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1
SDOF Autonomous Systems

1.1
Introduction

In this chapter, we describe the method of normal forms using single-degree-
of-freedom (SDOF) autonomous systems that can be modeled by the following
second-order nonlinear ordinary differential equation:

Ru C ω2u D f (u, Pu) (1.1)

where f (u, Pu) can be developed in a power series in terms of u and Pu. In what
follows, we will refer to Pu C ω2u D 0 as the unperturbed system and (1.1) as the
perturbed system. We assume that (1.1) has an equilibrium at u D 0 and Pu D 0.
Equation 1.1 can be cast as a system of two first-order equations by letting

x1 D u and x2 D Pu (1.2)

The result is

Px1 D x2 (1.3)

Px2 D �ω2x1 C f (x1, x2) (1.4)

It is clear that the unperturbed system

Px1 D x2 and Px2 D �ω2x1

has a simple pair of purely imaginary eigenvalues ˙i ω.
The main idea underlying the method of normal forms is to introduce a near-

identify transformation

x1 D y1 C h1(y1, y2) (1.5a)

x2 D y2 C h2(y1, y2) (1.5b)

from (x1, x2) to (y1, y2) into (1.3) and (1.4) to produce the simplest possible equa-
tions (the so-called normal form). We call the transformation (1.5) near-identity
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8 1 SDOF Autonomous Systems

because x1(t) � y1(t) and x2(t) � y2(t) are small; that is, o(x1(t), x2(t)). This proce-
dure is also called normalization. To this end, we substitute (1.5) into (1.3) and (1.4)
and obtain

Py1 D y2 C h2 � @h1

@y1
Py1 � @h1

@y2
Py2 (1.6a)

Py2 D �ω2 y1 � ω2h1 C f (y1 C h1, y2 C h2) � @h2

@y1
Py1 � @h2

@y2
Py2 (1.6b)

Then, we choose h1 and h2 such that (1.6) assume their simplest form. This task is
accomplished in steps. If one decomposes f (x1, x2) as

f (x1, x2) D
NX

nD1

f n(x1, x2) (1.7)

where f n is a polynomial of degree n in x1 and x2, then one chooses h1 and h2 to
simplify the terms resulting from the lowest-order polynomial f m(x1, x2), where
m � 2, in f (x1, x2). In the next step, one chooses a second near-identity transfor-
mation to simplify the polynomial terms of degree m C 1, and so on.

It turns out that, because the unperturbed system (1.3) and (1.4) represents an os-
cillator, the governing equations can conveniently be expressed as a single complex-
valued equation. To this end, we follow steps similar to those used in the method
of variation of parameters (Nayfeh, 1981). When f � 0, the solution of (1.1) can
be expressed as

u D B ei ω t C NBe�i ω t (1.8)

where B is a constant and NB is the complex conjugate of B. Hence,

Pu D i ω
�
B ei ω t � NBe�i ω t� (1.9)

When f ¤ 0, we continue to represent the solution of (1.1) as in (1.8) subject to
the constraint (1.9) but with time-varying rather than constant B. Next, we replace
B ei ω t with 
 (t) and rewrite (1.8) and (1.9) as

u D 
 (t) C N
 (t) and Pu D i ω
�

 (t) � N
 (t)

�
(1.10)

Hence, solving for 
 and N
 , we obtain


 D 1
2

�
u � i

ω
Pu
�

and N
 D 1
2

�
u C i

ω
Pu
�

(1.11)

Differentiating (1.11) with respect to t yields

P
 D 1
2

�
Pu � i

ω
Ru
�

D 1
2

�
Pu C i ωu � i

ω
f
�

(1.12)

on account of (1.1). Hence,

P
 D 1
2

i ω
�

u � i
ω

Pu
�

� i
2ω

f (u, Pu) (1.13)
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1.2 Duffing Equation 9

which, upon using (1.10), becomes

P
 D i ω
 � i
2ω

f
�

 C N
 , i ω

�

 � N
�� (1.14)

Next, we consider different polynomial forms for f.

1.2
Duffing Equation

The Duffing equation is

Ru C ω2u D αu3

so that, in this case, f D αu3 and (1.14) becomes

P
 D i ω
 � i α
2ω

�

 C N
�3

(1.15)

We introduce a near-identity transformation from 
 to η in the form


 D η C h (η, Nη) (1.16)

and obtain

Pη D i ωη C i ωh � @h
@η

Pη � @h
@ Nη

PNη � i α
2ω

�
η C h C Nη C Nh

	3
(1.17)

Because the nonlinearity is cubic, we assume that h is third order in η and Nη; that
is,

h D Λ1η3 C Λ2η2 Nη C Λ3η Nη2 C Λ4 Nη3 (1.18)

and choose the Λ i so that (1.17) takes the simplest possible (normal) form.
In the first step, we eliminate Pη and PNη from the right-hand side of (1.17). This

task is accomplished by iteration. To the first approximation, it follows from (1.17)
that

Pη D i ωη and PNη D �i ω Nη (1.19)

Next, we replace Pη and PNη on the right-hand side of (1.17) using (1.19), use (1.18),
keep up to third-order terms, and obtain

Pη D i ωη � i ω
�

2Λ1 C α
2ω2

�
η3 � 3i α

2ω
η2 Nη C i ω

�
2Λ3 � 3α

2ω2

�
η Nη2

C i ω
�

4Λ4 � α
2ω2

�
Nη3 (1.20)
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10 1 SDOF Autonomous Systems

Next, we choose Λ1, Λ3, and Λ4 to eliminate the terms involving η3, η Nη2, and Nη3;
that is,

Λ1 D � α
4ω2

, Λ3 D 3α
4ω2

, Λ4 D α
8ω2

(1.21)

However, because Λ2 does not appear in (1.20), the term involving η2 Nη cannot be
eliminated; it is called a resonance term. Consequently, to the second approximation,
the simplest possible form for Pη is

Pη D i ωη � 3i α
2ω

η2 Nη (1.22)

