Contents

Preface XIII List of Contributors XVII Color Plates XXIII

Part I Fluctuation Relations 1

1	Fluctuation Relations: A Pedagogical Overview 3
	Richard Spinney and Ian Ford
1.1	Preliminaries 3
1.2	Entropy and the Second Law 5
1.3	Stochastic Dynamics 8
1.3.1	Master Equations 8
1.3.2	Kramers–Moyal and Fokker–Planck Equations 9
1.3.3	Ornstein–Uhlenbeck Process 11
1.4	Entropy Generation and Stochastic Irreversibility 13
1.4.1	Reversibility of a Stochastic Trajectory 13
1.5	Entropy Production in the Overdamped Limit 21
1.6	Entropy, Stationarity, and Detailed Balance 25
1.7	A General Fluctuation Theorem 27
1.7.1	Work Relations 30
1.7.1.1	The Crooks Work Relation and Jarzynski Equality 31
1.7.2	Fluctuation Relations for Mechanical Work 34
1.7.3	Fluctuation Theorems for Entropy Production 36
1.8	Further Results 37
1.8.1	Asymptotic Fluctuation Theorems 37
1.8.2	Generalizations and Consideration of Alternative Dynamics 39
1.9	Fluctuation Relations for Reversible Deterministic Systems 41
1.10	Examples of the Fluctuation Relations in Action 45
1.10.1	Harmonic Oscillator Subject to a Step Change in Spring Constant 45
1.10.2	Smoothly Squeezed Harmonic Oscillator 49
1.10.3	A Simple Nonequilibrium Steady State 52
1.11	Final Remarks 54
	References 55

v

VI Contents

2	Fluctuation Relations and the Foundations of Statistical
	Thermodynamics: A Deterministic Approach and Numerical
	Demonstration 57
	James C. Reid, Stephen R. Williams, Debra J. Searles,
	Lamberto Rondoni, and Denis J. Evans
2.1	Introduction 57
2.2	The Relations 58
2.3	Proof of Boltzmann's Postulate of Equal A Priori
	Probabilities 62
2.4	Nonequilibrium Free Energy Relations 67
2.5	Simulations and Results 69
2.6	Results Demonstrating the Fluctuation Relations 74
2.7	Conclusion 80
	References 81
3	Fluctuation Relations in Small Systems: Exact Results from the
-	Deterministic Approach 83
	Lamberto Rondoni and O.G. Jepps
3.1	Motivation 84
3.1.1	Why Fluctuations? 85
3.1.2	Nonequilibrium Molecular Dynamics 86
3.1.3	The Dissipation Function 89
3.1.4	Fluctuation Relations: The Need for Clarification 92
3.2	Formal Development 94
3.21	Transient Relations 94
322	Work Relations: Jarzynski 96
323	Asymptotic Results 98
3.2.4	Extending toward the Steady State 101
3.2.5	The Gallavotti–Cohen Approach 105
3.3	Discussion 108
3.4	Conclusions 110
511	References 111
4	Measuring Out-of-Equilibrium Fluctuations 115
	L. Bellon, I. R. Gomez- Solano, A. Petrosvan, and Sergio Ciliberto
4.1	Introduction 115
4.2	Work and Heat Fluctuations in the Harmonic Oscillator 116
4.2.1	The Experimental Setup 116
4.2.2	The Equation of Motion 117
4.2.2.1	Equilibrium 117
4.2.3	Nonequilibrium Steady State: Sinusoidal Forcing 118
4.2.4	Energy Balance 119
4.2.5	Heat Fluctuations 120
4.3	Fluctuation Theorem 121
4.3.1	FTs for Gaussian Variables 122
4.3.1	1 15 IUI GAUSSIAII VAIIAUICS 122

