Index

a
acceptance probability

- in a rejection method with combination of variables 75
- in rejection methods 84, 85-87, 89-90, 93
- - exercises 95-96
- in rejection with repetition methods
- - simple case 97, 99-100
- - relation with correlation function 102
- - influence in the error 102-103
- - low average acceptance 103-104
- - dynamical methods 104-107
_ _ - Glauber 108
- - - Metropolis et al. 107-108
- - - Gaussian distribution 108-110
- - - - Poisson 111-112
- - - - multidimensional distributions 112-116
- - - Heat-bath method 116
- - - exercises 121-123
- in applications to statistical mechanics 128-130
- - interacting particles 132,133
- - Ising model 138, 140, 143, 146
- - lattice $\Phi^{4} 154$
- - at the critical region 162
- - exercises 164
- in hybrid Monte Carlo 280-283
- in collective algorithms 355-356

Adams-Bashford-Moulton method 229

- with integration of linear terms 229
- for partial differential equations 308-309
- for stochastic partial differential equations 315-316
- warming 229, 309
- exercises 323-325
additive noise 173,196
- in the decay from an unstable state 233
- transformation to - 224-225
advection 293
- equation 296-297
- exercises 321
agent 235
aliasing 302,369
- error 316-321, 371
- in FFT 375
alloy separation 134, see Kawasaki interpretation of the Ising Model
α addition property $69-70$
annihilation, see self-annihilation
archer 32-33
area-preserving algorithms 278-285
arrival time 1, 16
asymptotic
- distribution $105,116,125,285,344$
- - exercises 345
- behavior near a critical point 157-163
autocorrelation
- time 101-102, 128
- - near a critical point 160-162
- function 102, 128
- , see also correlation
average
- values 6, see also mean, variance,
moments, central moments
- - of jointly Gaussian variables, see Wick theorem
- - exercises 29-30, 62-63, 95-96
- acceptance, see acceptance probability
- local - 143
- of functions 120, 127, 131-132, 136-137
- , see ensamble, magnetization,
- over trajectories 218, 221, exercises 230-233
- over time, exercises 231

Avogadro number 61, 125

b

backward

- Euler method 208
- rate, exercise 259
balance, see detailed balance
barrier 224
- exercises 189, 233, 258
bath, see heat-bath algorithm
Bayes theorem 25-26
- in rejection methods 74-75

Berg approach for multicanonical simulations 364
Bernoulli distribution 6-7, 34

- generation 44-45
- use to generate a binomial distribution 70
- use in rejection methods 75, 85, 99
- acceptance in Metropolis algorithm 108

Bessel functions $54-56,74,344$
β decay $1,2,4,11-12,16,235,244-245$
Bhanot approach in multicanonical simulations 363
bifurcation

- pitchfork, exercises 188
- Hopf, exercises 188
bilingual 235-235
bin size 358
binary
- experiment 6-8,170
- variable 34, 149
- alloy, see alloy
binomial distribution 7-8
- limit of many repetitions 10-11
- limit to a Gaussian distribution 13-14
- approximation 14
- in hit-and-miss methods 32-33
- generation 49-50, 70-71
- to describe random walk 174
- to describe a two-state particle 239-240
- to describe disintegration processes 245
- in the generating function method 253
- exercises 95, 257-258
birth-and-death process 245-246, 251-254
- exercises 259, 273
bistable exercises 188-189, 233
Boltzmann
- distribution 2, 125, 148
- - in hybrid Monte Carlo 284
- factor $125,136,151,154,163$
- - in hybrid Monte Carlo 283-285
- - in multicanonical simulations 361
- constant 125, 169
- description of the Brownian motion 167, 186
Boltzmann-Gibbs factor 140
boundary condition
- in continuity equation for probability 182
- in passage time problems 223-224
- for partial differential equations 287, 292
- for stationary probability distribution 185-186
- - exercises 188
- periodic
- - for a sum 90, exercise 95
- - in multidimensional distributions 113, 115
- - in Ising model 139
- - in lattice ϕ^{4} model 150
- - for partial differential equations 292, 294
- - for pseudospectral algorithms 300-301, 311, 316
- - in the generation of n-dimensional correlated Gaussian variables 338, 340-343
- - in the calculation of correlations 348
boundary value problems 235
Bortz-Kalos-Lebowitz 145, see residence time algorithm
bounding 249, 246, 267-268, see also chemical reaction
Box-Mueller-Wiener algorithm 40, 68, 88
- exercises 94
broadcasting, fluctuations in radio 173
Brownian motion 167-170, 186
- Einstein's description 167-169, 181
- Langevin's description 169-170, 173
- timescales 180
- Master equation description 243

Bruce implementation of Monte Carlo for lattice ϕ^{4} model, exercise 164
Buffon problem, exercise 29

c

cancer, statistical incidence exercise 29
candidate sites 352-354
canonical distribution 276, 279, 361-362, 363-364
Cardano's formula 54
Cauchy distribution 39