To show that η2 Nη is a resonance term, we find a solution for (1.22) by iteration.
To the first approximation, η D Aei ω t, where A is a constant. Then, (1.22) becomes

Pη D i ωη � 3i α
2ω

A2 NAei ω t

whose solution can be written as

η D Aei ω t � 3α
2ω

A2 NAtei ω t (1.23a)

It is clear that this expansion, which is also a straightforward expansion, is nonuni-
form for large t because of the presence of a secular term created by η2 Nη. Alter-
natively, we can demonstrate that the term 
2 N
 is a resonance term in the original
equation (1.15). To the first approximation, we neglect the nonlinear term in (1.15)
and find that 
 D Aei ω t. Then, to the second approximation, (1.15) becomes

P
 D i ω
 � i α
2ω

�
A3e3i ω t C 3A2 NAei ω t C 3A NA2e�i ω t C NA3e�3i ω t�

whose solution can be written as


 D Aei ω t � α
4ω2 A3e3i ω t � 3i α

2ω
A2 NAtei ω t C 3α

4ω2 A NA2e�i ω t

C α
8ω2

NA3e�3i ω t (1.23b)

It is clear that this expansion is nonuniform because of the presence of a secular
term created by 
2 N
 . The other three terms proportional to A3e3i ω t, A NA2e�i ω t, and
NA3e�3i ω t created by 
3, 
 N
2, and N
3 do not produce secular terms and hence they

are nonresonance. Consequently, one can choose a near-identity transformation to
eliminate them.

As a second alternative, starting with the original equation (1.15), we break the
nonlinear part f (
 , N
 ) into two parts as

f (
 , N
 ) D f1(
 , N
 ) C f2(
 , N
 )

where

e�i ω t f1
�
e i ω t, e�i ω t�
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1.2 Duffing Equation 11

is time invariant, whereas

e�i ω t f2
�
e i ω t , e�i ω t�

is not time invariant. In the present case,

f D �

 C N
�3

, f1 D 3
2 N
 , f 2 D 
3 C 3
 N
2 C N
3

Thus,

e�i ω t f1
�
e i ω t , e�i ω t� D e�i ω t �3e2 i ω t e�i ω t� D 3

which is time invariant, whereas

e�i ω t f2
�
e i ω t , e�i ω t� D e2 i ω t C 3e�2 i ω t C e�4 i ω t

which does not contain any time-invariant terms.
Substituting (1.16) and (1.18) into (1.10), using (1.21), and setting Λ2 D 0 be-

cause it is arbitrary yields

u D η C Nη � α
8ω2

�
η3 C Nη3�C 3α

4ω2

�
η Nη2 C η2 Nη� (1.24)

where η is given by (1.22). Next, we separate the fast from the slow variations in η
by introducing the transformation

η D A(t)e i ω t

where ω is the natural frequency of the system and A is a function of time, into
(1.22) and (1.24) and obtain

PA D � 3i α
2ω

A2 NA (1.25)

u D Aei ω t C NAe�i ω t � α
8ω2

�
A3e3i ω t C NA3e�3i ω t�

C 3α
4ω2

�
A2 NAei ω t C NA2Ae�i ω t�C � � � (1.26)

Expressing A in the polar form

A D 1
2 aei � (1.27)

where a and � are functions of t, we rewrite (1.26) as

u D
�

a C 3α
16ω2

a3
�

cos(ω t C �) � αa3

32ω2
cos(3ω t C 3�) C � � � (1.28)

Substituting (1.27) into (1.25) and separating real and imaginary parts, we have

Pa D 0 (1.29)

a P� D � 3α
8ω

a3 (1.30)
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12 1 SDOF Autonomous Systems

In determining the normal form (1.22), we had to use an ordering scheme to
indicate the relative magnitudes of the different terms in (1.15). We based the or-
dering scheme on the fact that 
 and N
 are small and hence 
3, 
2 N
 , 
 N
2, and N
3

are much smaller than 
 and N
 . In other words, we based the ordering scheme on
the degree of the terms. This worked well in this example, but there are many phys-
ical systems where the ordering does not follow from the degree of the polynomial
but from the presence of certain parameters in their models. We consider such an
example in the next section.

Next, we treat (1.15) by using the method of multiple scales. To this end, we
introduce a small nondimensional parameter � as a bookkeeping device and rewrite
(1.15) as

P
 D i ω
 � i�α
2ω

�

 C N
�3

(1.31)

Then, we seek an approximate solution of (1.31) in the form


 (tI �) D 
0 (T0, T1) C �
1 (T0, T1) C � � � (1.32)

where Tn D �n t and

d
d t

D @

@T0
C �

@

@T1
C � � � D D0 C �D1 C � � � (1.33)

Substituting (1.32) and (1.33) into (1.31) and equating coefficients of like powers of
� yields

Order (�0)

D0
0 � i ω
0 D 0 (1.34)

Order (�)

D0
1 � i ω
1 D �D1
0 � i α
2ω

�

0 C N
0

�3 (1.35)

The solution of (1.34) can be expressed as


0 D A(T1)e i ωT0 (1.36)

Then, (1.35) becomes

D0
1 � i ω
1 D �A0e i ωT0 � i α
2ω

�
A3e3i ωT0 C 3A2 NAei ωT0

C 3A NA2e�i ωT0 C NA3e�3i ωT0
�

(1.37)

Eliminating the terms that lead to secular terms from (1.37), we have

A0 D � 3i α
2ω

A2 NA (1.38)
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1.3 Rayleigh Equation 13

Then, a particular solution of (1.37) can be expressed as


1 D � α
4ω2 A3e3i ωT0 C 3α

4ω2 A NA2e�i ωT0 C α
8ω2

NA3e�3i ωT0 (1.39)

Substituting (1.36) and (1.39) into (1.10), we obtain

u D Aei ω t C NAe�i ω t � �α
8ω2

�
A3e3i ω t C NA3e�3i ω t�

C 3�α
4ω2

�
A2 NAei ω t C A NA2e�i ω t�C � � � (1.40)

Equations 1.38–1.40 are in full agreement with (1.25) and (1.26) obtained with the
method of normal forms because T1 D � t and � can be set equal to unity.

