1.473) is proved. O
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Particularly, for a = 0 we have
O(x) x f(x) = f(x), VfeD'R"). (1.477)

This property shows that Dirac’s delta distribution d(x) € D’(R") is the unit
element with respect to the convolution product.

Corollary 1.3 Let there be P(D) = Z|a|5l a,D* a € N§,a, € C alinear differ-
ential operator with constant coefficients. Then, V f € O’(R") we have

P(D)d(x) * f(x) = P(D) f(x) . (1.478)

This result is obtained from property (1.472) and the linearity of the operator
P(D).

Thus, for P(D) = A = Y} _, (9*/0x?) representing the Laplace operator in R"
and V f € D’(R") we have

AS(x)% f=Af. (1.479)

For the operational calculus, of special importance are the distributions from
D’(R), having bounded supports to the left, hence the supports on [a, 00).

Proposition 1.40 If f, g € D’(R) and have supports bounded to the left, then the
product f * g exists.

Proof: Let there be supp(f) = £, supp(g) = £2; and 21, 2, C [a, 00). Let there
be supp(p) = 2,9 € D(R). Then, for x € 2,y € 2;, because x + y € 2 and 2
is compact, itresults x > a,y > a,b; < x+y < b,. Hence, x < by—a,y <by—a
and therefore the set (x, y) € R2 with x € 2,y € 2,,x + y € Q is bounded and
thus the product f * g exists (Figure 1.9).

We note that the hatched trapezoid ABCD is the intersection of the sets
supp( f(x) x g(y)) and supp(¢(x + y)), which is a bounded set for which there
exists the convolution product f * g € D’(R). Similarly, it is shows the existence
of the product f * g if the distributions f, g € D’(R) have bounded supports to the
right, hence supp( f), supp(g) C (—oo, b].

YA Ay
c
D
supp (¢(x +y)) Nsupp (f(x) x g(v))
\ xT
1.9 NN o
0" a A B x!

Figure 1.9
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We note by D/, all the distributions of D’(R) with the support on the half-axis
[0, 00). O

Proposition 1.41 If f,g € D'(R") and f * g exists, then we have

supp(f * g) C supp(f) + supp(g) - (1.480)

Proof: Let there be A = supp(f), B = supp(g). To justify the sentence, it is
enough to show that V¢ € D(R"), such that supp(¢) C Cgrn(A + B), we have
(fxgeo) =0.

Because supp( f(x) x g(y)) = Ax Band x + y € supp(¢) C Crn(A + B), from
x € Aand y € Bitresults x + y € A+ B; butas (A + B) N supp(e(x + y)) = 9,
we have (f * g,¢) = (f(x) x g(y),¢(x + y)) = 0 for supp(¢) C Cr»(A + B).

Taking into account that the closure of a set is a closed set, we deduce that
Cgr»(A + B)isan open set, hence f % g = 0in Cr»(A + B), thatis, supp(f *g) C
A+ B. O

Corollary 1.4 Let there be f,g € D’(R), having supp(f) C [a, o) and supp(g) C
[b, 00). Then f * g exists and we have

supp(f * g) C [a + b,00) . (1.481)

Indeed, on the basis of the Proposition 1.40, the product f * g exists and, accord-
ing to the Proposition 1.41, we have

supp( f * g) C supp(f) + supp(g) C [a,00) +[b,00) = [a + b, 00) . (1.482)

Particularly, if f, g € D/, , thatis, supp(f), supp(g) C [0, 00), then supp(f x g) C
[0, 00), wherefrom it results f x g € D/, .
Thus, for example, we have

0, x<0,
H(x)* H(x) = xH(x) = (1.483)
x, x>0,

where H € (Df*_ is the Heaviside distribution.

Corollary 1.5 If one of the distributions f,g € D’(R") has compact support, then
supp(f * g) C supp(f) + supp(g)-

Proposition 1.42 Let there be the distributions f, g € D’(R"). If f * g exists, then
we have f % g = g f,thatis, the convolution product is commutative.
Indeed, because f(x) x g(y) = g(y) x f(x), V¢ € D(R"), we have

(f *xg9) = (f(x) xg(y)e(x + )
= (g(y) x f(x),0(x +y) = (g* f¢), (1.484)

namely f *g=gx f.
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Proposition 1.43 If two of the distributions f, g, h € D’(R") have compact support,
then the convolution product is associative, that is,

f*(g*h)=(fxg) = (1.485)

Proof: Suppose that the distributions f and g have compact supports. Then, the
distributions f * (g * h) and (f * g) % h existand V¢ € D(R") we have

(f * (g h),9) = (flx) x (g x h)(y). ¢(x +))

= ((g* )(¥) (fx, 0(x + 7))

= (8(y) x h(2), (f(%), ¢(x +y + 2)))

= (flx) x g(y) x h(z), o(x +y + 2)) . (1.486)

Proceeding analogously, we obtain

((f*g) *h,o)=((f*g(y)xhz) ey + 2))
=(f()><g()(h() p(x +y+ 2))
= (fl(x) x g(y) x h(z), p(x + y + 2)) . (1.487)

Comparing the two expressions, we obtain the associativity of the convolution
product. O

In connection with the property of associativity of distributions bounded to the
left, we can state the following.

