Contents

Preface XI

Introduction 1

1 SDOF Autonomous Systems 7

- 1.1 Introduction 7
- 1.2 Duffing Equation 9
- 1.3 Rayleigh Equation 13
- 1.4 Duffing–Rayleigh–van der Pol Equation 15
- 1.5 An Oscillator with Quadratic and Cubic Nonlinearities 17
- 1.5.1 Successive Transformations 17
- 1.5.2 The Method of Multiple Scales 19
- 1.5.3 A Single Transformation 21
- 1.6 A General System with Quadratic and Cubic Nonlinearities 22
- 1.7 The van der Pol Oscillator 24
- 1.7.1 The Method of Normal Forms 25
- 1.7.2 The Method of Multiple Scales 26
- 1.8 Exercises 27

2 Systems of First-Order Equations 31

- 2.1 Introduction 31
- 2.2 A Two-Dimensional System with Diagonal Linear Part 34
- 2.3 A Two-Dimensional System with a Nonsemisimple Linear Form 39
- 2.4 An *n*-Dimensional System with Diagonal Linear Part 40
- 2.5 A Two-Dimensional System with Purely Imaginary Eigenvalues 42
- 2.5.1 The Method of Normal Forms 43
- 2.5.2 The Method of Multiple Scales 47
- 2.6 A Two-Dimensional System with Zero Eigenvalues 48
- 2.7 A Three-Dimensional System with Zero
 - and Two Purely Imaginary Eigenvalues 52
- 2.8 The Mathieu Equation 54
- 2.9 Exercises 57

VIII | Contents

3	Maps 61
3.1	Linear Maps 61
3.1.1	Case of Distinct Eigenvalues 62
3.1.2	Case of Repeated Eigenvalues 64
3.2	Nonlinear Maps 66
3.3	Center-Manifold Reduction 72
3.4	Local Bifurcations 76
3.4.1	Fold or Tangent or Saddle-Node Bifurcation 76
3.4.2	Transcritical Bifurcation 79
3.4.3	Pitchfork Bifurcation 80
3.4.4	Flip or Period-Doubling Bifurcation 81
3.4.5	Hopf or Neimark–Sacker Bifurcation 85
3.5	Exercises 91
4	Bifurcations of Continuous Systems 97
4.1	Linear Systems 97
4.1.1	Case of Distinct Eigenvalues 98
4.1.2	Case of Repeated Eigenvalues 99
4.2	Fixed Points of Nonlinear Systems 100
4.2.1	Stability of Fixed Points 100
4.2.2	Classification of Fixed Points 101
4.2.3	Hartman–Grobman and Shoshitaishvili Theorems 102
4 3	Center-Manifold Reduction 103
4 4	Local Bifurcations of Fixed Points 107
4.4.1	Saddle-Node Bifurcation 108
4.4.2	Nonbifurcation Point 110
4.4.3	Transcritical Bifurcation 111
4.4.4	Pitchfork Bifurcation 113
4.4.5	Hopf Bifurcations 114
4.5	Normal Forms of Static Bifurcations 117
451	The Method of Multiple Scales 117
452	Center-Manifold Reduction 126
4.5.3	A Projection Method 132
4.6	Normal Form of Honf Bifurcation 137
461	The Method of Multiple Scales 138
462	Center-Manifold Reduction 141
463	Projection Method 144
4.7	Exercises 146
5	Forced Oscillations of the Duffing Oscillator 161
- 5.1	Primary Resonance 161
5.2	Subharmonic Resonance of Order One-Third 164
53	Superharmonic Resonance of Order Three 167
5.4	An Alternate Approach 169
5.4.1	Subharmonic Case 171
542	Superharmonic Case 172
J.T.4	Supermannionic Case 1/2