1.3
Rayleigh Equation

The Rayleigh equation is

Ru C ω2u D �
� Pu � 1

3 Pu3� (1.41)

where � is a small, positive nondimensional parameter. Here

f D �
� Pu � 1

3 Pu3�
and (1.14) becomes

P
 D i ω
 C 1
2 �
h


 � N
 C 1
3 ω2 �
 � N
�3i (1.42)

In this example, the ordering is not based on the degree of the polynomial, but
on the small nondimensional parameter �. Normalization is carried out in terms
of the small parameter �. In fact, the perturbation contains linear as well as cubic
terms.

Using the transformation (1.16), we rewrite (1.42) as

Pη D i ωη C i ωh � @h
@η

Pη � @h
@ Nη

PNη C 1
2

�



η � Nη C h � Nh

C1
3

ω2
�

η � Nη C h � Nh
	3
�

(1.43)

Because the perturbation in (1.43) involves linear and cubic terms, we express h in
the form

h D �
�
Δ1η C Δ2 Nη C Λ1η3 C Λ2η2 Nη C Λ3η Nη2 C Λ4 Nη3� (1.44)

Moreover, to the first approximation, Pη and PNη are given by (1.19). Then, substituting
(1.19) and (1.44) into the right-hand side of (1.43) and keeping terms up to O(�),
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14 1 SDOF Autonomous Systems

we obtain

Pη D i ωη C 2 i�ω
�

Δ2 C i
4ω

�
Nη C 1

2
�η � i�ω

�
2Λ1 C 1

6
i ω
�

η3

� 1
2

�ω2η2 Nη C i�ω
�

2Λ3 � 1
2

i ω
�

η Nη2 C i�ω
�

4Λ4 C 1
6

i ω
�

Nη3

(1.45)

We note that (1.45) is independent of Δ1 and Λ2 and hence they are arbitrary.
Moreover, the terms proportional to �η and �η2 Nη are resonance terms and hence
cannot be eliminated from (1.45). Next, we choose Δ2, Λ1, Λ3, and Λ4 to eliminate
the terms involving Nη, η3, η Nη2, and Nη3, thereby producing the simplest possible
equation for η. Thus, we have

Δ2 D � i
4ω

, Λ1 D � 1
12

i ω , Λ3 D 1
4

i ω , Λ4 D � 1
24

i ω (1.46)

With this choice, (1.45) takes the normal form

Pη D i ωη C 1
2 �η � 1

2 �ω2η2 Nη (1.47)

Again, in this case, we could have identified the resonance terms in (1.42) by one
of the procedures described in Section 1.2. Because the solution of the unperturbed
problem is proportional to e i ω t, the resonance terms in

f (
 , N
 ) D 
 � N
 C 1
3 ω2(
 � N
 )3

are the terms proportional to e i ω t or the time-invariant terms in

e�i ω t f
�
e i ω t � e�i ω t, i ω

�
e i ω t � e�i ω t��

A simple calculation shows that the term 1/2�(
 � ω2
2 N
 ) is the only resonance
term. Hence, keeping only the resonance terms in (1.42), we have

P
 D i ω
 C 1
2 �
�

 � ω2
2 N
�C � � �

which is formally equivalent to (1.47).
Next, we treat (1.42) with the method of multiple scales. To this end, we substitute

(1.32) and (1.33) into (1.42), equate coefficients of equal powers of �, and obtain

Order (�0)

D0
0 � i ω
0 D 0 (1.48)

Order (�)

D0
1 � i ω
1 D �D1
0 C 1
2

h

0 � N
0 C 1

3 ω2 �
0 � N
0
�3
i

(1.49)
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1.4 Duffing–Rayleigh–van der Pol Equation 15

The solution of (1.48) can be expressed as


0 D A(T1)e i ωT0 (1.50)

Then, (1.49) becomes

D0
1 � i ω
1 D �A0e i ωT0 C 1
2 Aei ωT0 � 1

2
NAe�i ωT0 C 1

6 ω2A3e3i ωT0

� 1
2 ω2A2 NAei ωT0 C 1

2 ω2A NA2e�i ωT0 � 1
6 ω2 NA3e�3i ωT0

(1.51)

Eliminating the terms that lead to secular terms from (1.51), we have

A0 D 1
2 A � 1

2 ω2A2 NA (1.52)

Letting η D Aei ω t in (1.47), we obtain (1.52) because T1 D � t.

1.4
Duffing–Rayleigh–van der Pol Equation

The Duffing, Rayleigh, and van der Pol equations are special cases of

Ru C ω2u D �
�
μ Pu C α1u3 C α2u2 Pu C α3u Pu2 C α4 Pu3� (1.53)

so that

f D �
�
μ Pu C α1u3 C α2u2 Pu C α3u Pu2 C α4 Pu3�

and (1.14) becomes

P
 D i ω
 � i�
2ω

h
i μω

�

 � N
�C α1

�

 C N
�3 C i ωα2

�

 C N
�2 �


 � N
�
�ω2α3

�

 C N
� �
 � N
�2 � i ω3α4

�

 � N
�3

i
(1.54)

Using the transformation (1.16), where h D O(�), we rewrite (1.54) as

Pη D i ωη C i ωh � @h
@η

Pη � @h
@ Nη

PNη

� i�
2ω

�
i μω (η � Nη) C i ωα2 (η C Nη)2 (η � Nη)

Cα1 (η C Nη)3 � ω2 α3 (η C Nη) (η � Nη)2 � i ω3α4 (η � Nη)3� (1.55)

where terms of O(�2) and higher have been neglected.
Again, because the perturbation contains linear as well as third-order terms, h

has the form (1.44). Moreover, to the first approximation, Pη and PNη are given by
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16 1 SDOF Autonomous Systems