Proposition 1.44 Let there be f, g, h € D’(R) and supp( f, g, h) C [a, 00). Then, the
convolution product of these distributions is associative.

Remark 1.2 Apart from the cases presented by associativity, we note that the convo-
lution product f * g« h, f, g, h € D’(R") is associative if the following conditions
are fulfilled: f € &’(R"), hence it is a distribution with compact support and there
exists the product g x h € D' (R").

Thus, for example, we have
(0(x) * H(x)) * H(x) = O(x) * (H %« H) = x H(x) . (1.488)

Instead, the product 1 % ¢’(x) * H(x), x € R is not associative because the asso-
ciativity conditions are not respected and we have

(10" (x))* Hx)=0%«H=0, (1.489)
1x(0'«H)=1%x6=1. (1.490)

In connection with the distributivity of the convolution product with respect to
the addition operation, we state the following.
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Proposition 1.45 Let there be the distributions f, g, h € D'(R") and a, € C. If
two of the products f * (ag + Sh), f x g, f = h exist, then the third one exists as
well, and we have

Falag+ph)=a(f g +B(f*h). (1.491)

Corollary 1.6 If f,g, h € D’(R") and f has compact support, hence f € &'(R"),
then the convolution product is distributive, namely

fx(ag+ph)y=a(f*xg)+P(fxh), apfeC. (1.492)
Indeed, because f has compact support, the three products exist and, on the basis
of the Proposition 1.45, the distributivity property occurs.

Proposition 1.46 Let there be f,g € D'(R") and P(D) = }_, < 3.D" a linear
differential operator with constant coefficients. If f g exists, then the distributions
P(D) f g, f * P(D)g exist as well, and we have

PD)(f *g) = P(D)f xg= f* P(D)g. (1.493)

Proof: Let there be d(x) € D’(R") the Dirac delta distribution. Then, the distri-
bution P(D)d e &’(R") hence, it has compact support and therefore the product
P(D)0 * ( f * g) is commutative and associative. Based on the associative property
and on the Corollary 1.3, we have

P(D)O % (f * g) = P(D)(f *g) = (P(D)d * f) # g = P(D) fog. (1494

Similarly, using the commutativity of the convolution product and the previous
formula, we have

P(D)O % (f * g) = P(D)0 * (g% f) = P(D)g* f, (1.495)
wherefrom the required result is obtained. O
Example 1.33 Let H(x) € D/, be the Heaviside distribution. Then, we can write

(HxHY =H' *H=0+H=H, (1.496)

because H * H exists and the obtained result is verified directly. Thus, as H « H =
x H(x), by the derivation of this product, which is allowed because the function
u(x) = x,x € R, is of class C°°(R), hence it is the multiplier of the space D(R),
we obtain

(H* HY = (xHY = H+xH = H+x0(x)= H, (1.497)

because xd(x) = 0.
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Let there be the distribution f € D/, . Then, the distribution F € D', given by the
expression

F(x) = f(x) % H*™ = f(x)* (H* Hx*---% H), (1.498)
—_—

is a primitive of order m for the distribution f.
Indeed, F € D/, and we have

FU"(x) = flx)*(H % H %+« H) = f(0% 0 %---%0) = fxd= f.
— -

m m

(1.499)

It follows that the Heaviside distribution H € D/, has the role of integration
operator for the distributions from D/, , which is of particular importance in the
operational calculus.

In particular, if f € C°(R) N D/, then F(x) = f(x)* H(x) € C'(R) N D, and
F(x) = H'(x) % f(x) = 0(%) * f(x) = f(x).

Example 1.34 If fg € D’(R) and f * g exist, then for P(D) = d"/dx" we have

OM(x) (frg) = (frg=fMrg= frg". (1.500)

Hence, for the derivative of order n of a distribution from D’ (R), the convolution
of the respective distribution with the distribution 8" (x) is performed.

We can say that the distribution 6(")(x) acts as an operator of derivation of order n
with respect to the convolution products. This property plays an essential role in
the operational calculus.