156

174

4.3.2	FTs for W_{τ} and Q_{τ} Measured in the Harmonic Oscillator 123
4.3.3	Comparison with Theory 125
4.3.4	Trajectory-Dependent Entropy 125
4.4	The Nonlinear Case: Stochastic Resonance 128
4.5	Random Driving 132
4.5.1	Colloidal Particle in an Optical Trap 132
4.5.2	AFM Cantilever 136
4.5.3	Fluctuation Relations Far from Equilibrium 139
4.5.4	Conclusions on Randomly Driven Systems 142
4.6	Applications of Fluctuation Theorems 142
4.6.1	Fluctuation–Dissipation Relations for NESS 143
4.6.1.1	Hatano–Sasa Relation and Fluctuation–Dissipation
	Around NESS 144
4.6.1.2	Brownian Particle in a Toroidal Optical Trap 144
4.6.2	Generalized Fluctuation–Dissipation Relation 146
4621	Statistical Error 146
4622	Effect of the Initial Sampled Condition 147
4623	Experimental Test 149
463	Discussion on FDT 149
4.0.5	Summary and Concluding Remarks 150
T. /	References 151
	References 191
5	Recent Progress in Fluctuation Theorems and Free Energy
	Recovery 155
	Anna Alemany, Marco Ribezzi-Crivellari, and Felix Ritort
5.1	Introduction 155
5.2	Free Energy Measurement Prior to Fluctuation Theorems
5.2.1	Experimental Methods for FE Measurements 156
5.2.2	Computational FE Estimates 158
5.3	Single-Molecule Experiments 159
5.3.1	Experimental Techniques 160
5.3.2	Pulling DNA Hairpins with Optical Tweezers 162
5.4	Fluctuation Relations 163
5.4.1	Experimental Validation of the Crooks Equality 165
5.5	Control Parameters, Configurational Variables, and the
	Definition of Work 166
5.5.1	About the Right Definition of Work: Accumulated versus
	Transferred Work 168
5.6	Extended Fluctuation Relations 172
5.6.1	Experimental Measurement of the Potential of Mean Force
5.7	Free Energy Recovery from Unidirectional Work
- • /	Measurements 175
58	
	Conclusions 177
5.0	Conclusions 177 References 177

VIII Contents

6	Information Thermodynamics: Maxwell's Demon in Nonequilibrium
	Dynamics 181
	Takahiro Sagawa and Masahito Ueda
6.1	Introduction 181
6.2	Szilard Engine 182
6.3	Information Content in Thermodynamics 184
6.3.1	Shannon Information 184
6.3.2	Mutual Information 185
6.3.3	Examples 187
6.4	Second Law of Thermodynamics with Feedback Control 189
6.4.1	General Bound 190
6.4.2	Generalized Szilard Engine 191
6.4.3	Overdamped Langevin System 192
6.4.4	Experimental Demonstration: Feedback-Controlled Ratchet 194
6.4.5	Carnot Efficiency with Two Heat Baths 196
6.5	Nonequilibrium Equalities with Feedback Control 197
6.5.1	Preliminaries 197
6.5.2	Measurement and Feedback 200
6.5.3	Nonequilibrium Equalities with Mutual Information 201
6.5.4	Nonequilibrium Equalities with Efficacy Parameter 203
6.6	Thermodynamic Energy Cost for Measurement and Information
	Erasure 205
6.7	Conclusions 208
	Appendix 6.A: Proof of Eq. (6.56) 208
	References 209
_	
7	Time-Reversal Symmetry Relations for Currents in Quantum and
	Stochastic Nonequilibrium Systems 213
	Pierre Gaspard
7.1	Introduction 213
7.2	Functional Symmetry Relations and Response Theory 216
7.3	Transitory Current Fluctuation Theorem 220
7.4	From Transitory to the Stationary Current Fluctuation Theorem 224
7.5	Current Fluctuation Theorem and Response Theory 227
7.6	Case of Independent Particles 230
7.7	Time-Reversal Symmetry Relations in the Master Equation
	Approach 238
7.7.1	Current Fluctuation Theorem for Stochastic Processes 238
7.7.2	Thermodynamic Entropy Production 241
7.7.3	Case of Effusion Processes 241
7.7.4	Statistics of Histories and Time Reversal 242
7.8	Transport in Electronic Circuits 244
7.8.1	Quantum Dot with One Resonant Level 244
7.8.2	Capacitively Coupled Circuits 245

7.8.3 Coherent Quantum Conductor 250

7.9 Conclusions 252 References 254

	8	Anomalous	Fluctuation	Relations	259
--	---	-----------	-------------	-----------	-----

- Rainer Klages, Aleksei V. Chechkin, and Peter Dieterich
- 8.1 Introduction 259
- 8.2 Transient Fluctuation Relations 260
- 8.2.1 Motivation 260
- 8.2.2 Scaling 262
- 8.2.3 Transient Fluctuation Relation for Ordinary Langevin Dynamics 263
- 8.3 Transient Work Fluctuation Relations for Anomalous Dynamics 265
- 8.3.1 Gaussian Stochastic Processes 265
- 8.3.1.1 Correlated Internal Gaussian Noise 265
- 8.3.1.2 Correlated External Gaussian Noise 266
- 8.3.2 Lévy Flights 267
- 8.3.3 Time-Fractional Kinetics 268
- 8.4 Anomalous Dynamics of Biological Cell Migration 269
- 8.4.1 Cell Migration in Equilibrium 270
- 8.4.1.1 Experimental Results 271
- 8.4.1.2 Theoretical Modeling 272
- 8.4.2 Cell Migration Under Chemical Gradients 275
- 8.5 Conclusions 277
 - References 278
- Part II Beyond Fluctuation Relations 283
- 9 Out-of-Equilibrium Generalized Fluctuation–Dissipation Relations 285
 - G. Gradenigo, A. Puglisi, A. Sarracino, D. Villamaina, and A. Vulpiani
- 9.1 Introduction 285
- 9.1.1 The Relevance of Fluctuations: Few Historical Comments 286
- 9.2 Generalized Fluctuation–Dissipation Relations 287
- 9.2.1 Chaos and the FDR: van Kampen's Objection 287
- 9.2.2 Generalized FDR for Stationary Systems 288
- 9.2.3 Remarks on the Invariant Measure 290
- 9.2.4 Generalized FDR for Markovian Systems 292
- 9.3 Random Walk on a Comb Lattice 294
- 9.3.1 Anomalous Diffusion and FDR 294
- 9.3.2 Transition Rates of the Model 295
- 9.3.3 Anomalous Dynamics 296
- 9.3.4 Application of the Generalized FDR 297
- 9.4 Entropy Production 300
- 9.5 Langevin Processes without Detailed Balance 301
- 9.5.1 Markovian Linear System 302
- 9.5.2 Fluctuation–Response Relation 303

