Index

Symbols
0-1 loss, 167, 343
\(F \)
\(\chi^2 \), 42, 46, 59
\(p \)-value, 21, 40, 57, 141, 145, 153, 233, 386, 396, 403, 419, 422
\(k \)-means, 280, 281
binned data, 39
Binomial
– confidence interval (Clopper–Pearson), 175, 206
– distribution, 9, 21, 97, 131, 141, 174, 179, 181, 205, 208, 212, 215, 316, 318
– test, 212, 409, 413
Binomial loss, 167
Bonferroni correction, 216
boosting, 126, 210, 366
– confidence-rated, 358
– corrective, 347
– decision trees, 197, 334, 338, 341, 344, 345, 349, 354, 360, 365, 382, 400
– learning rate, 340
– shrinkage, 340
– totally corrective, 347
bootstrap, 65, 100, 179, 180, 207, 361
– .632+ estimator, 180
– bias estimation, 67
– confidence intervals, 68–70
– leave-one-out, 179
– parametric, 70
– replica, 65
– smoothed, 70
Brownian motion, 352
bump hunting, 121, 417–423
Bayes neural network, 260
Bayesian statistics, 5, 10, 16
BCa confidence interval, 76, 77
bias, 7, 13
batch learning, 124, 125, 258, 301
Bayes error, 167, 169, 338

A
acceptance region, 19, 44
– AdaBoost.M1, 357, 371, 376
– AdaBoost.M2, 185, 358, 371
– pseudo-loss, 357
Anderson–Darling test, 50
arbiter tree, 126
artificial contrasts with ensembles (ACE), 412
asymptotic, 13
asymptotic mean integrated squared error (AMISE), 294
asymptotic significance level, 20
backwards elimination by change in margin (BECM), 407
bagging, 126, 127, 171, 361–363
– decision trees, 361, 364, 365, 382
– in bag, 361
– out of bag, 361, 411, 413
balanced box decomposition tree, 300
Bartlett test, 151, 225
Bayes error, 167, 169, 338
Bayesian statistics, 5, 10, 16
BCa confidence interval, 76, 77
bias, 7, 13
binned data, 39
Binomial
– confidence interval (Clopper–Pearson), 175, 206
– distribution, 9, 21, 97, 131, 141, 174, 179, 181, 205, 208, 212, 215, 316, 318
– test, 212, 409, 413
Binomial loss, 167
Bonferroni correction, 216
boosting, 126, 210, 366
– confidence-rated, 358
– corrective, 347
– decision trees, 197, 334, 338, 341, 344, 345, 349, 354, 360, 365, 382, 400
– learning rate, 340
– shrinkage, 340
– totally corrective, 347
bootstrap, 65, 100, 179, 180, 207, 361
– .632+ estimator, 180
– bias estimation, 67
– confidence intervals, 68–70
– leave-one-out, 179
– parametric, 70
– replica, 65
– smoothed, 70
Brownian motion, 352
bump hunting, 121, 417–423