Proposition 1.47 Let there be 7,,a € R", and v symmetry operator with respect to
the origin of the coordinates. If f,g € D'(R") and f * g exists, then the following
formulae take place

To(fxg) =7af xg= f*Tug, (1.501)
(f*g)" =[f"xg". (1.502)
Below, we will state the continuity property of the convolution product.

Proposition 1.48 Let there be the distribution f € D’(R") and the sequence of

distributions ( fi)ien C D’(R") with the property f; 2, f and supp(fi) C 2
bounded. Then, Vg € D’(R") we have

fixes frg. (1.503)

Proof: Because f; has compact support Vo € D(R"), we have

(fi* g ¢) = (fily), (@), ¢(x + ) = (fily), B(y)(g(x), (x +¥))), (1.504)
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where h(y) € D(R") and has the value 1 in a compact neighborhood of the
bounded set in which are contained the supports of the distributions f;.

Consequently, h(y)(g(x),¢(x + y)) € D(R") and, on the basis of the conver-
gence of the distributions, we have

(fixg o) = (Lr)Ex)ex+y)=(f*g9), (1.505)
namelyﬁ*gg f*g O

The property of continuity of the convolution product occurs in the following
cases:

1. fl—>fflfei) "),g € €' (R") involves f; x g => [+ g
2. fi 2 £g £ fi € D'(R), supp(fi), supp(g) C (4, 50) or (00, b
involves f; x g 2, fxg
In particular, if g € D’'(R") and f; — O(x) with supp(f;) C £ bounded, then
fixg—=o(x)xg=g
3. fi fe g fug fge D'R)and

. D’
supp( fi), supp(gi), supp( f ), supp(g) C (a, oc) involve f; * gi —> f *g.

Proposition 1.49 Let there be f € i)’(]R") a € D(R") and D? the derivation
operator. Then, f x a € C®°(R"), (f * a)(x) = (fi, a(x —t)) and

D?(f % a)(x) = (D? fi, a(x — t)) = (fi, Dla(x — 1)) . (1.506)

Proof: Because a has compact support, then the convolution f * a exists and for
¢ € D(R") we have

(f % a,0) = (f(8) x alu), ot + w) = (f(), (a(u), @(t + W)

- ﬂW/aMWHWWJ=(ﬂW/M%%MMM)

Rn

J(1) (p(x), a(x = 1) = (f(t) x ¢(x), a(x — 1))

=/XﬂWaw—HWWMx=«ﬂWaw—nxm, (1.507)
Rn
hence f * a is a function of variable x € R" and (f * a)(x) = (f(t), a(x — t)).

To show that the function ¥ (x) = (f * a)(x) is indefinitely derivable, for x fixed
and h = (0,0,...,0,4;,0,0,...,0), we consider

WYX+ h) = p(x) _ a(x+h—t)—a(x -1
T (f‘”’ h )

(1.508)

i
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For h; — 0, because f is a continuous functional on D (R") and

a(x +h—t)—a(x —1) N da(x —t)
hi Bxi

in the sense of the convergence in the space D(R"), we obtain

a 9 —
et an = (i, =)
= (f(t),—aa(axiti_t)) = (%f(t),a(x— t)) . (1.509)
giving
DP(f * a)(x) = (f(t), Dia(x — 1)) = (DP f(t), a(x — 1)) . (1.510)

We mention that the function f x a € C°°(R") is called the regularized of the
distribution f.

Particularly, if f € £(R"), so that it has compact support, then the function
f = a has compact support, because supp(f * a) C supp(f) + supp(a) and
supp( f), supp(a) are compact sets, hence f * a € D(R"). O

Corollary 1.7 If f € &/(R") and a € £(R") then

fxaeC®R" and (fxa)(x)=(f(t),a(x—1). (1.511)

Indeed, it follows since we have for ¢ € D(R")
(f * @ 9) = (f(1) x a(u), (t + u))
= (f0), (), ot + W) = (f(0), h(\)(e(u), ot + w) , (1.512)

where h € D(R") and it has a value equal to 1 on a compact neighborhood of the
distribution support f € &(R").
Thus, if f € &’'(R") and & = 1 on R", then because a € £(R") we have

Fr1=(f0.0 = (51 = [ fds. (1513)
Rn

This convolution is called the integral of the distribution f.
If D? is a derivation operator, then we obtain D? f %« 1 = D?( f % 1) = 0, hence
Jr»D? fdx =0.

Definition 1.37 We call the trace at the origin of the continuous function f : R" —
C, the number f(0) denoted by Tr f(x) = f(0).