(1.19). Hence, substituting (1.19) and (1.44) into (1.55) yields

Pη D i ωη C 2 i�ω
�

Δ2 C i μ
4ω

�
Nη

� i�
2ω

�
3α1 C i ωα2 C ω2α3 C 3i ω3α4

�
η2 Nη

C 1
2

�μη C i�ω


�2Λ1 � 1

2ω2

�
α1 C i ωα2 � ω2α3 � i ω3α4

��
η3

C i�ω



2Λ3 � 1
2ω2

�
3α1 � i ωα2 C ω2α3 � 3i ω3α4

��
η Nη2

C i�ω



4Λ4 � 1
2ω2

�
α1 � i ωα2 � ω2α3 C i ω3α4

�� Nη3 (1.56)

We note that Δ1 and Λ2 do not appear in (1.56) and hence they are arbitrary and
the terms η and η2 Nη are resonance terms. To produce the simplest form for (1.56),
we choose Δ2, Λ1, Λ3, and Λ4 to eliminate the terms involving Nη, η3, η Nη2, and Nη3;
that is,

Δ2 D � i μ
4ω

(1.57)

Λ1 D � 1
4ω2

�
α1 C i ωα2 � ω2α3 � i ω3α4

�
(1.58)

Λ3 D 1
4ω2

�
3α1 � i ωα2 C ω2α3 � 3i ω3α4

�
(1.59)

Λ4 D 1
8ω2

�
α1 � i ωα2 � ω2α3 C i ω3α4

�
(1.60)

With these choices, (1.56) assumes the simple form

Pη D i ωη C 1
2

�μη � i�
2ω

�
3α1 C i ωα2 C ω2α3 C 3i ω3α4

�
η2 Nη (1.61)

Again, we did not have to go through the lengthy algebra to arrive at the normal
form (1.61). Because the solution of the unperturbed problem (1.54) is proportional
to e i ω t, we could have replaced 
 with e i ω t in the perturbation and identified the
terms proportional to e i ω t . In this case, they are

1
2

�μ
 � i�
2ω

�
3α1 C i ωα2 C ω2α3 C 3i ω3α4

�

2 N


Hence, keeping only the resonance terms in (1.54), we obtain the normal form

P
 D i ω
 C 1
2

�μ
 � i�
2ω

�
3α1 C i ωα2 C ω2α3 C 3i ω3α4

�

2 N


which is formally equivalent to (1.61).
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1.5 An Oscillator with Quadratic and Cubic Nonlinearities 17

1.5
An Oscillator with Quadratic and Cubic Nonlinearities

We consider free oscillations of a single-degree-of-freedom system governed by

Ru C ω2u C δu2 C αu3 D 0 (1.62)

To keep track of the different orders of magnitude, we use a nondimensional pa-
rameter � that is the order of the amplitude of oscillations and hence rewrite (1.62)
as

Ru C ω2u C �δu2 C �2αu3 D 0 (1.63)

Thus, f D ��δu2 � �2αu3 and (1.14) becomes

P
 D i ω
 C i�δ
2ω

�

 C N
�2 C i�2α

2ω
�

 C N
�3

(1.64)

In the next section, we use two successive transformations to produce the normal
form of (1.64). In Section 1.5.3, we use a single transformation to produce the
same normal form, and in Section 1.5.2, we use the method of multiple scales to
determine a second-order expansion of (1.64).

1.5.1
Successive Transformations

To simplify the O(�) terms in (1.64), we introduce the near-identity transformation


 D η C �h1 (η, Nη) (1.65)

and rewrite (1.64) as

Pη D i ωη C i�ωh1 � �
@h1

@η
Pη � �

@h1

@ Nη
PNη C i�δ

2ω

�
η C Nη C �h1 C � Nh1

	2

C i�2α
2ω

(η C Nη)3 C � � � (1.66)

The form of the O(�) terms suggests choosing h1 in the form

h1 D Γ1η2 C Γ2η Nη C Γ3 Nη2 (1.67)

It follows from (1.66) that

Pη D i ωη C O(�) and PNη D �i ω Nη C O(�)

so that to O(�) (1.66) becomes

Pη D i ωη C i�ω
�

�Γ1 C δ
2ω2

�
η2 C i�ω

�
Γ2 C δ

ω2

�
η Nη

C i�ω
�

3Γ3 C δ
2ω2

�
Nη2 C O(�2) (1.68)
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18 1 SDOF Autonomous Systems

The simplest possible form for (1.68) corresponds to the vanishing of the terms
involving η2, η Nη, and Nη2; that is, choosing Γ1, Γ2, and Γ3 to be

Γ1 D δ
2ω2 , Γ2 D � δ

ω2 , Γ3 D � δ
6ω2 (1.69)

Then, (1.68) reduces to

Pη D i ωη C O(�2) (1.70)

Substituting (1.67) into (1.66) and using (1.70) to eliminate Pη and PNη, we obtain

Pη D i ωηC i�2

2ω



α (η C Nη)3 C 2δ2

3ω2

�
η3 C Nη3 � 5η2 Nη � 5η Nη2��C� � � (1.71)

Next, we introduce a near-identity transformation from η to � in the form

η D � C �2h2
�
� , N� � (1.72)

and obtain

P� D i ω� C i�2ωh2 � �2 @h2

@�
P� � �2 @h2

@ N�
PN�

C i�2

2ω



α
�
� C N� �3 C 2δ2

3ω2

�
� 3 C N� 3 � 5� 2 N� � 5� N� 2��C � � � (1.73)

The form of the O(�2) terms suggests choosing h2 in the form

h2 D Λ1� 3 C Λ2� 2 N� C Λ3� N� 2 C Λ4 N� 3 (1.74)

It follows from (1.73) that

P� D i ω� C O(�2) and PN� D �i ω N� C O(�2) (1.75)

Therefore, substituting (1.74) and (1.75) into the right-hand side of (1.73) and keep-
ing terms up to O(�2), we have