- generation 39
- use in rejection methods 93-94
- exercises 95
cdf, see cumulative distribution function
cell
- lattice 150
- in coarse graining 289-291
- in finite difference methods 291-293
centered space
- derivatives 291-292
- - exercises 322-323
- forward time - 295-297
central-limit theorem 12
central moments 6
certainty 1,11
chain, see Markov chain
change
- in probability 247
- of variables 6,37,
- - use to generate random variables 67-72
- - use for multidimensional distributions 79-81
- - in Stratonovich interpretation 179
- - to integrate exactly the linear terms 225
- - - in partial differential equations 306
- - - in stochastic partial differential equations 313
- - - exercises 233
- - to generate n-dimensional correlated Gaussian variables 337-339
- proposed - 114, 116
- - configuration - 128, 132-133,
- - - in Metropolis algorithm 137-138
- - - in Kawasaki interpretation of Ising algorithm 143
- - - in heat-bath algorithm 146
- - - in Monte Carlo methods 153
- - energy - 129-130, 132-133
- - - in Glauber proposal, exercise $122-123$
- - - in Metropolis algorithm 140
- - - in Kawasaki interpretation of Ising algorithm 144
- - - in Monte Carlo methods 153, 155
- - of a single particle position 132-133
- - of many variables $132,163,281$, 351-356, see also collective update
- - exercises 122-123, 163-165, 286
chaos, see Nikolaevskii equation
Chapman-Kolmogorov equations 238-239
characteristic configuration 128-129
Chebyshev's theorem 20
- use of - 21-22, 33, 35, 100
chemical
- potential 143
- reaction 235, 241, 246-248, 267-268
- - exercises 273
- turbulence, see Nikolaevskii equation

Chi and Chi-square distributions 14-16 choice

- optimal in importance sampling 51-53
- in rejection methods $85,87,92-93$
- - exercises 95
- in collective algorithms 355-356
- in multicanonical simulations 362,364
- Glauber - 129, 138
- - exercises 121-122
- Metropolis - 108, 138, 280, 285
- - exercises 121-122
- van Beijeren and Schulman - exercises 122
- to generate Poisson distribution 110-111
- to generate multidimensional distributions 115
cluster 351-356
coalescence of droplets 154
coarsening 146
coarse-grained description of Brownian motion 167
coarse-graining 289-292
coin tossing $1-2,170,174$
collective
- algorithms for spin systems 351-356
- update 130,132,163,351-356, see also hybrid Monte Carlo
- state 265
colored noise 181, see also
Ornstein-Uhlenbeck process
- exercises 187, 231
combination of variables for random number generation 72-74
compressibility 126
conditional probability 23-26
- in Markov chains 27
- in multidimensional distributions 76
- in rejection methods 85-86
- in heat-bath algorithm 117, 146
- in equilibrium statistical mechanics 128, see also detailed balance
- in stochastic processes 171
- in Master equations 236, 238, 239
- - exercises 257
- in the residence-time algorithm 269
confidence 21
- limits 23, 35, see also Chebyshev's theorem
configuration
- microscopic 125
- - Ising model 134
- probability of a - 126-127, 137
- change of -, see change/proposed/configuration
- characteristic, see characteristic configuration
- generation, see
change/proposed/configuration
congruential generator 329
- mixed - 330
- multiplicative - 330
- examples 331
- test 332
congruential generator (contd.)
- exercises 335
connectivity
- full 134, 137
- nearest neighbor 139
- mapping in collective algorithms, see Fortuin and Kasteleyn mapping, Niedermayer algorithm, Wolf algorithm conservation
- of probability $182-183,243$, see also Liouville equation
- of energy 276, 279, 284
- - exercises 286
conserved order parameter 284
constant of motion 273
- exercises 274
contact area between two metals 145
contagious disease 241
- exercises 259, 273
continuity equation $168,182,185$
convergence
- to a stationary solution 28,
- in mean square limit, see mean square convergence
- of trajectories 198
- of moments 198
- of Berg recursive procedure 364
- of Wang and Landau approach 364
corrector, see predictor-corrector methods
correlation
- coefficient 17
- matrix of joint Gaussian variables $18-19$, 82
- function 101-102, 117-118
- - nonlinear 120
- - of a series $347-350$
- - exercises 121-123
- time 101-102, 110, 112, 114, 117-119
- - nonlinear 120
- - exercises 121-123
- in configurations $128,140,143$
- near the critical point 156-163
- - exercises 163-164, 286
- in stochastic process 173
- - random walk 174
- - Wiener process 175
- - white noise 175-177
- - Ornstein-Uhlenbeck process 180
- - - numerical realization 202
- - - process $g_{h} 204$
- - - correlation time vs time step 209-212
- - colored noise - 181
- - exercises 187-188, 231-232
- in stochastic partial differential equations
- - space-time white noise 288
- - coarse graining 289-291
- - in Fourier space 312-313
- - exercises 324
- prey-predator - 255
- spurious - in random number generation 332-335
- - exercises 336
- , see also generation correlated Gaussian variables
Courant-Friedrichs-Levy criterium 295-299
- exercises 322-323
covariance 17
Crank-Nicolson method 299
- exercises 322
critical
- temperature $135,137,143,146,152$, 158-160
- exponent 152,157-160, 162-163
- region 155-163
- slowing-down 156, 161-163
- point 157-162
- fluctuations 160-161
- opalescence 161
- exercises 163-165
cumulant 160-161
- exercises 164
cumulative distribution function, cdf 4
- Bernoulli - 7
- uniform - 8-9
- Gaussian - 12-13
- Gamma 65
- joint - 16
- multidimensional - 76
- max of two random variables 70
- piecewise approximation 91-94
- inverse - method 37
- - approximate 40-41
- - Bernoulli 44-45
- - Cauchy 39
- - discrete random variables 43-44
- - exponential 38
- - Gamma 41-43
- - Gaussian 40-41
- - geometric 45-46
- - Poisson 47-49
- - power-law 39-40
- - Rayleigh 40
- - using Newton-Raphson 42-43,54-55
- - using piecewise linear interpolation 65-66
- exercises 94-95

