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1
Introduction

When the original German version was first published in 1931, there was a
great reluctance among physicists toward accepting group theoretical ar-
guments and the group theoretical point of view. It pleases the author, that
this reluctance has virtually vanished in the meantime and that, in fact, the
younger generation does not understand the causes and the bases of this re-
luctance.

E.P. Wigner (Group Theory, 1959)

Symmetry is a far-reaching concept present in mathematics, natural sciences
and beyond. Throughout the chapter the concept of symmetry and symmetry
groups is motivated by specific examples. Starting with symmetries present in
nature, architecture, fine arts and music a transition will be made to solid state
physics and photonics and the symmetries which are of relevance throughout
this book. Finally the square is taken as a first explicit example to explore all
transformations leaving this object invariant.

Symmetry and symmetry breaking are important concepts in nature and almost
every field of our daily life. In a first and general approach symmetry might be
defined as: Symmetry is present when one cannot determine any change in a system
after performing a structural or any other kind of transformation.

Nature, Architecture, Fine Arts, and Music
One of the most fascinating examples for symmetry in nature is the manifold and
beauty of the mineral skeletons of Radiolaria, which are tiny unicellular species.
Figure 1.1a shows a table from Haeckel’s “Art forms in Nature” [4] presenting a
special group of Radiolaria called Spumellaria.
The concept of symmetry can also be found in architecture. Our urban envi-

ronment is characterized by a mixture of buildings of various centuries. However,
every epoch reflects at least some symmetry principles. For example, the Art déco
style buildings, like the Chrysler Building in New York City (cf. Figure 1.1b), use
symmetry as a design element in a particularly striking manner.
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2 1 Introduction

Figure 1.1 Symmetry in nature and architecture. (a) Table 91 from HAECKEL’s ‘Art forms in
Nature’ [4]; (b) Chrysler Building in New York City [5] (© JORGE ROYAN, www.royan.com.ar,
CC BY-SA 3.0).

Within the fine arts, the works of M.C. Escher (1898–1972) gain their special
attraction from an intellectually deliberate confusion of symmetry and symmetry
breaking.
In Escher’s woodcut Snakes [6], a threefold rotational symmetry can be easily

detected in the snake pattern. A rotation by 120◦ transforms the painting into it-
self. A considerable amount of his work is devoted tomathematical principles and
symmetry. The series “Circle Limits” deals with hyperbolic regular tessellations,
but they are also interesting from the symmetry point of view. The woodcut, enti-
tled Circle Limit III [6], the most interesting under the four circle limit woodcuts,
shows a twofold rotational axis. If the figure is transformed into a black and white
version a fourfold rotational axis appears. Obviously, the color leads to a reduc-
tion of symmetry [7]. The change of symmetry by inclusion of additional degrees
of freedom like color in the present example or the spin, if we consider a quantum
mechanical system, leads to the concept of color or Shubnikov groups. A com-
prehensive overview on symmetry in art and sciences is given by Shubnikov [8].
Weyl [9] and Altmann [10] start their discussion of symmetry principles from
a similar point of view.
Also in music symmetry principles can be found. Tonal and temporal reflec-

tions, translations, and rotations play an important role. J.S. Bach’s crab canon
fromThe Musical Offering (BWV1079) is an example for reflection. The brilliant
effects inM. Ravel’s Boléro achieved by a translational invariant theme represent
an impressive example as well.
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Physics
The conservation laws in classical mechanics are closely related to symmetry. Ta-
ble 1.1 gives an overview of the interplay between symmetry properties and the
resulting conservation laws.
A general formulation of this connection is given by the Noether theorem.

That symmetry principles are the primary features that constrain dynamical laws
was one of the great advances of Einstein in his annus mirabilis 1905 [11]. The
relevance of symmetry in all fields of theoretical physics can be seen as a major
achievement of twentieth century physics.
In parallel to the development of quantum theory, the direct connection be-

