1
Introduction

1.1
Brief History

The idea or notion that light attenuation is proportional to the inverse square of
the distance traveled can be traced to Kepler [1]. Its experimental verification was
provided by Bouguer [2], who used the inverse square dependence to establish the
exponential extinction law by studying the attenuation of light passing through
translucent media. A mathematical foundation of radiometry was provided by
Lambert [3], who used calculus to interpret experimental results and thereby
develop appropriate mathematical models and physical theories. As pointed
out by Mishchenko [4], although the first introduction of the radiative transfer
equation (RTE) has traditionally been attributed to Schuster [5], the credit should
go instead to Lommel [6], who derived an integral form of the RTE by considering
the directional flow of radiant energy crossing a surface element; almost identical
results were obtained independently by Chwolson [7].

The specific intensity (or radiance) I(r, Q) is the most important quantity of
classical radiative transfer theory (RTT). Planck [8] defined it by stating that the
amount of radiant energy dE transported through a surface element dA in direc-
tions confined to a solid angle dw around the direction of propagation Q in a
time interval dt is given by dE = I(r, Q) cos 0dAdtdw, where r is the position vec-
tor of the surface element dA, and  is the angle between Q and the normal to
dA. This definition was adopted in the works of Milne [9], Hopf [10], and Chan-
drasekhar [11], and has since been used in many monographs [12—16] and text-
books [17-21] on RTT. To treat the polarization properties of radiation Stokes
[22] introduced four parameters to describe the state of polarization. These so-
called Stokes parameters were used by Chandrasekhar [11, 23] to replace the spe-
cific intensity with the four-element column vector I(r, Q) to describe polarized
radiation.

The heuristic derivation of the RTE adopted in Chapter 3 of this book for unpo-
larized as well as polarized radiation is based on classical RTT invoking the spe-
cific intensity and simple energy conservation arguments. Such a derivation is easy
to understand and sufficient for our purpose. Mandel and Wolf [24] noted that a
more fundamental derivation that can be traced to the Maxwell equations was
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desirable, and stated “In spite of the extensive use of the theory of radiative energy
transfer, no satisfactory derivation of its basic equation... from electromagnetic
theory... has been obtained up to now.” Recently, however, much progress toward
such a derivation has been made, as reported by Mishchenko [25].

1.2
What is Meant by a Coupled System?

In many applications, an accurate description is required of light propagation
in two adjacent slabs of turbid media that are separated by an interface, across
which the refractive index changes. Such a two-slab configuration will be referred
to as a coupled system. Three important examples are atmosphere—water systems
[26, 27], atmosphere—sea ice systems [28, 29], and air—tissue systems [30]. In
each of these three examples, the change in the refractive index across the
interface between the two media must be accounted for in order to model the
transport of light throughout the respective coupled system correctly. In the
second example, the refractive-index change, together with multiple scattering,
leads to a significant trapping of light inside the strongly scattering, optically
thick sea-ice medium [28, 29]. For imaging of biological tissues or satellite remote
sensing of water bodies, an accurate radiative transfer (RT) model for a coupled
system is an indispensable tool [31, 32]. In both cases, an accurate RT tool
is essential for obtaining satisfactory solutions of retrieval problems through
iterative forward/inverse modeling [33, 34].

In remote sensing of the Earth from space, one goal is to retrieve atmospheric
and surface parameters from measurements of the radiation emerging at the top
of the atmosphere (TOA) at a number of wavelengths [35, 36]. These retrieval
parameters (RPs), such as aerosol type and loading and concentrations of aquatic
constituents in an open ocean or coastal water area, depend on the inherent opti-
cal properties (IOPs) of the atmosphere and the water. If there is a model providing
a link between the RPs and the IOPs, a forward RT model can be used to compute
how the measured TOA radiation field should respond to changes in the RPs, and
an inverse RT problem can be formulated and solved to derive information about
the RPs [37, 38]. A forward RT model, employing IOPs that describe how atmo-
spheric and aquatic constituents absorb and scatter light can be used to compute
the multiply scattered light field in any particular direction (with specified polar
and azimuth angles) at any particular depth level (including the TOA) in a ver-
tically stratified medium, such as a coupled atmosphere—water system [34, 39].
In order to solve the inverse RT problem, it is important to have an accurate and
efficient forward RT model. Accuracy is important in order to obtain reliable and
robust retrievals, and efficiency is an issue because standard iterative solutions of
the nonlinear inverse RT problem require executing the forward RT model repeat-
edly to compute the radiation field and its partial derivatives with respect to the
RPs (the Jacobians) [37, 38].
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While solutions to the scalar RTE, which involve only the first component of the
Stokes vector (the radiance or intensity), are well developed, modern RT models
that solve the vector RTE are capable of also accounting for polarization effects
described by the second, third, and fourth components of the Stokes vector. Even
if one’s interest lies primarily in the radiance, it is important to realize that solu-
tions of the scalar RTE, which ignores polarization effects, introduce errors in the
computed radiances [40-42].

In this book, we will consider the theory and applications based on both scalar
and vector RT models, which include polarization effects. There are numerous
RT models available that include polarization effects (see Zhai et al. [43] and ref-
erences therein for a list of papers), and the interest in applications based on polar-
ized radiation is growing. There is also a growing interest in applications based on
vector RT models that apply to coupled systems. Examples of vector RT modeling
pertinent to a coupled atmosphere—water system include applications based on
the doubling-adding method (e.g., Chowdhary [44], Chowdhary et al., [45-47]),
the successive order of scattering method (e.g., Chami et al., [48], Min and Duan
[49], Zhai et al., [43]), the matrix operator method (e.g., Fisher and Grassl, [50], Ota
et al., [51]), and Monte Carlo methods (e.g., Kattawar and Adams [40], Lotsberg
and Stamnes [52]).