According to the Proposition 1.49, if f € OD'(R") and ¢ € D(R"), then f * ¢ €
C°°(R") and we have

(f *@)(x) = (f(1), o(x — 1), (1.514)



1.3 Operations with Distributions

giving
Te(f * @) = (f*9)(0) = (f(1) ¢(=1)) = (f¢") = (f".9) - (1.515)
Consequently, we have
Te(f"* @) =Te(f x¢") = (" ¢") = (£ (")) = (f0). (1.516)

Proposition 1.50 The necessary and sufficient condition for the distribution f €
D’(R") to be null is that, for Yo € D(R"), we should have f x ¢ = 0.
Indeed, if f = 0, then V¢ € D(R") we can write

(fo)=0=Tr(f*¢")= f*p=0.

Reciprocally, if Vo € D(R") we have f ¢ = 0, then f % ¢” = 0. Applying the
formula (1.516), we have ( f,¢) = Tr(f * ¢”) = 0, hence f = 0.

Proposition 1.51 Let there be fg € D’'(R") and ¢ € D(R"). If the convolution
product f % g € D’(R") exists, then the formula follows:

(fxgo)=(fg"*x¢)=(g " *9). (1.517)

Proof: Because ¢ € D(R"), the product (f * g) * ¢ exists, is commutative and
associative. Consequently, we have

(f*xg o) =Te[(f * g *"] =Tt f x (g*¢")]

=Ti[f * (8" x¢)" 1= (/8" *9) (1.518)
We obtain the required result on the basis of the commutativity of the convolu-
tion product. O

From the formula (1.517), it follows that the convolution product f * g is deter-
mined if we know one of the functions f” % ¢ or g x ¢, Vo € D(R").

Let there be the distribution f(x,t) € D’(R"T™) and ¢(x) € D(R"). We define
the distribution

(flx. 1), 0(x)) € D'(R™) (1.519)
by the formula
(f(x, 1), 9(x)), (1)) = (f(x, 1), o(x) (1)) » (1.520)

where ¢ € D(R"), p € DR™).

Proposition 1.52 Let there be f(x,t) € H’(R"*T™) and D’f the derivation operator
with respect to t € R™. Then, V¢ € D(R") we have

(D fx 1 0(x)) = DL (flx. 0 0(x) . BeN. (L521)
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Indeed, taking into account (1.520) for v (t) € D(R™), we can write

(o et 0) v (1) = (DY Sl o) w (1)

= (=1 (fx. 0,000 () = ()7 ((fx, 1), 0(x), D)

= (D{’(f(xy t),sﬂ(x)),w(t)) ; (1.522)
hence, based on the equality of two distributions, we obtain the formula (1.521).

1.3.8.3 The Convolution of Distributions Depending on a Parameter: Properties

Proposition 1.53 Let there be the distribution f;,g € D’(R"),t € T C R being a
parameter. If 9 f;(x)/dt and f; x g € D’(R") exist, then we have

a a fi
(it w gl = LD

Remark 1.3 The formula (1.523) remains valid if 0 f;(x)/dt, Vt € T C R, exists
and if the distributions f}, g satisfy one of the conditions:

g(x) . (1.523)

1. fie&R", VteTCR,
2. ge&'R"),
3. fi,g € D'(R) and supp( f:), supp(g) C [a, 00) or supp( f3), supp(g) C (—oo, b].

In particular, if fi(x) = ¢(x,t) € D(R"T1), then Vg € O’(R") on the basis of the
formula (1.523), we obtain

9 9
5 (g(x) *o(x, t)) = g(x) x 5% 1), (1.524)

where ¢t € R is considered parameter, and the convolution is performed with re-
spect to the variable x € R".
Indeed, for t € R fixed, ¢(x, t) € H(R") and consequently Vg € D’(R"), the con-
volution product g(x) *, (3/dt)¢(x, t) exists and is a function of class C*°(R" 1),
hence g(x) *,(3/0t)p(x, t) € C°(R"T1).

If g € £'(R"), then g(x) *,(3/dt)p(x, t) € D(R"T).

Proposition 1.54 Let there be the distributions f;, g; € D/, depending on the pa-
rameter t € T C R. If (3/dt) fi(x), (9/0t)g:(x) € D/, then (3/3t)( fi(x) * gi(x)) €
D!, exists and the formula follows:

9 9 9
g fixe) = fixgt fix e (1.525)
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Proof: On the basis of the definition of a derivative with respect to the parameter
t € T C R we have

ft+At * g4 AL — ft * g

giUie 8= Jim, At
1 ft+At ft 8t+At — 8t
= Al}go( Al * g At + T * ft . (1.526)
Taking into account the Proposition 1.48, we obtain
. 0 . - 0
dm g e and i BB D
(1.527)

It follows that the right-hand side of the relation (1.526) exists, which implies the
existence of the derivative (9/0t)( f; * g:) and also the formula (1.525). O