tween quantum theory and group theory was understood. Especially E. Wigner
revealed the role of symmetry in quantum mechanics and discussed the applica-
tion of group theory in a series of papers between 1926 and 1928 [11] (see also
H. Weyl 1928 [12]). Symmetry accounts for the degeneracy of energy levels of a
quantum system. In a central field, for example, an energy level should have a de-
generacy of 2l+1 (l – angularmomentum quantum number) because the angular
momentum is conserved due to the rotational symmetry of the potential. Howev-
er, considering the hydrogen atom a higher ‘accidental’ symmetry can be found,
where levels have a degeneracy of n2, the square of the principle quantum num-
ber. The reason was revealed by Pauli [13, 14] in 1926 using the conservation
of the quantum mechanical analogue of the Lenz–Runge vector and by Fock
in 1935 by the comparison of the Schrödinger equation in momentum space
with the integral equation of four-dimensional spherical harmonics [15]. Fock
showed that the electron effectively moves in an environment with the symmetry
of a hypersphere in four-dimensional space. The symmetry of the hydrogen atom
is mediated by transformations of the entire Hamiltonian and not of its parts,
the kinetic and the potential energy alone. Such dynamical symmetries cannot be
found by the analysis of forces and potentials alone. The basic equations of quan-
tum theory and electromagnetism are time dependent, i.e., dynamic equations.
Therefore, the symmetry properties of the physical systems as well as the symme-
try properties of the fundamental equations have to be taken into account.

Table 1.1 Conservation laws and symmetry in classical mechanics.

Symmetry property Conserved quantity

Homogeneity of time (translations in time) ⇒ Energy
Homogeneity of space (translations in space) ⇒ Momentum
Isotropy of space (rotations in space) ⇒ Angular momentum
Invariance under Galilei transformations ⇒ Center of gravity
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1.1
Symmetries in Solid-State Physics and Photonics

In Figure 1.2, two representative examples of solid-state systems are shown. The
scanning tunneling microscope (STM) image in Figure 1.2a depicts twomonolay-
ers ofMgOon a Ag(001) surface in atomic resolution. The quadratic arrangement
of protrusions representing one sublattice is clearly revealed. One of the main
tasks of solid-state theory is the calculation of the electronic structure of systems
starting from the real-space structure.
However, the many-particle Schrödinger equation, containing the coordi-

nates of all nuclei and electrons of a solid cannot be solved directly, neither ana-
lytically nor numerically. This problem can be approached by discussing effective
one-particle systems, for example, in the framework of density functional theory
(cf. [16]). Therefore, it will be sufficient to study Schrödinger-like equations in
the following to investigate implications of crystal symmetry.
In the first years of electronic structure theory of solids, principles of group the-

ory were applied to optimize computations of complex systems as much as pos-
sible due to the limited computational resources available at that time. Although
this aspect becomes less important nowadays, the connection between symmetry
in the structure and the electronic properties is one of the main applications of
group theory.

Figure 1.2 Symmetry in solid-state physics
and photonics. (a) Atomically resolved
STM image of two monolayers of MgO on
Ag(001) (from [17], Figure 1) (With permis-
sion, Copyright © 2017 American Physical
Society.)(b) SEM image of a width-modulated

stripe (a) of macroporous silicon on a silicon
substrate. The increasing magnification in (b)–
(d) reveals a waveguide structure prepared by
a missing row of pores. (from [18]). (With per-
mission, Copyright © 1999Wiley-VCHGmbH.)
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Next to the optimization of numerical calculations, group theory can be ap-
plied to classify promising systems for further investigations, like in the case of the
search for multiferroic materials [19, 20]. In general, four primary ferroic prop-
erties are known: ferroelectricity, ferromagnetism, ferrotoroidicity, and ferroelas-
ticity. The magnetoelectric coupling, of special interest in applications, is a sec-
ondary ferroic effect. The occurrence of multiple ferroic properties in one phase
is connected to specific symmetry conditions a material has to accomplish.
Defects in solids and at solid surfaces play a continuously increasing role in ba-

sic research and applications (diluted magnetic semiconductors, p-magnetism in
oxides). For example, group theory allows to get useful information in a general
and efficient way (cf. [21, 22]) treating defect states in the framework of perturba-
tion theory.
More recently, a close connection between high-energy physics and condensed

matter physics has been established, where effective elementary excitations with-
in a crystal behave as particles that were formally described in elementary particle
physics. A promising class of materials are Dirac materials like graphene, where
the elementary electronic excitations behave as relativistic massless Dirac fermi-
ons [23, 24]. Degeneracies and crossings of energy bands within the electronic
band structure together with the dispersion relation in the neighborhood of the
crossing point are closely related to the crystalline symmetry [25, 26].
In Figure 1.2b, a scanning electron microscope (SEM) image of macroporous