P� D i ω� C i�2ω
�

�2Λ1 C α
2ω2 C δ2

3ω4

�
� 3

C i�2ω
�

4Λ4 C α
2ω2 C δ2

3ω4

�
N� 3 C i�2

2ω

�
3α � 10δ2

3ω2

�
� 2 N�

C i�2ω
�

2Λ3 C 3α
2ω2 � 5δ2

3ω4

�
� N� 2 C � � � (1.76)

We note that (1.76) is independent of Λ2 and hence it is arbitrary and the term � 2 N�
is a resonance term. Equation 1.76 takes the simplest possible form if

Λ1 D α
4ω2 C δ2

6ω4 , Λ3 D � 3α
4ω2 C 5δ2

6ω4 , Λ4 D � α
8ω2 � δ2

12ω4 (1.77)
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1.5 An Oscillator with Quadratic and Cubic Nonlinearities 19

Then, (1.76) becomes

P� D i ω� C i�2

2ω

�
3α � 10δ2

3ω2

�
� 2 N� C � � � (1.78)

Substituting (1.65) into (1.10), we have

u D 
 C N
 D η C Nη C �h1 (η, Nη) C � Nh1 (η, Nη) (1.79)

Then, substituting (1.72) into (1.79) yields

u D � C N� C �h1
�
� , N� �C � Nh1

�
� , N� �C � � � (1.80)

Substituting for h1 from (1.67) into (1.80) and using (1.69), we obtain

u D � C N� C �δ
3ω2

�
� 2 � 6� N� C N� 2�C � � � (1.81)

Substituting the polar form

� D 1
2 aei(ω tC�)

into (1.81), we find that

u D a cos (ω t C �) C �δa2

6ω2
[cos (2ω t C 2�) � 3] C � � � (1.82)

Substituting the polar form into (1.78) and separating real and imaginary parts, we
have

Pa D 0 (1.83)

a P� D �2a3
�

3α
8ω

� 5δ2

12ω3

�
(1.84)

Equations 1.82–1.84 are in full agreement with those obtained by using the method
of multiple scales, as shown in the next section.

1.5.2
The Method of Multiple Scales

Using the method of multiple scales, we seek a second-order uniform expansion
of the solution of (1.64) in the form


 (tI �) D
2X

nD0

�n 
n (T0, T1, T2) C � � � (1.85)

where Tn D �n t. In terms of these scales, the time derivative becomes

d
d t

D D0 C �D1 C �2D2 C � � � , Dn D @

@Tn
(1.86)



�

�

Ali Hasan Nayfeh: The Method of Normal Forms — Chap. nayfeh0972c01 — 2011/5/25 — page 20 — le-tex

�

�

�

�

�

�

20 1 SDOF Autonomous Systems

Substituting (1.85) and (1.86) into (1.64) and equating coefficients of like powers
of �, we obtain

Order (�0)

D0
0 � i ω
0 D 0 (1.87)

Order (�)

D0
1 � i ω
1 D �D1
0 C i δ
2ω

�

0 C N
0

�2
(1.88)

Order (�2)

D0
2 � i ω
2 D �D2
0 � D1
1 C i δ
ω
�

0 C N
0

� �

1 C N
1

�C i α
2ω

�

0 C N
0

�3

(1.89)

The general solution of (1.87) can be expressed as


0 D A (T1, T2) e i ωT0 (1.90)

where A is an undetermined function of T1 and T2 at this order; it is determined
by eliminating the secular terms at the next orders of approximation.

Substituting (1.90) into (1.88) yields

D0
1 � i ω
1 D �D1Aei ωT0 C i δ
2ω

�
A2e2 i ωT0 C 2A NA C NA2e�2 i ωT0

�
(1.91)

Eliminating the terms that produce secular terms in (1.91) demands that D1A D 0
or A D A(T2). Then, the solution of (1.91) can be expressed as


1 D δA2

2ω2 e2 i ωT0 � δA NA
ω2 � δ NA2

6ω2 e�2 i ωT0 (1.92)

where the solution of the homogeneous equation has not been included so that
the amplitude of the term at the frequency of oscillation is uniquely defined by the
zeroth-order solution (1.90). We note that the coefficients in (1.92) are the same as
the Γi defined in (1.69).

Substituting (1.90) and (1.92) into (1.89) and using the fact that D1A D 0, we
have

D0
2 � i ω
2 D �D2Aei ωT0 C i
2ω

�
3α � 10δ2

3ω2

�
A2 NAei ωT0 C NST (1.93)

where NST stands for the terms that do not produce secular terms. Eliminating the
terms that produce secular terms from (1.93), we obtain

D2A D i
2ω

�
3α � 10δ2

3ω2

�
A2 NA (1.94)
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1.5 An Oscillator with Quadratic and Cubic Nonlinearities 21

Putting � D Aei ω t in (1.78) and using the fact that D2A D �2dA/d t, we obtain
exactly (1.94).

We note that, for a uniform second approximation, we do not need to solve for 
2,
but we only need to inspect (1.93) and eliminate the terms that produce secu-
lar terms. Similarly, to determine a uniform second approximation by using the
method of normal forms, we do not need to determine h2 in (1.72), but we need
only keep the resonance terms in (1.73).