Example 1.35 Let there be the distributions fi(x) = d(x — at) € D, gi(x) =
H(x — bt) € D/ depending on the parameter t > 0, where a,b € R4 and
H(u) € D/, is the Heaviside distribution. We have

%mm—an*H@—M»:—m+mmx—m+bm. (1.528)

Indeed, applying the formula (1.525), we obtain

0
5(6(36 —at) x H(x — bt))

0 0
= aé(x— at) x H(x — bt) + O(x — at) * aH(x—bt)

= —ad’(x — at) * H(x — bt) — bd(x — at) * O(x — bt)
= —ad(x — at) * O(x — bt) — bO(x — at) x O(x — bt)
= —(a+b)d(x—(a + b)t). (1.529)

Proposition 1.55 Let there be the distributions f, g, € D/, depending on the pa-
rameter t € [a, b], continuous on [a, b] and let F(x), G(x) € D/, . We have

b
/ Lfix) * F(x) + gu(x) * G(x)Jdt

F(x) * /ﬁww+c /g (1.530)

Particularly, for F(x) = ad(x), G(x) = fd(x), a, f € R we obtain

b b b
/[a fi(x) + fgi(x)]dt = a / fi(x)dt + ﬁ/gt(x)dt . (1.531)
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Proposition 1.56 Let there be the distributions f;, g; € D/, depending on the pa-
rameter t € [a, b]. If (3/0t) fi(x), (3/9t)g:(x) € D/, exist, then we have

b b
0
/( filx) * gi(x ) (fil(x) * gi(x g—/(ft(x)*ﬁgt(x))dt,

(1.532)

where

(fe* 8)lo = fu(x) * gb(x) = fa(%) * ga(x) - (1.533)

Proof: Indeed, because f;, g, € D/, it follows that d f,/dt,dg,/dt € D/, and,
as the convolution products between the distributions f;, g;, d f;/0t, g;/dt exist,
according to formulae (1.525), (1.531), and (1.444), we obtain

b b b
0 0 0
/ﬁ(ﬂ*gt)dt:(ft*gt)”;:/(ﬁft*gt)dt‘i‘/(ﬂ*&gt)dt

(1.534)

that is, the formula (1.532).
The relation (1.532) represents the analogue of the integration by parts formula.

O
Example 1.36 Applying the formula (1.530) to calculate the integral
b
I = / &' (x) * H(x —t)dt, (1.535)
where 0 < a < b and t € [a, b] is a parameter.
We have
/ Hix — d / Hix — fdt = L Fy
x— X — ,
= I = )
where, according to the Example 1.30, we obtain
0, x<a<b,
Fi(x)={b—a, a<b<x, (1.536)

x—a, a<x<b.

Consequently, applying the differentiation formula of the functions with discon-
tinuities of the first order we obtain
d 0, x<a,
I=—F(x)=11, xe(a,b)=H(x—a)— H(x—D), (1.537)

dx
0, x>bh.
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Remark 1.4 By direct calculation, we have

b b
d
I:/é(x—t)dt:—/ﬁH(x—t)dt
= —[H(x —1)]|> = H(x —a)— H(x — b) . (1.538)

1.3.8.4 The Partial Convolution Product for Functions and Distributions

Definition 1.38 Let there be the distributions f(x,t) € D’(R"T™) and g(x) €
D’(R"). We call partial convolution product of the distribution f with g, the dis-
tribution denoted f(x,t) ®, g(x) € D’(R"), defined by the formula

flx,t) @ g(x) = flx. 1) * (g(x) x O(t) » (1.539)
where 0(t) € D’(R™) is Dirac’s delta distribution.

The symbol ®, for the convolution product denotes that the convolution is per-
formed only with respect to the variable x € R”", common to the distributions
flx,t) € D'(R"T™) and g(x) € D'(R™), considered in different spaces.

On the right-hand side of the formula (1.539), the convolution product denoted
by the symbol * obviously refers to the variables (x, t) € R" x R™.

In the case of existence of the partial convolution product, the latter is a distribu-
tion from D’ (R"T™), hence f(x,t) ®, g(x) € D' (R"T™).

Taking into account the definition of the commutativity of the partial convolu-
tion product, we will not distinguish between the distributions f(x,t) ®  g(x) and

8(x) ®x flx,1).

Proposition 1.57 Let there be f(x,t) € O'(R"T™) and g(x) € D’(R"). The par-
tial convolution product f(x,t) ®, g(x) € D’(R"T™) exists if one of the distribu-
tions f, g has compact support.

Indeed, if g(x) € &’(R"), hence g has compact support, then g(x) x d(t) has
compact support, hence the right-hand side of expression (1.539) exists.