Curie temperature 142
cyclic loops

- in Markov chains 28
- in random number generators 328-329

d

de Moivre-Laplace theorem, 13, 174
decay

- from an unstable state 222-224
- - exercises 232
- radioactive, see β decay
decimated series 118-119
density of states 361
deposition of particles 288
detailed balance
- in Markov chains 27-28, 86
- in dynamical methods 106-107
- in Metropolis algorithm 108
- in multidimensional distributions 116
- in heat-bath method 116, 146
- Glauber 129
- for interacting particles 132
- in lattice ϕ^{4} model 155
- in Master equations 237-238, 241-242
- in hybrid Monte Carlo 280
- in collective algorithms 355-356
- exercises 30,164
diagrammatic representation of Wick's theorem 19
diffusion
- coefficient 168-170
- Einstein's - law 170
- equation 168
- - finite difference methods 295-296, 299
- - - exercises 322
- of a Brownian particle, see Brownian motion
- process in an alloy 143
- term 173
dynamical methods, see rejection methods with repetition
Dirac delta 4-5
discrete Fourier transform, see Fourier transform, discrete
discretization
- time
- - in stochastic differential equations 194
- - in partial differential equations 293-300
- space 307
- - for stochastic partial differential equations, see coarse graining
- spatial derivatives
- - centered 291
- - upstream 293
- exercises 321-323
disintegration, see β decay
distribution
- probability -, see probability distribution
- cumulative probability -, see cumulative probability distribution
- first passage time -, see first passage time
- canonical -, see canonical distribution
- multicanonical -, see multicanonical distribution
- energy -, see energy distribution
divergence
- at the critical point $157-162,351,360$
- moments - in linear equation with multiplicative noise 219-220
- numerical - 294, 296-297
double-well potential 234
drift term 173
e
effective
- potential, exercise 188-189
- inverse temperature 363
efficiency
- finite differences vs
- in collective algorithms 351-356
- in generating n Gaussian random variables, exercise 345
- in importance sampling 53
- - exercises 62-63
- in random number generation 339
- of an integration method 60-61
- of a rejection method 86-87,93
- - exercises 94-95
- Adams-Bashford-Moulton vs Heun pseudospectral methods, exercise 323
- first reaction method vs residence time algorithm, exercise 273
- hybrid Monte Carlo vs rejection, exercise 286
Einstein's
- fluctuation-dissipation relations 136, 359, 362
- description of Brownian motion 167-169
electron
- emission, see β decay
- spin 1,3

Energy

- barrier, see Michaelis-Menten reaction
- change, see change/proposed/energy
- conservation 279
- - exercise 286
- distribution 2,359-360,361-366
- equipartition, see equipartition theorem
- fluctuations 136
- Helmholtz free -, see Helmholtz free energy

Energy (contd.)

- - in Ising model 137
- histogram 359-360, 361-366
- interaction - in Ising model 134
- internal 126-127
- - in Ising model 129
- - in lattice Φ^{4} model
- kinetic -, see residence time algorithm
- - average value 131, 276
- - of a Brownian particle 169
- - fake 279
- potential - 131,132
ensemble
- average 136
- of Brownian particles 167-168
- of trajectories 181-182
- of particles 265, 267
- microcanonical -, see microcanonical ensemble
- multicanonical -, see multicanonical simulations
enthalpy 134
entropy 126-127, 128
- in multicanonical simulations 361-366
enzymatic reaction, see Michaelis-Menten reaction
epidemic spreading 235 , see contagious disease
equilibrium 127-129
- thermal 125
- - of a Brownian particle 169
- sampling with molecular dynamics 276
- in hybrid Monte Carlo 281-282
- , see also thermalization
equipartition theorem 131
ergodic
- Markov chain 28
- algorithm 109-110, 116, 119
error
- function 12
- - complementary 130
- - inverse 41, 68
- - - approximations 41, exercise 94
- in pseudospectral methods 316-321, see also aliasing
- integration
- - Euler-Maruyama algorithm 197
- - Milshtein algorithm 197-199
- - in the linear equation with multiplicative noise 218
- - in hybrid Monte Carlo 277, 283-284
- - , see also order/algorithm
- spatial discretization 291, 293
- statistical 3,20-22
- - for the sum of random variables 23
- - in hit-and-miss 32-33
- - in uniform sampling 35
- - in general sampling 36
- - in importance sampling 51-52
- - in Monte Carlo importance sampling for sums 59
- - in determining the efficiency of integration methods 60
- - in rejection methods 89
- - in rejection with repetition $100-103$
- - in Metropolis algorithm 110
- - increase with correlation time 114
- - in equilibrium statistical mechanics 132, 156
- - - near the critical region 156, 160-162
- - in hybrid Monte Carlo 276
- - minimization
- - - in importance sampling 51-53, 56
- - - - exercises 63
- - - in dynamical methods 110, 117-119
- - - - exercises 122-123
- - - in multicanonical simulations 364
- - exercises 62-63,121
- systematic
- - in piecewise linear inversion of cdf 94
- - in dynamical methods 120
- - in integrating Hamilton's equations 276, 283-284
escape rate 244, 269-270
estimator 4,
- radioactive decay rate, 11
- mean 21-22
- standard deviation 21-22
- unbiased 32,35,54
- optimal - 52
- efficiency 60-61
- exercises 62-63
- in dynamical methods 102
- for the correlation time 118
- of a stochastic process 197-199
- correlation function 347-349
- magnetization, see magnetization
- entropy 361, 364
- density of states 362
- error, see error/statistical