1.5.3
A Single Transformation

Instead of using successive transformations to produce the normal form of (1.64),
one can formulate the process as a perturbation method. Thus, we expand 
 in a
power series of � in terms of a new variable η in the form


 D η C �h1 (η, Nη) C �2h2 (η, Nη) C � � � (1.95)

Pη D i ωη C �g1 (η, Nη) C �2g2 (η, Nη) C � � � (1.96)

where h1 and h2 are smooth functions of η and Nη and g1 and g2 contain all of the
resonance and near-resonance terms. Substituting (1.95) and (1.96) into (1.64) and
equating coefficients of like powers of �, we obtain

g1 C i ω
�

η
@h1

@η
� Nη @h1

@ Nη � h1

�
D i δ

2ω
(η C Nη)2 (1.97)

g2 C i ω
�

η
@h2

@η
� Nη @h2

@ Nη � h2

�
D �g1

@h1

@η
� Ng1

@h1

@ Nη C i α
2ω

(η C Nη)3

C i δ
ω

(η C Nη)
�

h1 C Nh1

	
(1.98)

Equations 1.97 and 1.98 are the so-called homology equations for h1 and h2.
Next, we need to determine g1 and h1 from (1.97). In order that h1 be nonsin-

gular (smooth), we choose g1 to eliminate all of the resonance and near-resonance
terms; otherwise, h1 will be singular (i.e., have secular terms) if there are resonance
terms and near singular (i.e., have small divisors) if there are near-resonance terms.
In the present case, there are no resonance terms in (1.97). To see this, we note
from (1.96) that η D B ei ω t and hence the perturbation terms on the right-hand
side of (1.97) contain terms proportional to e˙2 i ω t and a constant. Because none of
these terms is proportional to e i ω t , which is the solution of the first-order problem
in (1.96), there are no resonance terms. If we are in doubt, we seek a function h1

that can be used to eliminate all of the perturbation terms. If we are successful in
finding a smooth function h1 that eliminates all of the perturbation terms, then
g1 D 0. Otherwise, we choose g1 to eliminate all terms that produced the trouble-
some terms (i.e., singular and near-singular terms) in h1. Because the perturbation
terms are of second degree, we let

h1 D Γ1η2 C Γ2η Nη C Γ3 Nη2 (1.99)
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choose Γ1, Γ2, and Γ3 to eliminate i δ(η C Nη)2/2ω and obtain (1.69). Because the
obtained Γm are regular, there are no resonance terms and g1 D 0.

Substituting (1.99) and g1 D 0 into (1.98) and using (1.69), we obtain

g2 C i ω
�

η
@h2

@η
� Nη @h2

@ Nη � h2

�
D i δ2

3ω3
(η C Nη)

�
η2 C Nη2 � 6η Nη�

C i α
2ω

(η C Nη)3 (1.100)

As stated earlier, we do not need to determine h2 and all that we need is to inspect
(1.100) and choose g2 to eliminate all of the resonance and near-resonance terms.
Again, because η / e i ω t , only the term proportional to η2 Nη is a resonance term.
Hence, choosing g2 to eliminate this term, we obtain

g2 D i
2ω

�
3α � 10δ2

3ω2

�
η2 Nη (1.101)

Substituting (1.95) and (1.99) into (1.10) and using (1.69), we obtain

u D η C Nη C �δ
3ω2

�
η2 C Nη2 � 6η Nη�C � � � (1.102)

Substituting for g2 from (1.101) into (1.96) and using the fact that g1 D 0, we have

Pη D i ωη C i�2

2ω

�
3α � 10δ2

3ω2

�
η2 Nη C � � � (1.103)

in agreement through second order with the expansions obtained in Sections 1.5.1
and 1.5.2.

1.6
A General System with Quadratic and Cubic Nonlinearities

We consider free oscillations of a single-degree-of-freedom system governed by

Ru C ω2u C �
�
δ1u2 C δ2 Pu2�

C �2 �2μ Pu C α1u3 C α2u2 Pu C α3u Pu2 C α4 Pu3� D 0 (1.104)

so that

f D ��
�
δ1u2 C δ2 Pu2� � �2 �2μ Pu C α1u3 C α2u2 Pu C α3u Pu2 C α4 Pu3�

(1.105)

We note that a small nondimensional parameter � has been introduced as a book-
keeping device. The quadratic terms have been ordered as O(�), whereas the cubic
terms and the linear damping term have been ordered as O(�2). Then, (1.14) be-
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comes

P
 D i ω
 C i�
2ω

h
δ1
�

 C N
�2 � δ2ω2 �
 � N
�2

i
� �2μ

�

 � N
�

C i�2

2ω

h
α1
�

 C N
�3 C i ωα2

�

 C N
�2 �


 � N
�
�ω2α3

�

 C N
� �
 � N
�2 � i ω3α4

�

 � N
�3

i
(1.106)

As in Section 1.5.3, we seek an expansion for (1.106) in the form (1.95) and (1.96),
equate coefficients of like powers of �, and obtain

g1 C i ω
�

η
@h1

@η
� Nη @h1

@ Nη � h1

�
D i

2ω
�
δ1 (η C Nη)2 � δ2ω2 (η � Nη)2�

(1.107)

g2 C i ω
�

η
@h2

@η
� Nη @h2

@ Nη � h2

�
D �g1

@h1

@η
� Ng1

@h1

@ Nη � μ (η � Nη)

C i
ω

h
δ1 (η C Nη)

�
h1 C Nh1

	
� δ2ω2 (η � Nη)

�
h1 � Nh1

	i
C i

2ω
α1 (η C Nη)3

C i
2ω

�
i ωα2 (η C Nη)2 (η � Nη) � i ω3α4 (η � Nη)3 � ω2α3 (η C Nη) (η � Nη)2�

(1.108)

The right-hand side of (1.107) does not contain resonance or near-resonance terms,
and hence we put g1 D 0, seek h1 in the form (1.99), and obtain

Γ1 D δ1

2ω2 � 1
2

δ2 , Γ2 D � δ1

ω2 � δ2 , Γ3 D � δ1

6ω2 C 1
6

δ2 (1.109)

Because all of the Γm are regular, our conclusion that there are no resonance or
near-resonance terms in (1.107) and hence g1 D 0 is justified a posteriori.