Also, if f(x,t) € & (R"T™), then the product f(x, t)*(g(x) x d(t)) exists, where-
from the proposition is proved.

From the above considerations, it follows that the partial convolution product de-
noted by the symbol ®, is a new law of composition for the distributions f(x,t) €
D'(R"T™) and g(x) € D’(R") with respect to the common variable x € R".

This new introduced convolution product [20] has wide applications in de-
formable solid mechanics and in particular in viscoelasticity [21-23].

The structure relation of the partial convolution product is shown as follows:

Proposition 1.58 Representation formula Let there be the distributions f(x,t) €
D'(R"F™) and g(x) € D’ (R"). If the partial convolution product f(x,t) ®, g(x) €
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D'(R"F™), then the relation
(flen@g(.0) = (flxn.8"x0(x.1) . Vot e DR, (L540)

occurs, where g” is symmetric with respect to the origin of the distribution g(x) €
D/(R").

Proof: We suppose that g(x) € £'(R"). Then the convolution product exists and
Yo(x,t) € DR"T™), thus we can write

(Fle 1) @ gl).p(x, 1) = (Flx.1) % [8(x) x O(8)] (. 1)
= (f(x.1) x g(u) x O(v), <x+ut+v))
= (f(%,1) x g(w). @(x + 1, 1) = (f(x, 1), (8w plx +w, 1)) . (1541)

On the other hand, on the basis of the Proposition 1.49, because g(x) € £'(R"),
the convolution product g” *, ¢(x, t) € D’(R") exists and we have

g xo(x, 1) = (g"(u), @(x — u, 1) = (g(u), ¢(x + u, 1)) . (1.542)

Taking into account (1.541), we obtain
(fx )@ g(x),olx. 1) = (fx,0.8" x0(x.1) . Volx, 1) € DR, (1.543)

namely the required formula (1.540).

If f(x,t) € &(R"T™), then on the basis of the Proposition 1.49, Vg € D’(R")
we have g *, ¢(x,t) = (g(u), o(x + u, t)) € C(R"T™) and the formula (1.541)
becomes

(fle )@ (). 0x.1) = (flx.1). 8" 2 0(x.1)
= (f(x,t),h(x,t) (gvzs:go(x,t))) , (1.544)

where h(x,t) € D(R"T™) and has the value 1 in a compact neighborhood of the
distribution support f(x, t) € & (R"T™).

Obviously, h(x, t)(g" *x ¢(x, t)) € D(R"T™), therefore the right side of the for-
mula (1.544) makes sense, which proves the equality (1.540). O

Comparing the formula (1.540) of the partial convolution product with the for-
mula (1.517), that is,

(frgo)=(fg"*0)=(g f"*¢), fgecD'R"), ¢ecDR"), (1545

we see that these two types of convolutions have the same structure, in the sense
that they are expressed with respect to the common variable of both distributions
which are convoluted.
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From this point of view, we can say that the partial convolution product is a gen-
eralization of the ordinary convolution product.
Below, we give some properties of the partial convolution product.

Proposition 1.59 Let there be the distributions f(x,t) € D/(R"T™), g(x) €
D'(R"). If the product f(x,t) ® g(x) € D'(R"T™) exists and D%, D’ are deriva-
tion operators with respect to the variables x € R",t € R™, respectively, then the
following formulae take place

D% [f(x, t) @g(x)] =Dif(x.1)®g(x) = flx.1)®Dig(x), (1.546)

D/ [f(x, t) @g(x)] =D} flx, ) ® g(x) . (1.547)

Proposition 1.60 Let there be the distributions f(x, t) € D'(R"T™), g(x) € D' (R")
and Df the derivation operators with respect to the variable t € R™. If the partial
convolution product f(x, t) ® , g(x) exists, then the formula follows:

(D fx, @ g(x).0(x)) = DI (f(x, ) ®g(x).0(x)) . Yo € DR .
(1.548)

Indeed, on the basis of the Proposition 1.52 and the formula (1.547) follows the
required relation.