Euler algorithm

- backward 208
- deterministic 209
- explicit 208
- forward 208
- implicit 208
- semi-implicit 208
- for molecular dynamics 276-277
- for partial differential equations 295

Euler-Maruyama algorithm 197-198

- comparison with leap-frog for hybrid Monte-Carlo 283-284
event 1-2
- Poisson 10-11,71
- exponential 11-12
- conditional 23-25
- rare 216-220
- in radioactive decay, see β decay
expectation, a priori 2
expected
- value 6, see mean, variance, moments, central moments
- frequency $2-3,11$
experiment, probabilistic $1-4,6-8,12$, $16-17,20-22,32-33,36,170,172$
exponential distribution 11-12
- relation with Poisson distribution 11-12, 71
- generation 38
- use in integral evaluation 56
- use to generate the Γ distribution 69
- use to generate Poisson distribution 71-72
- use to generate other distributions 76-77
- first jump time 242, 261, see also first reaction method
exponent, see critical exponent external field, see magnetic field extrapolation
- integration step 198
- polynomial, see Adams-Bashford-Moulton method
- Histogram, see Histogram extrapolation
- Ferrenberg-Swendsen, see Ferrenberg-Swendsen extrapolation

f

factor

- acceptance, see acceptance probability
- Boltzmann, see Boltzmann, factor
- Boltzmann-Gibbs, see Boltzmann-Gibbs factor
- normalization, see normalization
- structure 342-344
factorization, probability $16,56,333$
fast Fourier transform 373-375
- storage of Fourier modes 304-305
- use in pseudospectral methods 300
- - Heun 306-307
- - midpoint Runge-Kutta 307-308
- - predictor-corrector 308-309
- - fourth-order Runge-Kutta 310-311
- use in stochastic pseudospectral methods
- - Heun 314-315
- - predictor-corrector 315-316
- - exercises 323-325
- use to generate n-dimensional correlated Gaussian variables 337
- - free model 338-340
- - translational invariance 340-344
- - exercises 344-345
feedback shift register generator 333
Ferrenberg-Swendsen extrapolation 357-360, 362
ferromagnetism 126, 134-136, 143
TW exerciseI 323
Fibonacci generator 334-335
field
- coarse-grained, see coarse-graining
- description in terms of partial differential equations 287-288
- external, see magnetic field
- Gaulois 333
- local, see local field
- magnetic, see magnetic field
- mean, see mean-field
- modal decomposition 300
- model 149-150
- stochastic 288
finite differences method 287-300
- evaluation of spatial derivatives 291, 293
- for diffusion equation 295
- for Fokker-Planck equation with constant coefficients 297
- for KPZ equation 292, 297-300
- stability, see von Neumann stability analysis
- exercises 321-323
finite-size
- effects 156-160
- scaling 160-161
- - exercises 164

First passage time 221-224

- distribution 221
- mean 221
- numerical evaluation 223-224
- variance 221
- exercises 232-233
first reaction method 261-268
fluctuating force, see Brownian motion
fluctuation
- of the order parameter 136
- energy 136
- microscopic 136
- magnetization, see magnetization fluctuations, magnetic susceptibility
- near a critical point, see critical fluctuations
- in a Brownian particle, see Brownian motion
fluctuation (contd.)
- large 219, 220, see also critical fluctuations
- at a unstable point 222-223, exercise 232
- anomalous exercise 233
fluctuation-dissipation, see Einstein's fluctuation-dissipation relation
flux
- particle 182
- probability 185
- , see also advection

Fokker-Planck equation 181-184

- multivariate 184-185
- numerical integration with finite differences 296-297
- stationary solution 185-186
- - exercises 188-189
- to approximate Master equations 256-257
- - exercises 259

Fortuin and Kasteleyn mapping 351
forward

- Euler, see Euler algorithm forward
- time centered space 295
- - for the diffusion equation 295
- - for Fokker-Planck equation with constant coefficients 297
- - for advection equation 296

Fourier

- acceleration 285
- operator 301
- - inverse 301
- transform 301, 367
- - use in pseudospectral methods 300-303
- - discrete 368-372
- - - in pseudospectral methods
- - - to generate n-dimensional correlated Gaussian variables 337-344
- - fast, see fast Fourier transform
- - in von Neumann ansatz 294
- space 302-304
- - spatial derivatives 373
- - nonlinear terms 302-304
- - white noise 312-313
- mode 300-303, 318-320, 367-372
- series 367-368
- filtering method 364
fractal
- Ising model structure 143-144
- Wiener process 185
free
- Lagrangian 90, 338
- - exercises 286, 344-345
- energy, see Helmholtz free energy
- Gaussian - model 126, 338-340

FSR, see Feedback shift register
generator

g

Galerkin method 337-338
Gamma distribution 13-14

- cumulative function 65
- numerical generation 41-43,69
- use in importance sampling 51-54
- use in combination of variables 74
- exercises 286