I

223

- 5.5 Exercises 172 6 Forced Oscillations of SDOF Systems 175 6.1 Introduction 175 6.2 Primary Resonance 176 6.3 Subharmonic Resonance of Order One-Half 178 6.4 Superharmonic Resonance of Order Two 180 6.5 Subharmonic Resonance of Order One-Third 182 7 Parametrically Excited Systems 187 7.1 The Mathieu Equation 187 7.1.1 Fundamental Parametric Resonance 188 712 Principal Parametric Resonance 190 7.2 Multiple-Degree-of-Freedom Systems 191 7.2.1 The Case of Ω Near $\omega_2 + \omega_1$ 194 7.2.2 The Case of Ω Near $\omega_2 - \omega_1$ 194 7.2.3 The Case of Ω Near $\omega_2 + \omega_1$ and $\omega_3 - \omega_2$ 194 7.2.4 The Case of Ω Near $2\omega_3$ and $\omega_2 + \omega_1$ 195 7.3 Linear Systems Having Repeated Frequencies 195 7.3.1 The Case of Ω Near $2\omega_1$ 198 7.3.2 The Case of Ω Near $\omega_3 + \omega_1$ 199 7.3.3 The Case of Ω Near $\omega_3 - \omega_1$ 200 7.3.4 The Case of Ω Near ω_1 200 7.4 Gyroscopic Systems 205 7.4.1 The Case of Ω Near $2\omega_1$ 208 7.4.2 The Case of Ω Near $\omega_2 - \omega_1 = 208$ 7.5 A Nonlinear Single-Degree-of-Freedom System 208 7.5.1 The Case of Ω Away from 2ω 209 7.5.2 The Case of Ω Near 2 ω 211 7.6 Exercises 212 8 MDOF Systems with Quadratic Nonlinearities 217 8.1 Nongyroscopic Systems 217 8.1.1 Two-to-One Autoparametric Resonance 220 Combination Autoparametric Resonance 222 8.1.2 8.1.3 Simultaneous Two-to-One Autoparametric Resonances 8.1.4 Primary Resonances 223 8.2 Gyroscopic Systems 225 8.2.1 Primary Resonances 226 8.2.2 Secondary Resonances 227 8.3 Two Linearly Coupled Oscillators 229 8.4 Exercises 232 9 **TDOF Systems with Cubic Nonlinearities** 235 9.1 Nongyroscopic Systems 235 9.1.1 The Case of No Internal Resonances 236
- Three-to-One Autoparametric Resonance 238 9.1.2

X Contents

9.1.3	One-to-One Internal Resonance 239
9.1.4	Primary Resonances 239
9.1.5	A Nonsemisimple One-to-One Internal Resonance 240
9.1.6	A Parametrically Excited System
	with a Nonsemisimple Linear Structure 244
9.2	Gyroscopic Systems 249
9.2.1	Primary Resonances 250
9.2.2	Secondary Resonances in the Absence of Internal Resonances 251
9.2.3	Three-to-One Internal Resonance 255
10	Systems with Quadratic and Cubic Nonlinearities 257
10.1	Introduction 257
10.2	The Case of No Internal Resonance 262
10.3	The Case of Three-to-One Internal Resonance 263
10.4	The Case of One-to-One Internal Resonance 264
10.5	The Case of Two-to-One Internal Resonance 266
10.6	Method of Multiple Scales 267
10.6.1	Second-Order Form 268
10.6.2	State-Space Form 271
10.6.3	Complex-Valued Form 274
10.7	Generalized Method of Averaging 276
10.8	A Nonsemisimple One-to-One Internal Resonance 279
10.8.1	The Method of Normal Forms 279
10.8.2	The Method of Multiple Scales 283
10.9	Exercises 285
11	Retarded Systems 287
11.1	A Scalar Equation 287
11.1.1	The Method of Multiple Scales 289
11.1.2	Center-Manifold Reduction 291
11.2	A Single-Degree-of-Freedom System 295
11.2.1	The Method of Multiple Scales 296
11.2.2	Center-Manifold Reduction 299
11.3	A Three-Dimensional System 304
11.3.1	The Method of Multiple Scales 306
11.3.2	Center-Manifold Reduction 308
11.4	Crane Control with Time-Delayed Feedback 311
11.5	Exercises 313
	References 315
	Further Reading 319
	Index 325