C
canonical correlation analysis (CCA), 238
categorical variable, 129–132, 324
dummy variables, 327
– nominal, 129, 320
– ordinal, 129, 320
Cauchy distribution, 10, 66
 – median, 66
centering, 145, 146, 228, 229, 237, 238, 269, 270
Chernoff–Lehmann theorem, 44
class label
 – known, 165, 252
 – predicted, 165
 – true, 165
class posterior odds, 132, 222, 223, 231, 233, 234
class prior probability, 166, 182, 183, 184, 188, 191, 199, 222, 223, 286, 294, 312, 362, 400
classification, 165
 – bias, 170, 361
 – binary, 165, 269
 – coefficient of pairwise correlation, 359
 – confidence, 360
 – hard label, 166, 167, 376, 382
 – irreducible noise, 170, 354
 – ordinal, 131
 – prediction strength, 359
 – soft score, 166, 196, 200–202, 205, 224, 265, 283, 284, 334, 336, 343, 357, 358, 376, 382, 396, 422
 – statistical, 340, 343
 – variance, 170, 361
classification cost, 190
classification edge, 343, 345, 349, 358
classification margin, 283, 343, 349, 351, 352, 358, 359, 366, 396, 407, 433
classifier diversity, 358–365, 373
clustering, 121, 184, 280
 – k-means, 280
condition number, 150, 151, 282
conditional likelihood, 21
conditional Monte Carlo, 64
confidence interval, 10, 14, 17
 – confidence set, 10
 – hypothesis test, 45
 – pivotal quantity, 45
confidence level, 11
consistent estimator, 42, 97, 99
correlation, 391
Cramér–von Mises test, 50
critical region, 11, 28
cross-entropy, 257, 261, 310, 338
cross-validation, 58, 78–82, 101, 126, 177–179, 315
 – K-fold, 81
 – folds, 177
 – leave-one-out, 79, 140, 178
 – repeated, 178, 214
curse of dimensionality, 102, 302, 303, 327
datasets
 – BaBar PID data, 325, 364, 365, 378, 394
 – ionosphere data, 152, 154–158, 197, 198
 – two-norm data, 331, 341
decision tree, 127, 130, 138, 139, 171, 173, 183, 365, 371, 374, 381
 – branch node, 309
 – C4.5, 138, 139, 321
 – CART, 307, 321
 – CHAID, 307
 – impurity gain, 138, 309, 312, 319, 321, 323, 325
 – leaf node, 166, 171, 173, 176, 187, 307, 309, 312, 313, 316, 334, 360, 361
 – node impurity, 307, 309, 310, 314, 319
 – optimal pruning level, 315
 – optimal pruning sequence, 314
 – predictive association, 139, 322, 325, 326, 411, 412
 – probabilistic splits, 139
 – pruning, 313–318
 – risk, 313
 – surrogate splits, 139, 321–323, 324, 390, 411, 412
 – terminal node, 309
deconvolution, 112
deflation, 161, 237
degrees of freedom (DOF), 59, 214, 224, 233
density estimation, 89, 120, 121, 294, 295, 296, 299, 301
 – empirical (epdf), 90
 – error, 95
 – histogram, 90
 – kernel, 56
Index

– Monte Carlo, 111
– nonparametric, 93
– optimal, 94
– orthogonal series, 108
– parametric, 89, 93
deviance, 310
dimensionality reduction, 146, 147, 230, 236, 279
discriminant analysis, 183, 221–231, 374
– linear, 166, 206, 210, 222, 232, 236, 364, 400
– pseudolinear, 197, 202
– quadratic, 222

E
efficient estimator, 7, 8, 13
eigenvalue decomposition (EVD), 148–150, 230, 266
– generalized, 230
elbow plot, 152
entropy, 118, 160
– cross-entropy, 257
– differential, 159, 392
– Shannon, 159, 392
error correcting output code (ECOC), 126
– complete design, 372, 374
– exhaustive design, 372
error function, 252, 257
expectation-maximization algorithm, 135
expected prediction error (EPE), 78
exponential family, 9
exponential loss, 167

F
false positive rate (FPR), 196, 227
feature irrelevance, 387, 412
feature ranking, 389–403
– embedded algorithm, 389
– filter, 389
– wrapper, 389
feature redundancy, 388, 412
feature selection, 386
– embedded algorithm, 389
– filter, 389
– wrapper, 389
feature strong relevance, 387, 411
feature weak relevance, 387
feature-based sensitivity of posterior probabilities (FSPP), 395
Feldman–Cousins (FC), 36
Fisher discriminant, 221, 229
Fisher information, 6, 47
– matrix, 6
Fokker–Planck equation, 353
frequentist statistics, 5, 10, 14
– coverage, 22–25
fuzzy rules, 301
– membership function, 301