Gaulois field 333
Gaussian

- distribution 12-13
- - cutoff - 84-87,104
- - joint - 18-20
- - statistical errors 21, 23
- - exercises 29-30
- - approximation for entropy 365-366
- - approximation to changes in energy 129-130
- - approximation to a binomial distribution 33, 174
- - momentum distribution 131, 284, 285
- - generation
- - - using approximate inverse cdf 40-41, exercise 94
- - - using Box-Mueller-Wiener algorithm 67-69, exercise 94
- - - using interpolation for inverse cdf, exercise 94
- - - using Metropolis algorithm 108-110, 117-118, exercises 122
- - - n-dimensional uncorrelated 81-84
- - - n-dimensional correlated 337-344, exercises 344-345
- - product of - 81
- - use to implement Φ^{4} model, exercise 164
- - use in hybrid Monte Carlo 279-280, 282
- stochastic process 172, see white noise, Wiener process, Ornstein-Uhlenbeck process
- free model, see free/Gaussian
generalized
- hybrid-Monte Carlo, see Hybrid Monte-Carlo/generalized
- sampling method, see sampling/generalized
generating function 251
- method for Master equations 251-254
- - exercises 257-258, 273
generation of random numbers, see random number generation
geometric distribution 8
- generation 45
- modified 46
- use to evaluate sums with Monte Carlo 58-59
- use in rejection methods 91
- - exercises 95

Gibbs factor, see Boltzmann-Gibbs factor
Gillespie algorithm, see residence time algorithm
Glauber acceptance probabilities 108

- exercises 121-123
- in statistical mechanics 129
- in the Ising model 138, 142
- in lattice Φ^{4} model 155

h

Hamiltonian 125, 127, 131

- Ising - 134-135
- Heisenberg - 148
- Lattice ϕ^{4} - 150
- Numerical methods preserving - properties 277-279
- fake - 279
- average error in - 283

Hamilton's equations 125, 275
hard-core repulsion 133
hard-spheres model 133, 163, 355
heat-bath algorithm 116-117, 146-148,
153-154, 164

- -type 316, 320
heat, specific 126-127, 151, 359-360, 361-362
- per particle 136, 360
- scaling relations 159

Heisenberg model 148-149
Helmholtz free energy 126, 129, 137
herding behavior, exercise 274
Heun method

- deterministic 206-209
- stochastic white noise 207-208
- stochastic Ornstein-Uhlenbeck noise 208-209
- numerical implementation 209-211
- multidimensional 213-215
- for first passage time 223-224
- with exact integration of linear part 226-227
hit-and-miss method 31-33, 60-61
- exercises 62-63
homogeneous
- Markov chain, see Markov chain, homogeneous
- Fokker-Planck 195

Hopf bifurcation 188 (exercise)
Hybrid Monte Carlo 275-281

- tuning of parameters 281-283
- relation to Langevin dynamics 283-284
- generalized 284-285
- exercises 288

i

importance sampling, see sampling, importance
infection process 241

- exercises 259
instability
- of a fixed point 217-218
- - threshold 218
- of finite difference methods, see von Neumann stability analysis
- - condition, see Courant-Friedrichs-Lewy criterion
integral calculation
- with hit-and-hiss, see hit-and-miss method
- with uniform sampling, see sampling, uniform
- with general sampling, see sampling, general
- with importance sampling, see sampling, importance
- N-dimensional 56-57
- exercises 62-63,121
- with rejection with repetition, see rejection with repetition
integral
- Riemann, see Riemann integral
- stochastic, see stochastic integral
interaction
- magnetic 127, see Ising model
- interacting particles 130-134
- potential 131-134
- exercises 164
- leading to annihilation, see self-annihilation
interfacial growth, see KPZ equation
internal energy 126-127
- per particle 136
- in lattice ϕ^{4} model 151-153
inversion of the cumulative distribution function, see cumulative distribution function/inverse
irreducibility condition 28
- exercises 30

Ising model 127, 134-137

- Metropolis algorithm for the - 137-143
- Kawasaki interpretation 143-146
- Heat-Bath Algorithm for the - 146-148
- Data analysis around the critical point 155-157

Ising model (contd.)

- Finite-size effects 157-160
- Critical slowing down 161-163
- exercises 163-165
- to test random numbers 334
- collective algorithms 351
- histogram extrapolation 357-359
- density of states in the 3D - 363
isothermal compressibility, 126
Itô
- calculus 178-179
- interpretation 178-179
- exercises 187
- Euler-Maruyama algorithm 197

j

Jacobian 18, 68-69, 278, 280, 337
Jayne's principle, 2
Jensen's inequality 129 , exercise 30
Joint pdf 16,

- Gaussian 18-20
- exercises 30
- change of variables 67
jump
- in Brownian motion, see Brownian motion
- in Master equations, see Master equations

k

Kardar-Parisi-Zhang equation, see KPZ equation
Kawasaki interpretation of the Ising model 143-147
kinetic Monte Carlo, see residence time algorithm
Kirman's model for herding behavior 274
KPZ equation 288-289

- discretization 292
- finite differences Milshtein method 297
- - von Neumann stability analysis 297-298
- - numerical implementation 299
- finite differences Heun method 299
- - numerical implementation 300
- stochastic pseudospectral algorithms 311-315
- exercises 322-325

Kramer's law exercises 234
I
lagged Fibonacci generator, see Fibonacci generator
Lagrange multipliers 52
Lagrangian (free) 90, 338,