X Contents

9.5.3	Entropy Production 305
9.6	Granular Intruder 306
9.6.1	Model 307
9.6.2	Dense Case: Double Langevin with Two Temperatures 309
9.6.3	Generalized FDR and Entropy Production 311
9.7	Conclusions and Perspectives 313
	References 314
10	Anomalous Thermal Transport in Nanostructures 319 Gang Zhang, Sha Liu, and Baowen Li
10.1	Introduction 319
10.2	Numerical Study on Thermal Conductivity and Heat Energy Diffusion in One-Dimensional Systems 320
10.3	Breakdown of Fourier's Law: Experimental Evidence 325
10.4	Theoretical Models 327
10.5	Conclusions 331
	References 332
11	Large Deviation Approach to Nonequilibrium Systems 335
11 1	Introduction 335
11.1	From Fauilibrium to Nonequilibrium Systems 336
11.2.1	Fauilibrium Systems 336
11.2.2	Nonequilibrium Systems 339
11.2.3	Equilibrium Versus Nonequilibrium Systems 340
11.3	Elements of Large Deviation Theory 341
11.3.1	General Results 341
11.3.2	Equilibrium Large Deviations 343
11.3.3	Nonequilibrium Large Deviations 345
11.4	Applications to Nonequilibrium Systems 347
11.4.1	Random Walkers in Discrete and Continuous Time 347
11.4.2	Large Deviation Principle for Density Profiles 349
11.4.3	Large Deviation Principle for Current Fluctuations 350
11.4.4	Interacting Particle Systems: Features and Subtleties 352
11.4.5	Macroscopic Fluctuation Theory 354
11.5	Final Remarks 356
	References 357
12	Lyapunov Modes in Extended Systems 361 Hong-Liu Yang and Günter Radons
12.1	Introduction 361
12.2	Numerical Algorithms and LV Correlations 363
12.3	Universality Classes of Hydrodynamic Lyapunov Modes 365
12.4	Hyperbolicity and the Significance of Lyapunov Modes 369

Contents XI

12.5	Lyapunov Spectral Gap and Branch Splitting of Lyapunov Modes in a "Diatomic" System 372
12.6	Comparison of Covariant and Orthogonal HLMs 376
12.7	Hyperbolicity and Effective Degrees of Freedom of Partial Differential
	Equations 380
12.8	Probing the Local Geometric Structure of Inertial Manifolds via a
1210	Projection Method 384
129	Summary 388
12.7	References 389
13	Study of Single-Molecule Dynamics in Mesoporous Systems, Glasses,
	and Living Cells 393
	Stephan Mackowiak and Christoph Bräuchle
13.1	Introduction 393
13.1.1	Experimental Method 393
13.1.2	Analysis of the Single-Molecule Trajectories 395
13.2	Investigation of the Structure of Mesoporous Silica Employing Single-
	Molecule Microscopy 396
13.2.1	Mesoporous Silica 396
13.2.2	Combining TEM and SMM for Structure Determination of Mesoporous
	Silica 398
13.2.3	Applications of SMM to Improve the Synthesis of Mesoporous
	Systems 399
13.3	Investigation of the Diffusion of Guest Molecules in Mesoporous
	Systems 402
13.3.1	A More Detailed Look into the Diffusional Dynamics of Guest
	Molecules in Nanopores 402
13.3.2	Modification of the Flow Medium in the Nanopores and Its Influence
	on Probe Diffusion 404
13.3.3	Loading of Cargoes into Mesopores: A Step toward Drug Delivery
	Applications 406
13.4	A Test of the Ergodic Theorem by Employing Single-Molecule
	Microscopy 407
13.5	Single-Particle Tracking in Biological Systems 409
13.6	Conclusion and Outlook 412
	References 413

Index 415