Chapter 2 provides definitions of IOPs including absorption and scattering
coefficients as well as the normalized angular scattering cross section, commonly
referred to as the scattering phase function, and the corresponding scattering
phase matrix needed for vector RT modeling and applications. In several subsec-
tions basic scattering theory with emphasis on spherical particles (Mie—Lorenz
theory) is reviewed, and IOPs for atmospheric gases and aerosols as well those
for surface materials including snow/ice, liquid water, and land surfaces are
discussed. The impact of a rough interface between the two adjacent slabs is also
discussed.

In Chapter 3, an overview is given of the scalar RTE as well as the vector RTE
applicable to a coupled system consisting of two adjacent slabs with different
refractive indices. Several methods of solution are discussed: the successive order
of scattering method, the discrete-ordinate method, the doubling-adding method,
and the Monte Carlo method. In Chapter 4, we discuss forward RT modeling in
coupled environmental systems based on the discrete-ordinate method, while
Chapter 5 is devoted to a discussion of the inverse problem. Finally, in Chapter 6,
a few typical applications are discussed including (i) how spectral redundancy can
be exploited to reduce the computational burden in atmospheric RT problems,
(ii) simultaneous retrieval of total ozone column amount and cloud effects from
ground-based irradiance measurements, (iii) retrieval of aerosol and snow-ice
properties in coupled atmosphere—cryosphere systems from space, (iv) retrieval
of aerosol and aquatic parameters in coupled atmosphere—water systems from
space, (v) vector RT in coupled systems, and (vi) how polarization measurements
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can be used to improve retrievals of atmospheric and surface parameters in
coupled atmosphere—surface systems.

1.4
Limitations of Scope

We restrict our attention to scattering by molecules and small particles such as
aerosols and cloud particles in an atmosphere, hydrosols in water bodies such as
oceans, lakes, and rivers, and inclusions (air bubbles and brine pockets) embed-
ded in ice. To explain the meaning of independent scattering, let us consider an
infinitesimal volume element filled with small particles that are assumed to be
randomly distributed within the volume element. Such infinitesimal volume ele-
ments are assumed to constitute the elementary scattering agents. Independent
scattering implies that each particle in each of the infinitesimal volume elements
is assumed to scatter radiation independently of all other volume elements.

Although there are many applications that require a three-dimensional (3-D)
RT treatment, in this book we limit our discussion to plane-parallel systems with
an emphasis on the coupling between the atmosphere and the underlying sur-
face consisting of a water body, a snow/ice surface, or a vegetation canopy. For a
clear (cloud- and aerosol-free) atmosphere, 3-D effects are related to the impact
of the Earth’s curvature on the radiation field. To include such effects, a pseudo-
spherical treatment (see Dahlback and Stamnes [53]) may be sufficient, in which
the direct solar beam illumination is treated using spherical geometry, whereas
multiple scattering is done using a plane-parallel geometry. This pseudo-spherical
approach has been implemented in many RT codes [54, 55]. There is a large body of
literature on 3-D RT modeling with applications to broken clouds. Readers inter-
ested in RT in cloudy atmospheres may want to consult books like that of Marshak
and Davis [12] or visit the Web site http://i3rc.gsfc.nasa.gov/.

3-D RT modeling may also be important for analysis and interpretation of lidar
data. In this context, the classical “searchlight problem" [56], which considers the
propagation of a laser beam through a turbid medium, is relevant. Long-range
propagation of a lidar beam has been studied both theoretically and experimen-
tally [57]. Monte Carlo simulations are well suited for such studies [58], and use of
deterministic models such the discrete-ordinate method, discussed in Chapters 3
and 4 of this book, have also been reported [59, 60].

Most RT studies in the ocean have been concerned with understanding the
propagation of sunlight, as discussed by Mobley et al. [26]. For these applications,
the transient or time-dependent term in the RTE can be ignored, because changes
in the incident illumination are much slower than the changes imposed by the
propagation of the light field through the medium. While this assumption is sat-
isfied for solar illumination, lidar systems can use pulses that are shorter than the
attenuation distance of seawater divided by the speed of light in water. Also, as
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pointed out by Mitra and Churnside [61], due to multiple light scattering, under-
standing the lidar signal requires a solution of the time-dependent RTE. Although
such studies are beyond the scope of this book, the transient RT problem can
be reduced to solving a series of time-independent RT problems, as discussed by
Stamnes et al. [62].

We restrict our attention to elastic scattering, although inelastic scattering pro-
cesses (Raman and Brillouin) certainly can be very important and indeed essential
in some atmospheric [63-65] and aquatic [66, 67] applications. Although most
particles encountered in nature have nonspherical shapes — cloud droplets
being the notable exception — we will not consider nonspherical particles in this
book. Although the general introduction to the scattering problem provided in
Chapter 2 is generic in nature and thus applies to particles of arbitrary shape, our
more detailed review is limited to spherical particles (Mie—Lorenz theory). The
reader is referred to the books by Bohren and Huffman [68] and Zdunkowski
et al. [20] for a more comprehensive discussion of the Mie-Lorenz theory and
to the recent book by Wendisch and Yang [21] for an excellent introduction to
scattering by nonspherical particles.
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