- exercises 286, 344-345

Lambert function, exercises 258

Landau mean-field approximation, see mean-field

- Wang and - method, see Wang-Landau method
Langevin
- description of Brownian motion 169-170
- random force 170
- equation, see Stochastic differential equations
- dynamics related to hybrid Monte Carlo, see hybrid Monte Carlo
language dynamics 235-236
lattice
- regular -, Ising model 134-135, 334
- - programing for 2D - 138-143
- square -, $\quad 134-135,144,148,156-158$
- - programing 138-143
- - exercises 163-164
- triangular -, 134-135
- linear -, 134-135
- cubic, exercises 164
- torus topology 139
- fully connected 137
- division in sublattices 142
- - Φ^{4} model 149-152
- discretization for PDEs 287, 289
- , see also Heisenberg model, Potts model, collective algorithms, coarse graining
leap-frog algorithm 277-281
- comparison with Langevin dynamics 283-284
- for hybrid Monte Carlo 284-285
- exercises 286

Lennard-Jones potential 132-133
likeness 1-2
linear combination of Gaussian variables 86
linear chain 135
linear equation with multiplicative noise 216-221
linear terms, exact integration 224-230., see also pseudospectral algorithms
Liouville equation 182-183

- theorem 278
local
- average 143
- field 149

Lotka-Volterra model 249-251

- mean field 255-256
- residence time algorithm 270-273
- exercises 258,273

m

macroscopic order 135
magnetic moment 127, 134

- interaction 127-128
- field
- - in Ising model 135-136, 140, 143
- - in Heisenberg model 148-150
- susceptibility $136,151,157-158$, 160, 162
magnetism 127 , see also Ising model
magnetization 136, 140, 145, 151-153, 156, 158-160, 357, 361
- spontaneous - 136-137, 151-152, 156-157
- fluctuations 140, 151, see also magnetic susceptibility
- correlation time 162
- exercises 163-164
marginal probability 20,24
Markov
- chain 26-28, 86, 100-102, 105-107, 119-120, 162
- - exercises 29-30, 121
- - not homogeneous 115-116
- - multiple - Monte Carlo 361
- process 28, 171-172, see also Wiener process and Ornstein-Uhlenbeck process
- - Master equation for - 235-238

Marsaglia

- theorem 332
- planes 332
- - exercises 335
mass action law 248
Master equation 235-257
- two state system 235-236
- for particles, see particle point of view method
- for occupation numbers, see occupation numbers point of view method
- general case 242-244
- radioactive decay 244-245
- birth and death process 245-246
- AB chemical reaction 246-248
- self-annihilation 248-249
- , see also Lotka-Volterra, Generating function method, mean field, Fokker-Planck equation,
- exercises 257-259
- numerical simulations 261-273
- - first reaction method 261-268
- - residence time algorithm 268-273
- - exercises 273-274
mean
- first passage time 121
- - exercises 232
- square convergence 179,198
- square displacement 173
- value 6
- - Bernoulli distribution 7
- - binomial distribution 8
- - geometric distribution 8
- - uniform distribution 9
- - Poisson distribution 10
- - Exponential distribution 11
- - Gaussian distribution 12
- - Gamma distribution 14
- - Chi distribution 16
- - sum of random variables 17
- - - independent 22
- - statistical error 20-22
- - sample - 22, 35-37,54,56, 60, 97, 100
- - Wiener process 175
- - white noise 177
- - Ornstein-Uhlenbeck process 180
mean-field
- Ising model 134, 152
- Master equation 254-255, 268, 272-273
- exercises 258-259, 274
metal alloy 134, 143-146
Metropolis et al. algorithm 107-112
- generalization 112-116
- tuning 118
- exercises 121-122
- in statistical mechanics $128-129,132$, 137-143
- lattice Φ^{4} model 152-155
- comparison with exact solution 156
- results for magnetic susceptibility 158
- in critical slowing down 162-163
- exercises 163-164
- in Hybrid Monte Carlo 275, 279-281, 285
- comparison with collective algorithms 351, 355
Michaelis-Menten reaction exercises 258, 273
microcanonical ensamble 276, 363
microscopic configuration 125-127, 134
microscopic fluctuations 144
midpoint Runge-Kutta 227-229
- for stochastic partial differential equations 307-308
Milshtein algorithm 196-197
- integration error 197-198
- numerical implementation 199-200
- for several variables 213
- for finite difference methods in stochastic partial differential equations 292, 295-297
- for KPZ equation, 297-300
- exercises 230-233
mixed congruential generator 330-332
molecular dynamics 275-277
moment 6,
- of the Hamiltonian 127
- of the magnetization 160
- convergence 198
- numerical evaluation in stochastic differential equations 200
- for the linear equation with multiplicative noise 218-220
- of the first passage time 221, 224
- in processes described by a Master Equation 252
- in the context of mean-field theory for Master Equations 254-256
- to check random number generators 328
- exercises 230-231,258, 274
, see also central moment, magnetic moment, mean
Monte Carlo
- integration 33-62
- - advantages 56-57
- - efficiency 60-61
- , see hit-and-miss, sampling methods
- - exercises 62-63
- simulation
- - step (MCS) 115, 140, 162
- - tuning 117-121
- - applications to statistical mechanics 125-163
- , see Metropolis et al. algorithm, heat-bath algorithm
- - exercises 121-123, 163-165
- kinetic -, see residence time algorithm
- dynamic -, see residence time algorithm
- hybrid -, see hybrid Monte Carlo
- exchange - 361
- multiple Markov chain - 361
- transition matrix - 361
- multicanonical simulation 363-366