Substituting (1.99) and (1.109) into (1.108) and using the fact that g1 D 0, we
obtain

g2 C i ω
�

η
@h2

@η
� Nη @h2

@ Nη � h2

�
D � 2

3
i δ2ω

�
δ1

ω2 � δ2

�
(η � Nη)

�
η2 � Nη2�

� μ (η � Nη) C i δ1

3ω
(η C Nη)


�
δ1

ω2 � δ2

� �
η2 C Nη2� � 6

�
δ1

ω2 C δ2

�
η Nη
�

C i
2ω

�
α1 (η C Nη)3 C i ωα2 (η C Nη)2 (η � Nη) � ω2α3 (η C Nη) (η � Nη)2

�i ω3α4 (η � Nη)3�C � � � (1.110)

Inspecting the right-hand side of (1.110), we conclude that the terms proportional
to η and η2 Nη are the only resonance terms and there are no near-resonance terms.
Consequently, choosing g2 to eliminate the resonance terms, we obtain

g2 D �μη C i
2ω



3α1 C ω2 α3 � 2

3

�
5δ2

1

ω2 C 5δ1δ2 C 2δ2
2ω2

�

Ci ω
�
α2 C 3ω2 α4

� �
η2 Nη (1.111)
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Substituting (1.95) and (1.99) into (1.10) and using (1.109), we obtain

u D ηC NηC�


�
δ1

3ω2 � 1
3

δ2

� �
η2 C Nη2� �

�
2δ1

ω2 C 2δ2

�
η Nη
�

C� � � (1.112)

Substituting for g2 from (1.111) into (1.96) and using the fact that g1 D 0, we obtain

Pη D i ωη � �2μη C i�2

2ω



3α1 C ω2α3 � 2

3

�
5δ2

1

ω2 C 5δ1δ2 C 2δ2
2ω2

�

Ci ω
�
α2 C 3ω2 α4

� �
η2 Nη (1.113)

To compare the expansion (1.112) and (1.113) with that obtained by using the
method of multiple scales (Nayfeh, 1984), we substitute the polar form

η D 1
2 aei(ω tC�) (1.114)

in (1.112) and (1.113) and obtain

u D a cos (ω t C �) C 1
6

�a2

�

δ1

ω2 � δ2

�
cos (2ω t C 2�) � 3

�
δ1

ω2 C δ2

��
C � � � (1.115)

where

Pa D ��2μa � 1
8 �2 �α2 C 3ω2α4

�
a3 C � � � (1.116)

a P� D �2

8ω



3α1 C ω2α3 � 2

3

�
5δ1

ω2 C 5δ1δ2 C 2δ2
2ω2

��
a3 C � � � (1.117)

which is formally equivalent to that obtained by using the method of multiple
scales.

1.7
The van der Pol Oscillator

In this section, we construct a second-order approximation of the normal form of
the van der Pol oscillator

Ru C ω2u D �(1 � u2) Pu (1.118)

Using the transformation (1.10), we rewrite (1.118) as

P
 D i ω
 C 1
2 �(
 � N
 )

�
1 � (
 C N
 )2� (1.119)
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1.7.1
The Method of Normal Forms

As in the preceding two sections, we seek a second-order expansion of (1.119) in
the form (1.95) and (1.96), equate coefficients of like powers of �, and obtain

g1 C i ω
�

η
@h1

@η
� Nη @h1

@ Nη � h1

�
D 1

2
(η � Nη) � 1

2

�
η3 C η2 Nη � Nη2η � Nη3�

(1.120)

g2 C i ω
�

η
@h2

@η
� Nη @h2

@ Nη � h2

�
D �g1

@h1

@η
� Ng1

@h1

@ Nη C 1
2

�
h1 � Nh1

	

� 3
2

η2h1 � η Nη(h1 � Nh1) � 1
2

η2 Nh1 C 1
2

Nη2h1 C 3
2

Nη2 Nh1 (1.121)

Choosing g1 to eliminate the resonance terms in (1.120), we have

g1 D 1
2 η � 1

2 η2 Nη (1.122)

Then, we seek h1 in the form

h1 D Δ1 Nη C Λ1η3 C Λ2η Nη2 C Λ3 Nη3 (1.123)

Substituting (1.123) and (1.122) into (1.120) yields�
2 i ωΔ1 � 1

2

� Nη � �
2 i ωΛ1 C 1

2

�
η3 C �

2 i ωΛ2 C 1
2

�
η Nη2

C �
4 i ωΛ3 C 1

2

� Nη3 D 0 (1.124)

Hence,

Δ1 D � i
4ω

, Λ1 D i
4ω

, Λ2 D i
4ω

, Λ3 D i
8ω

(1.125)

Therefore,

h1 D � 1
4ω

i
�

Nη � η3 � η Nη2 � 1
2

Nη3
�

(1.126)

Substituting (1.122) and (1.126) into (1.121) yields

g2 C i ω
�

η
@h2

@η
� Nη @h2

@ Nη � h2

�
D � i

16ω
�
2η C 5η3 C 5η5 � 12η2 Nη

�2η4 Nη � 4η Nη2 C 11η3 Nη2 C 2 Nη3 C 5η2 Nη3 C η Nη4 C 5 Nη5� (1.127)

Choosing g2 to eliminate the resonance terms (terms proportional to η, η2 Nη, and
η3 Nη2) from (1.127), we have

g2 D � 1
16ω

i
�
2η � 12η2 Nη C 11η3 Nη2� (1.128)

Substituting (1.122) and (1.128) into (1.96), we obtain, to the second approximation,
the normal form

Pη D i ωη C 1
2

�
�
η � η2 Nη� � 1

16ω
i�2 �2η � 12η2 Nη C 11η3 Nη2� (1.129)
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Substituting the polar form (1.27) into (1.129) and separating real and imaginary
parts, we obtain

Pa D 1
2 �
�
a � 1

4 a3� (1.130)

P� D � 1
8ω

�2
�

1 � 3
2

a2 C 11
32

a4
�

(1.131)

in agreement with those obtained with the generalized method of averaging
(Nayfeh, 1973).