Remark 1.5 A similar relation occurs for the distributions depending on the pa-

rameter t € R™. Thus, if fi(x), g(x) € D'(R") and fi(x) * g(x) € D’ (R") exists,
then Vo(x) € H(R") and we have

(DY fu(x) * g(x).0(2)) = DI (fuf) * g(x), 0(x)) - (1.549)

Proposition 1.61 Let there be the distributions f € D'(R"),h € &' (R"),g €
D’(R™). Then we have

(fx) x g(£) ® h(x) = (f * h)(x) x g(t) - (1.550)

Example 1.37 Let there be D¢ the derivation operator with respect to the variable
x € R"; then we have the relations

flx, ) @D (x) = D% f(x, 1), V f(x,t) € D'(R"T™), (1.551)

d(x, ) ® Dig(x) = Dg(x) x 8(t), Vg(x) € D'(R") . (1.552)
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In particular, for |a| = 0 we have

flx, )@ 0(x) = f(x,8), ¥ f(x,t)e DR, (1.553)

O(x,t) (?g(x) = g(x) x 6(t), Vg(x)e D'R"). (1.554)

Proposition 1.62 Let there be the distributions f(x,t) € D/(R"T™), g(x) €
D’(R™). If the product f(x,t) ®, g(x) € D' (R"T™) exists, then we have

(f(x, t) <§g(x))y =f®g, (1.555)
Ta(f(x, t) @g(x)) = 7o flx, 1) ® (%), (1.556)

where 7, is the translation operator by the vector a € R"*,
The partial convolution product has the property of continuity as the usual con-
volution product.

Proposition 1.63 Let there be the distribution g(x) € D’(R") and the sequence of
c([)/ n

distributions (g;(x))ien C D’(R") with the properties g; 280 gand supp(g;) C

Q bounded. Then, V f(x,t) € D’(R"T™) we have

D' (R*Fm)
o, )@ gilx) ——— flx, 1) (). (1.557)

As regards the support of the partial convolution product we can state [24]:

Proposition 1.64 Let there be the distributions f(x,t) € D’(R"T™) and g(x) €
D'(R™).If f®, ge D'(R"T™) exists, supp(f) = 2 x T,supp(g) = L/, 2,2’ C
R", T C R™, then

supp (f(?g) cC@+a)xT. (1.558)

In particular, if f(x,t) € D'(R x R™), g(x) € D'(R) and supp(f) = [0, 00) X
T, supp(g) C [0,00) x T, T C R™, then 2 + Q' C [0, 00) and the formula (1.558)
becomes

supp (f ® g) C[0,00)x T. (1.559)

We have seen that the partial convolution product exists if one of the factors
is a distribution with compact support. Another case of existence of the partial
convolution product which has particular importance in mechanics is given by [24]:

Proposition 1.65 If f(x,t) € D'(R x R™), g(x) € D’(R) and supp(f) = (a, 00) x
T,supp(g) C (b,00), T C R™, then f(x,t) ®, g(x) € D'(R x R™) exists.

Proposition 1.66 Let there be f(x,t) € D'(R x R™), g(x) € D' (R). If supp(f) C
2 x T, Q-compact, T C R™ and supp(g) = €2’ arbitrary, then the partial convo-
lution product f(x,t) ®, g(x) € D’ (R x R™) exists.
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A property that expresses a certain relation between the partial convolution prod-
uct and the usual one is given by the following.

Proposition 1.67 Let there be the distributions f(x,t) € D’(R"T™) and g;(x),
g2(x) € &'(R"). We have
f®(gixg) = (f@gl) ®g = (f‘?gz) ® g1 (1.560)

Remark 1.6 The formula (1.560) remains valid if f(x,t) € D’(R"T™) and
supp(f) C [0,00) x T, T C R™, gi(x), g2(x) € D/, hence supp(g1), supp(ga) C
[0, 00).

Proposition 1.68 Let there be E(x) € D’(R") a fundamental solution of the dif-
ferential operator with constant coefficients P(Dy) = 3, <; 4«D%, a € Ni, a, €
C. If f(x,t) € D'(R"T™); if the partial convolution product f(x,t) ®, E(x) €
D'(R"™) exists, then the distribution

u(x,t) = f(x,t) (? E(x) = f(x,t) % [E(x) x O(t)], (1.561)
is a solution for the equation
P(Dy)u(x,t) = f(x.1). (1.562)
Indeed, using the formula (1.546) we obtain
P(Dx)u(x, 1) = f(, ) ® P(Dx)E(x) . (1.563)
Observing that P(D,)E(x) = O(x) and taking into account (1.554), the rela-
tion (1.563) becomes P(Dy)u(x,t) = f(x,t) @y O(x) = f(x,t).

Remark 1.7 It follows that a fundamental solution of the operator P(D,) in
D'(R"F™) is the distribution E;(x,t) € D' (R"T™) with

Ei(x,t) = E(x) x 8(t), E(x) € D'(R"), teR™. (1.564)
Indeed, we have

P(Dy)Ei(x,t) = P(D,)[E(x) x 6(t)]
= [P(Dy) E(x)] X 0(f) = 0(x) X O() = O(x, 1) . (1.565)

Example 1.38 Let there be 0;(x) = d(x — 1) € E/(R") and f(x,t) € D'(R*T™).
Then, we have f ®,(0,% 0p) = f(x —a — b, t). Because f(x,t) ®y 0q(x) =
f(x,t) * [0a(x) x O(x)] = f(x — a,t), on the basis of the formula (1.560) we
obtain

F @00 % 0p) = (f®6a) ®0p = flx—a,t)®0p(x) = f(x—a—b,t). (1.566)

X
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Example 1.39 We consider the Poisson equation
Au(x,t) = f(x,t), (1.567)

where A = (92/0x2) + -+ + (3%/9x?2) is the Laplace operator in R" and f(x, 1) €
E'Rm) C D/(R"H™) a distribution with compact support.