Moore neighborhood 164
multicanonical simulations 361-366
multidimensional distribution 76-81, 112-116

- Gaussian 82-84, 337
multiplier, see Lagrange multiplier
multiplicative noise 173,197 , see also Milshtein method, Heun method
- linear - 217-220
- single point - 291
- multiple point - 292
multiplicative congruential generator, see congruential generator multiplicative
n
nearest neighbors 134-135, 137-139
- with different spin as measure of contact area 145
- in lattice Φ^{4} model 150-151
- exercises 164
neighbor
- nearest, see nearest neighbors
- array 139-140
- division in sublattices 142-143
- in collective algorithms 351-356

Newton's binomial theorem 253
Newton-Raphson method 42

- to invert the cumulative distribution 42, 54, 65-66, 79
n-fold way, see residence time algorithm
Nikolaevskii equation 301
- in Fourier space 302
- pseudospectral methods
- - exact integration of linear terms 305
- - Heun 306-307
- - midpoint Runge-Kutta 307-308
- - predictor-corrector 308-309
- - fourth-order Runge-Kutta 310-311
- - exercises 323-324

Niedermayer algorithm 351-352, 356
noise 173

- term 173
- additive 173
- multiplicative 173
- white, see white noise
- colored, see colored noise
nonlinear correlation
- function 120
- time 120
- exercises 122-123
normalization
- probability density function 3
- cumulative probability function 4
- correlation 17

Novikov's theorem 183

- exercises 30

0

occupation number 239-240

- point of view method 239-242
- - in radioactive decay 244-245
- - in birth and death process 245-246
- - in a chemical reaction 246-248
- - in self-annihilation 248-248
- - in Lotka-Volterra model 248-251
- - in first reaction method 265-268
- - in residence time algorithm 270-273

Onsager solution of the Ising model 145, 164, 157
opalescence, critical 169
opinion formation 135-136
optimal

- estimator, see estimator/optimal
- choice in importance sampling 52-54
- - exercises 63
- acceptance 109
- algorithm parameters 117-119
- - in hybrid Monte Carlo 279
- - in collective algorithms 356
- - exercises 121-123, 164, 286
- sampling in multicanonical simulations 362-363
order-disorder transition 135,143, see also order parameter
order
- algorithm
- - Milshtein 196-199
- - Euler-Maruyama 196-197
- - Euler for ordinary differential equations
- - - explicit 208, 276-277
- - - implicit 208
- - - semi-implicit 208
- - Heun for ordinary differential equations 208
- - stochastic Heun 208
- - Midpoint Runge-Kutta 227, 229-230
- - Adams-Bashford-Moulton 229-230
- - leap-frog 277
- spatial discretization
- - centered space 291
- - upwind 293
- parameter 136,152,157-158, 161, 285, see also magnetization
- - exercises 164

Ornstein-Uhlenbeck process 180

- correlation time 180
- as example of colored noise 181
- exact generation of trajectories 201-202
- numerical integration of stochastic differential equations driven by -202-204
- - exact generation of $g_{h(t)} \quad 204$-206
- - Heun method 208-211
outcome, see experiment, probabilistic

p

parallel tempering 361
parameter tuning

- in dynamical methods 112, 117-121
- near the critical region 162-163
- in hybrid Monte Carlo 279, 281-283
particle
- number 126
- noninteracting 126
- interacting, see interacting particles
- Brownian, see Brownian motion
- conservation, see conservation of particles
- point of view method in Master equations 236-239
- - in first reaction method 261-265
- - in residence time algorithm 268-270
- deposition 288
partition function 126-127, 129
- in lattice Φ^{4} model
passage time, see first passage time
paramagnetic
- phase 135-136
- to ferromagnetic transition 134

Pawula's theorem 256-257
pdf, see probability density function
percolation 351
phase

- separation 134, 146-147
- transition 135-136
- - precursor 143
- - lattice Φ^{4} model $150-152$
- - , see also critical region
- ferromagnetic - 135
- paramagnetic - 135

Poisson distribution 10-11

- relation with exponential distribution 11-12
- Gaussian limit 13
- comparison with Gamma distribution 14
- exercises 29
- generation
- - from cumulative distribution function 47-49
- - using change of variables 71-72
- - using rejection methods 93-94
- - using Metropolis algorithm 110-112
_ - exercises 95,122
- use to generate a Bessel distribution
- in birth and death process 254 , exercises 259
population dynamics, see Lotka-Volterra model potential
- thermodynamic $126,137,364$
- energy 131
- interaction 131-134
- Lennard-Jones 132-133
- chemical 143
- lattice Φ^{4} model 150, 152
- exercises 163-165
- effective, exercises 188-189