G
Gauss–Markov theorem, 37
Gauss–Seidel method, 291
generalization error, 169, 178, 180, 312, 338, 340, 344, 351, 361
genetic algorithms, 262
genetic crossover, 262
GentleBoost, 187, 338, 339, 341, 349, 356, 357, 376
Gini diversity index, 127, 310, 334, 338, 389, 411
goodness of fit (GOF), 39
Gram matrix, 266, 268, 270, 272, 273, 279, 288, 296, 299, 375
Gram–Schmidt orthogonalization, 161, 237
Green’s function, 272

H
Hamming loss, 372
Hessian, 6, 232, 233, 261, 377
heterogeneous value difference metric (HVDM), 302
heteroscedastic, 75, 85
hinge loss, 167
histogram, 22, 39, 90, 91
– binning, 97
Hosmer–Lemeshow test, 234, 244
Hotelling transform, 147
Householder reflections, 269
hypothesis, 11
– composite, 11, 19, 47
– simple, 59
hypothesis test, 11
– p-value, 211
– alternative hypothesis, 11, 211, 403, 407
– confidence interval, 45
– critical region, 11
– decision rule, 44
– level, 403
– likelihood ratio, 46
– multiple, 216
– null hypothesis, 11, 211, 212, 217, 233, 386, 396, 403, 405–407, 410, 412
– one-sample, 39
– power, 12, 28, 40, 211, 403
– replicability, 214
– α-level test, 211
– α-size test, 211
– score, 46
Index

– simple, 28
– two-sample, 39
– Type I error, 11, 211, 216, 403
– Type II error, 12, 211, 403
– uniformly most powerful (UMP), 12, 21, 29, 59, 215
– Wald, 46

I
IB3 algorithm, 301
ideogram, 93
– Gaussian, 93
independent component analysis (ICA), 146, 149, 158–162, 236
independent identically distributed (i.i.d.), XV
indicator function, 55, 91
influence function, 83
integrated squared error (ISE), 89, 96
interrater agreement, 360
irrelevant feature, 387
iterative single data algorithm (ISDA), 291, 292, 302, 384

J
jackknife, 70–77, 101
– delete-d, 74
– generalized, 74

K
kappa statistic, 360
Karhunen–Loeve transform, 147
kd-tree, 300
kernel density estimation, 56, 92, 201, 202, 205, 207
– adaptive, 103
– fuzzy rules, 301
– multivariate, 92, 106
– standard deconvolution, 116
kernel dot product, 267, 268, 286
kernel function, 92, 266
kernel regression, 269, 270
kernel ridge regression, 274–278, 279, 295, 296, 302, 383
kernel trick, 268, 274, 286, 288
Kolmogorov–Smirnov (KS) test, 49
Kullback–Leibler divergence, 159
kurtosis, 162
– excess, 162
– sample, 225

L
label noise, 340, 354
labeled data, 165
Laplace approximation, 261
learning curve, 81
learning rate, 187, 258, 270, 340, 341
least squares estimation, 13, 22, 60, 201, 232, 236, 269, 377
likelihood
– equation, 12
– equation roots, 12
– extended, 22
– function, 5
– maximum likelihood estimator (MLE), 12
– ratio, 14, 46
– with missing data, 134, 135
linear correlation, 7
– Kendall tau, 391
– Pearson, 389, 391
– Spearman rank, 391
linear discriminant analysis (LDA), 304, 381
linear regression, 235, 236, 274
– intercept, 232
– multiple, 237
– multivariate, 236
– regression of an indicator matrix, 236
– ridge, 274
linear statistic, 72, 75
linearly separable, 252, 283
local density tests, 55
location parameter, 17
log odds, 254
logistic regression, 231–235, 338, 381
logit function, 231, 254
LogitBoost, 339, 340, 357
loss
– binomial, 167, 339
– exponential, 167, 341, 376
– Hamming, 130, 374–376
– hinge, 167, 283
– quadratic, 167, 372, 376
loss function, 165, 257, 260
LPBoost, 346, 348, 349, 358