Let us show that a solution in D’ (R"T™) of (1.567) is the distribution u(x, t) €
D’(R"*™) given by

u(x,t) = f(x, 1) ® E(x) = f(x, ) % (E(x) x 0(t)) , (1.568)
where
~In2 1 .
2(n—2)mn2 yn—27 T
Ex)={ o1 . (1.569)
27
r
-, n=1,
2

r = |x||,x € R", while I'(p) = fooo e 'tP~1dt, p > 0 is the Euler gamma func-
tion.

Indeed, the linear differential operator with constant coefficients P(Dy) is the
Laplace operator A, hence P(D,) = A; taking into account the Example 1.19, the
distribution E(x) € D’(R") given by (1.569) is the fundamental solution of the
operator Ain R", n > 1.

Consequently, based on the Proposition 1.68, it follows that the distribution
u(x,t) € D' (R*T™) specified by (1.569) is the solution of (1.567).

Example 1.40 We consider the equation

2
% = flx,t), u feD(RY. (1.570)

For f(x,t) € D’(R?) where supp(f(x,t)) = [0,00) x T,T C R, a solution
of (1.570) is the distribution

u(x,t) = f(x,t)®xH(x) = f(x,t) % [xH(x) x O(t)], (1.571)

H(x) € D’(R) being the Heaviside distribution.

Indeed, a fundamental solution of the operator P(D,) = %/dx?% in D’(R) is the
distribution E(x) = x H(x) € O'(R).

Consequently, a solution of (1.570) is the distribution

u(x,t) = f(x,t)® xH(x), (1.572)

which exists, taking into account the Proposition 1.65.
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1.3.9
Partial Convolution Product of Functions

To prove the consistency of the partial convolution product introduced for distribu-
tions of different spaces, we show that in the case of functions, that is, distributions
of function type, this operation coincides with the convolution operation with re-
spect to the common variable of the two functions.

We can state the following.

Proposition 1.69 If f(x,t) € LY(R"*t™) and g(x) € L'(R"), then the product
f(x,t) ® g(x) exists and we have

Foe 0% glx) = flx, 1) ®glx) € LR, (1573)
/ (fexn Zs;g(x)) dxdt = / flx, tydxdt - / g(x)dx , (1.574)

Rn+m Rnr+m R®

If e, 8) % gle)lln < WL f - Nlgll - (1.575)

From above, the symbol *, means the usual convolution with respect to x € R"
considering t € R™ fixed, and the symbol ®, represents the partial convolution
product with respect to x € R" introduced by the Definition 1.38 for distribution
from the spaces D’(R"+™) and D’(R").

Proposition 1.70 Let there be the locally integrable functions f(x, t) € L (RxR™)
and g(x) € L} (R). If supp(f(x,t)) C [0,00) x T, supp(g(x)) C [0,00), T C R™,
then f ®, g is alocally integrable function on R x R™ and we have

(f®g)(x.1) = (f*g)(x.1)

(x,t) € (—00,0] x T,

/ f& t)g(x—8)d, (x,t)€[0,00)x T . (1.576)
0

Example 1.41 For Heaviside distributions H(x, t) € D'(R x R) and H(x) € D’(R)
we have

H(x, 1) % H(x) = x H(x, 1) . (1.577)

Because H(x,t) € L (R?), H(x) € L} (R), the product H(x, t) %, H(x) exists,

so that applying the formula (1.576) we obtain

(x,t) € (—00,0] xR,

H(x, 1) * H(x (1.578)

/HCt (x —&)dZ, (x,t) €[0,00)xR.
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By the change of variable x — { = u, we have

/H<c,t)H(x—§)dc= /H(x_g)dg, P
0
0

{ 0, (x 1) €[0,00) x (—00,0),
= (1.579)
x, (x,t) €[0,00)x[0,00),

and thus the relation (1.578) becomes
fe
x , for (x,t) €0, 00) x [0, 00) = xH(x, 1),

H(x, 1) % H(x) = § 0, for(x,t) € R\[0,00) x [0, 00)
(1.580)

that is, the formula (1.577).