1.7.2
The Method of Multiple Scales

We seek a second-order expansion of the solution of (1.119) in the form (1.85).
Substituting (1.85) and (1.86) into (1.119) and equating coefficients of like powers
of �, we obtain

Order (�0)

D0
0 � i ω
0 D 0 (1.132)

Order (�)

D0
1 � i ω
1 D �D1
0 C 1
2

�

0 � N
0

�� 1
2

�

3

0 C 
2
0

N
0 � 
0 N
2
0 � N
3

0

�
(1.133)

Order (�2)

D0
2 � i ω
2 D �D2
0 � D1
1 C 1
2

�

1 � N
1

� � 1
2

�
3
2

0 C 2
0 N
0 � N
2
0

�

1

� 1
2

�

2

0 � 2
0 N
0 � 3 N
2
0

� N
1

(1.134)

The general solution of (1.132) can be expressed as in (1.90). Then, (1.133) be-
comes

D0
1 � i ω
1 D �D1Aei ωT0 C 1
2 Aei ωT0 � 1

2
NAe�i ωT0 � 1

2 A3e3i ωT0

� 1
2 A2 NAei ωT0 C 1

2 A NA2e�i ωT0 C 1
2

NA3e�3i ωT0 (1.135)

Eliminating the terms that lead to secular terms from (1.135) yields

D1A D 1
2

�
A � A2 NA� (1.136)

Then, the solution of (1.135) can be expressed as


1 D i
8ω

��2 NAe�i ωT0 C 2A3e3i ωT0 C 2A NA2e�i ωT0 C NA3e�3i ωT0
�

(1.137)
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1.8 Exercises 27

Substituting (1.90), (1.136), and (1.137) into (1.134), we have

D0
2 � i ω
2 D �D2Aei ωT0 � i
16ω

�
2A � 12A2 NA C 11A3 NA2� e i ωT0

C NST (1.138)

Eliminating the terms that lead to secular terms from (1.138) yields

D2A D � i
16ω

�
2A � 12A2 NA C 11A3 NA2� (1.139)

Using the method of reconstitution, we obtain from (1.136) and (1.139) that

PA D 1
2

�
�
A � A2 NA� � i

16ω
�2 �2A � 12A2 NA C 11A3 NA2� (1.140)

Letting 
 D Aei ω t in (1.129), we obtain (1.140), which means that the results ob-
tained with the methods of normal forms and multiple scales are the same.

1.8
Exercises

1.8.1 Use the methods of normal forms and multiple scales to determine the nor-
mal forms of

a) Ru C ω2u C α Pu3 D 0 ,
b) Ru C ω2u C αu2 Pu D 0 ,
c) Ru C ω2u C αu5 D 0 ,
d) Ru C ω2u C αu3 Pu2 D 0 ,
e) Ru C ω2u C � Pu5 D 0 .

1.8.2 Use the methods of multiple scales and normal forms to construct a second-
order approximation to the normal form of

Ru C ω2u C αu3 C 2μu2 Pu D 0

1.8.3 Use the methods of multiple scales and normal forms to construct a first-
order approximation to the normal form of

Ru C ω2u C αu2 Ru D 0

1.8.4 Use the methods of normal forms and multiple scales to construct a second-
order approximation to the normal form of

Ru C ω2u C α
� Pu � 1

3 Pu3� D 0
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28 1 SDOF Autonomous Systems

1.8.5 Consider the equation

Rx C x C 3x2 C 2x3 D 0

Determine the equilibrium points. Determine, to second order, the normal form
of the system near each of these equilibrium points.

1.8.6 Consider

Rx C x C ax2 C 2x3 D 0

Show that there is only one equilibrium point when a < 2
p

2 and that there are
three equilibrium points when a > 2

p
2. Determine, to second order, the normal

forms near the equilibrium points.

1.8.7 Consider

Rx C x � a
1 � x

D 0

Show that there is only one equilibrium point when a � 1/4. Determine, to second
order, the normal form near this equilibrium point.

1.8.8 Consider

Rx � 3x C x3 D �2

Determine the equilibrium points and the normal forms near them.

1.8.9 Consider

Ru � u C u4 D 0

Determine the equilibrium points and the normal forms near them.

1.8.10 Consider

Rx � 2x � x2 C x3 D 0

Determine the equilibrium points and the normal forms near them.

1.8.11 Consider

Ru C u � 3
16(1 � u)

D 0

Determine the equilibrium points and the normal forms near them.

1.8.12 Use the methods of multiple scales and normal forms to determine a first-
order uniform expansion for the general solution of

Rθ C ω2 sin θ C 4 sin2 θ
1 C 4(1 � cos θ )

Pθ D 0

for small but finite θ .
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1.8 Exercises 29

1.8.13 Consider the equation

Ru C ω2
0u C μ Pu

1 � u2 D 0

Use the methods of multiple scales and normal forms to determine a first-order
uniform expansion for small u.

1.8.14 Consider the equation

�
l2 C r2 � 2r l cos θ

� Rθ C r l sin θ Pθ 2 C g l sin θ D 0

where g, r , and l are constants. Determine a first-order expansion for small but
finite θ by using the methods of multiple scales and normal forms.

1.8.15 Consider the equation

� 1
12 l2 C r2θ 2� Rθ C r2θ Pθ 2 C gr θ cos θ D 0

where r, l , and g are constants. Determine a first-order uniform expansion for small
but finite θ by using the methods of multiple scales and normal forms.

1.8.16 The motion of a simple pendulum is governed by

Rθ C g
l

sin θ D 0

Use the methods of multiple scales and normal forms to determine a first-order
uniform expansion for small but finite θ .

1.8.17 Consider the equation

Rθ D Ω 2 sin θ cos θ � g
R

sin θ

Use the methods of multiple scales and normal forms to determine a first-order
uniform expansion for small but finite θ .

1.8.18 The motion of a particle on a rotating parabola is governed by�
1 C 4p 2x2� Rx C Λx C 4p 2 Px2 D 0

where p and Λ are constants. Use the methods of multiple scales and normal forms
to determine a first-order expansion for small but finite x.

1.8.19 Consider the equation�
1 C u2

1 � u2

�
Ru C u Pu2

(1 � u2)2 C ω2
0u C g

l
up

1 � u2
D 0

Use the methods of multiple scales and normal forms to determine a first-order
expansion for small u.
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