M
machine learning, 121
Mahalanobis distance, 41, 140, 225, 243
maintained hypothesis, 43, 47
Mann–Whitney U test, 200
marginal likelihood, 16
Markov blanket, 387
Markov boundary, 387–389, 401
maximum likelihood, 12
McNemar’s test, 211, 215
mean integrated squared error (MISE), 97, 202
mean squared error (MSE), 6, 95, 127, 168, 236
median, 73
Mercer's Theorem, 286
meta learning, 126
minimal covariance determinant, 140
minimal volume ellipsoid, 140
missing data, 132–139, 323, 324
 – augmentation, 137
 – casewise deletion, 135
 – hot deck imputation, 138
 – ignorable missingness, 133
 – imputation, 137
 – imputation by regression, 138
 – lazy evaluation, 136
 – missing at random (MAR), 132
 – missing completely at random (MCAR), 132, 136, 138
 – missing not at random (MNAR), 132
 – reduced model, 136
 – testing MCAR, 133
Monte Carlo
 – bootstrap, 66
 – density estimation, 111
 – permutation test, 64
multiclass learning
 – error correcting output code (ECOC), 372
 – one versus all (OVA), 372
 – one versus one (OVO), 372
multinomial distribution, 22, 48, 141, 185, 234, 363
multiple hypothesis test, 216, 404
 – Bonferroni correction, 216, 405, 412
 – complete null, 405
 – Hochberg procedure, 406, 407, 409, 412
 – Holm procedure, 405, 407
 – Sidak correction, 216, 405
 – strong control, 405
 – weak control, 386, 405
multivariate regression, 236
mutual information, 159, 347, 377, 389, 391
 – symmetric uncertainty, 392
N
Nadaraya–Watson estimator, 294, 295, 299
naive Bayes, 105, 210, 364, 381
nearest neighbor rules, 184, 186, 268, 364, 365, 381
 – approximate neighbor, 300
 – IB3 algorithm, 301
neural network, 280, 374
 – feed-forward, 254–260
 – prior distribution, 260
Neyman modified chi-square, 42
Neyman smooth test, 51
nominal variable, 129, 165, 302, 320
nonsmooth statistics, 73
normal distribution, 14
nuisance parameter, 19, 43
O
one versus all (OVA), 216, 357, 372, 375–377
one versus one (OVO), 372, 374–377
one-sided sampling, 184
online learning, 124, 125, 258, 301
ordinal variable, 129, 320
outliers, 139–141
 – masking, 140
overfitting, 366
overtraining, 173, 366
P
pairwise similarity, 265
parallel learning, 125–127, 362, 399
partial least squares, 232, 236–239
 – loadings, 237
 – scores, 237
 – weights, 237
patient rule induction method (PRIM), 421
Pearson chi-square, 41
perceptron,
 – multi-layer, 254
 – perceptron criterion, 252
permutation
 – sampling, 63–65
 – test, 64
permutation sampling, 152, 180, 395, 410–413
pivotal quantity, 17, 45
point spread function, 112
Poisson distribution, 21, 22
pooled data, 57
posterior distribution, 260
power, 12
power divergence family, 48
principal component analysis (PCA), 146, 147–158, 230, 237
 – correlation PCA, 149
 – covariance PCA, 149
 – loadings, 149
 – nontrivial component, 152
 – principal components, 149
 – scores, 149
prior distribution, 260
profile likelihood, 20
proportional odds model, 132, 233
pseudo-inverse, 228, 238, 268
Q
QR decomposition, 228, 269, 377
quadratic loss, 167
Index

quadratic programming (QP), 289, 347, 377
 – confidence bounds, 207
 – QQ plot, 225
queue, 292