silicon is shown. The special etching technique provides a periodically structured
dielectric material that is referred to as a photonic crystal. The propagation of
electromagnetic waves in such structures can be calculated starting from Max-
well’s equations [27, 28]. The resulting eigenmodes of the electromagnetic field
are closely connected to the symmetry of the structured dielectric. Group theory
can be applied in various cases within the field of photonics. Subsequently, a few
examples are mentioned. The photonic bands of two-dimensional photonic crys-
tals can be classified with respect to the symmetry of the lattice. The symmetry
properties of the eigenmodes, found by means of group theory, decide whether
this mode can be excited by an external plane wave [29]. Metamaterials are com-
posite materials that have peculiar electromagnetic properties that are different
from the properties of their constituents. Group theory can be used for design
and optimization of such materials [30]. Group theoretical arguments also help
to discuss the dispersion in photonic crystal waveguides in advance. Clearly, this
approach represents a more sophisticated strategy in comparison to relying on a
trial and error approach [31, 32]. If a magneto-optical material is used for a pho-
tonic crystal, time-reversal symmetry is brokendue to the intrinsic magnetic field.
In this case, the theory of magnetic groups can be used to study the properties of
such systems [33].
The goal of this book is to discuss the variety of possible applications of com-

putational group theory as a powerful tool for actual research in photonics and
electronic structure theory. Specific examples using theMathematica packageGT-
Pack will be provided.
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1.2
A Basic Example: Symmetries of a Square

As a first example, the symmetry of a square is discussed (Figure 1.3). The square
is located in the x y-plane. In general, the whole x y-plane could be covered com-
pletely by squares leading to a periodic arrangement like that of the STM image
from the twoMgO layers onAg(001) in Figure 1.2a. Subsequently, operations that
leave the square invariant are identified.1)

First, rotations of 0, π∕2, π, and 3π∕2 in the mathematical positive direction
around the z-axis represent such operations. A rotation by an angle of 0◦ induces
no change at all and is therefore named identity element E. Instead of the rotation
by 3π∕2 a rotation by−π∕2 can be considered. Furthermore, a rotation by an angle
of 𝜑 + n2π, n = 1, 2,… is equivalent to a rotation by 𝜑 and is not considered as
a new operation. In total, four inequivalent rotational operations are found.
Next to rotations leaving the square invariant, reflection lines can be identified.

Performing a reflection, the perpendicular coordinates with respect to the line
change their sign. In the present example, the x-axis is such a reflection line and
furthermore a symmetry operation. By a reflection along this line, the point 1
becomes 4, 2 becomes 3, and vice versa. If the symmetries are considered in three
dimensions, a reflection might be expressed by a rotation with angle π around
the normal direction of the reflection line (here it is the y-axis) followed by an
inversion (the inversion changes the signs of all coordinates). A rotation around
the y-axis interchanges the points 1 and 2 and 4 and 3 as well. After applying an
inversion the points 1 and 3 and 2 and 4 are interchanged. Additionally, the y-axis
and the two diagonals of the square are reflection lines.
In total there are eight inequivalent symmetry elements, four rotations and four

reflections. Those elements form the symmetry group of the square. The combi-
nation of two symmetry elements, i.e., the application one after another, leads to
another element of the group.
In Figure 1.4, a square is presented with different coloring schemes. It can be

verified that the use of color in Figure 1.4b–d reduces the symmetry. The sym-
metry groups of the colored squares are subgroups of the group of the square of

y

x

1 2

34

Figure 1.3 Square with coordinate system and reflection
lines. The vertices are numbered only to explain the effect of
symmetry operations.

1) Symmetry operations are restricted here to the x y-plane, i.e., are orthogonal coordinate
transformations in x and y represented by 2 × 2matrices.
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(a) (b) (c) (d)

Figure 1.4 Symmetry of a square: Square colored in different ways.

Figure 1.4a. As an example: In Figure 1.4c the diagonal reflection lines still exist,
but but the mirror symmetry along the x- and y-axis is broken. Furthermore, the
fourfold rotation axis is reduced to a twofold rotation axis. While the square it-
self represents a geometrical symmetry, the color scheme might be thought to be
connected with a physical property like the spin, in terms of spin-up (black) and
spin-down (white).
In the next sections, the basics of group theory are introduced. The symmetry

group of the square will be kept as an example. Referring to Figure 1.2b, a hexag-
onal arrangement of pores can be seen for the photonic crystal. The symmetry
group of a hexagon has 12 elements.

Task 1 (Symmetry of the square and the hexagon). The NotebookGTTask_1.nb
contains a discussion of the symmetry properties of the colored squares of Fig-
ure 1.4. Extend the discussion to a regular hexagon and its different colored ver-
sions to get familiar withMathematica and GTPack.
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