R
 radial basis functions (RBF), 273, 302
 – RBF network, 267, 280
random forest, 361–363, 362, 364, 366, 400, 411
 – balanced, 185
 – weighted, 362
random subspace, 126, 127, 136, 363, 364, 366, 400
random variable elimination (RVE), 402
Rao–Cramér–Frechet (RCF) bound, 7–10, 35
receiver operating characteristic (ROC), 179, 196–210, 227, 382
 – threshold averaging, 205
 – vertical averaging, 205
reduced model, 363
redundant feature, 388
reflection, 145
regression, 127, 128, 138, 251, 294, 413
 – bias, 169
 – irreducible noise, 169
 – linear, 235
 – locally weighted, 295–297, 383
 – multiple, 127, 131, 168, 265, 269, 296, 339
 – multivariate, 127, 296
 – stepwise, 138
 – variance, 169
regularization, 114, 260, 270–278
 – Tikhonov, 117
ReliefF, 390, 400
Representer Theorem, 272
ridge regression, 274
RobustBoost, 354, 355, 358
Rosenblatt’s theorem, 96
runs, 51
RUSBoost, 185, 187

S
 sample size, 5
scale
 – interval, 129, 390
 – nominal, 129
 – ordinal, 129, 390
scaling, 145, 146, 160, 237, 238, 269, 270, 298
score, 6, 48
 – score statistic, 48
 – test, 46
scree plot, 152
semi-supervised learning, 122
sequential backward elimination (SBE), 388, 389, 395, 413
 – backward elimination by change in margin (BECM), 407
 – remove r add n, 402
sequential forward selection (SFS), 395
 – add n remove r, 402
sequential minimal optimization (SMO), 290, 291, 302, 375, 384
Sidak correction, 216
sigmoid function, 253, 278, 352, 395
signed-rank test, 396, 407
significance level, 11, 12, 40, 44
 – asymptotic, 20
signum, 252
simple test, 47
singular value decomposition (SVD), 150, 228, 238
 – thin, 150
smoothed bootstrap, 70
stacked generalization, 126
stage-wise modeling, 338
standardization, 145
stationary sequence, 75
stepwise modeling, 338
stratified sampling, 181, 182
strongly relevant feature, 387
Student t, 19
 – 10-fold cross-validation test, 214
 – 5 × 2 cross-validation paired test, 213
 – 10 × 10 cross-validation test with calibrated degrees of freedom, 214
 – distribution, 64, 212, 213
 – test, 412
subsampling, 75
substitution method, 8
sufficient statistic, 13, 18, 21
supervised learning, 122
support vector machines (SVM), 166, 232, 265, 295, 302, 371, 375, 400
 – bias term, 284
 – box constraint, 267, 286
 – dual problem, 284, 287
 – linear, 283–285, 381
 – nonlinear, 285, 286, 383
 – primal problem, 284, 287
 – support vectors, 285
 – working set algorithm, 289
synthetic minority oversampling technique (SMOTE), 165, 186
systematic error, 112, 210, 383, 385
T
tables, 39
tall data, 123, 247, 382
target coding, 252
test power, 211
test replicability, 214
Tikhonov regularization, 117, 260
Tomek links, 184, 186
TotalBoost, 347–349, 358
training error, 173
transductive learning, 122
true label, 252
ture positive rate (TPR), 196, 227
twoing criterion, 319, 323
Type I error, 211
Type II error, 211

U
unbiased estimator, 7
unbinned data, 39
unfolding, 112–120
uniformly most powerful (UMP) test, 12
unlabeled data, 165
unsupervised learning, 121

V
value difference metric (VDM), 302
Vapnik–Chervonenkis dimension, 344
variable ranking, 386, 389–401
 – embedded algorithm, 389
 – filter, 389
 – wrapper, 389
variable selection, 386
 – embedded algorithm, 389
 – filter, 389
 – wrapper, 389

W
Wald statistic, 47
Wald test, 46
Watson test, 51
weakly relevant feature, 387
weight decay, 260
whitening, 161
wide data, 123, 247, 382
Wilcoxon rank sum test, 200, 412