Potts model, exercise 164

- Fortuin and Kasteleyn mapping onto percolation model 351
Power-law
- distribution
- - in bounded domain 39
- - in infinite domain 39-40
- singularity 158, 351
- growth of Monte Carlo correlation time near critical point 162
- - exercise 163-164
- ad hoc correlation 342-344
- - exercise 345
precursor, see phase transition precursor
predictor-corrector method 191-192, see
Adams-Bashford-Moulton
prey-predator, see Lotka-Volterra model
probability
- acceptance, see acceptance probability
- concept 1-2
- assignation 2-3
- conditional, see conditional probability
- of a microscopic configuration 125
- density function (pdf) 3
- - for a continuous variable 3
- - for a discrete variable 5
- - of a sum of random variables 22-23, 69
- - of the maximum of two variables 70
- - combination of variables 72
- - in polar coordinates 67-68, 79
- - in spherical coordinates 79-80
- - joint - 16-18
- - - factorization 16
- - - Gaussian variables 18 -20
- _ - - correlated 337
- - , see also Markov chain, multidimensional distribution
- - - in hit-and-miss method 31
- - - in change of variables method 67
- - - in rejection methods 85,90
- - - of a stochastic process 170-172
- - - exercises 29-30
- - marginal - 20, 24
- - conditional, see conditional probability
- - stationary stationary probability distribution
- - transition, see transition rates
- - change of variables 67
- distribution
- - Bernoulli, see Bernoulli distribution
- - Boltzmann, see Boltzmann distribution
- - canonical, see canonical distribution
- - binomial, see binomial distribution
- - Cauchy, see Cauchy distribution
- - Chi and Chi-square, see Chi distribution
- - energy, see energy distribution
- - exponential, see exponential distribution
- - first passage time, see first passage time
- - Gamma, see Gamma distribution
- - Gaussian, see Gaussian distribution
- - geometric, see geometric distribution
- - multicanonical, see multicanonical distribution
- - Poisson, see Poisson distribution
- - power-law, see power-law distribution
- - Raleigh, see Raleigh distribution
- - uniform, see uniform distribution
- current 185-186, 237, 243
- - exercises 188-189
process, see stochastic process
pseudorandom number 328 , see also random number
pseudospectral methods
- comparison with finite differences 303, 305
- for partial differential equations 300-305
- - with exact integration of linear terms 306
- - - Heun 306-307
- - - midpoint Runge-Kutta 307-308
- - - predictor-corrector 308-309
- - - fourth-order Runge-Kutta 310-311
- for stochastic partial differential equations 311-313
- - with exact integration of linear terms 313-314
- - - Heun 314-315
- - - predictor-corrector 315-316
- integration error 316-321
- exercises 323-325
r
radio broadcasting fluctuations 173
radioactive decay, see β decay
random
- number generation
- - Bernoulli distribution 44-45
- - binomial
- - - inverse cdf 49-50
- - - change of variables 70-71
- - Cauchy distribution 39
- - exponential distribution 38
- - Gamma distribution
- - - Newton-Raphson to invert the cdf 41-43
- - - change of variables 69
- - Gaussian distribution
- - - approximate inverse cdf 40-41, exercise 94
- - - Box-Mueller-Wiener algorithm 67-69, exercise 94
- - - interpolation for inverse cdf, exercise 94
- - - Metropolis algorithm 108-110, 117-118, exercises 122
- - - n-dimensional uncorrelated 81-84
- - - n-dimensional correlated 337-344, exercises 344-345
- - geometric distribution 45
- - Poisson distribution
- - - inversion of discrete cdf 47-49
- - - change of variables 71-72
- - - rejection methods 93-94
- - - Metropolis algorithm 110-112
- - - exercises 95, 122
- - power law distribution in bounded domain 39
- - power law distribution in infinite domain 39-40
- - Raleigh distribution 40
- - uniform
- - - von Neumann method 328-329
- - - congruential generators 329-330
- - - feedback shift register generators 333-334
- - - RCARRY and lagged Fibonacci generators 335
- - , see also rejection methods, cumulative distribution function/inverse
- variable $2-5$, see probability
- update 115
- walk 109, 170-171
- - limit to Wiener process 174-175
rare events 216-221
Rayleigh distribution 40
- generation 40
- use in Box-Mueller-Wiener algorithm 68-69
RCARRY generator 335
realization
- Markov chain 105
- Langevin random force 169
- Wiener process 175
- stochastic process 177,191-192, 198, see also stochastic process/trajectory
rejection
- methods 84-94
- - with combination of variables 74-75
- - exercises 94-96
- with repetition methods 97
- - simple case 97-100
- - statistical error 100-103
- - dynamical methods 103-107, see also Metropolis et al. algorithm, heat-bath algorithm
- - - tuning the algorithms 117-121
replica exchange 361
residence time algorithm 268-270
- for Lotka-Volterra model 270-273
- exercises 273-274
response function 136, 161
reversibility 277-278, 284-286, exercises
286
Riemann
- integral 31, 36
- zeta function, exercise 345

Runge-Kutta methods 191-192

- Heun, see Heun method
- midpoint, see midpoint Runge-Kutta
- fourth-order 310-311
- - exercises 324

s

sampling methods

- uniform 34-36
- generalized 36-37
- importance 50-56
- - for sums 57-60
- efficiency 60-61
- exercises 62-63
scaling 159-161
- exercises 164
self-annihilation
segregation 134
sequential update 115-116, 142
simulated tempering 361
SIR model, exercises 259, 273
specific heat, see heat, specific
spin 1, 3
- variable 127
- dynamics, see Ising model
- collective algorithms 351-356
spinodal decomposition 154
spontaneous magnetization, see
magnetization/spontaneous
square lattice, see lattice/square
stability
- of a fixed point 217-218
- of finite difference methods, see von Neumann stability analysis
- condition, see Courant-Friedrichs-Lewy criterion
standard deviation $6,20,21,23,32,35,37$, 60, 349
- exercises 62
stationary probability distribution
- Markov chain 27-28
- - exercises 30
- dynamical methods 106, 116-117, 119-121, 128
- - exercises 121-122
- Fokker-Planck equation 185-186
- - exercises 187
- stochastic process
- - exercises 230-233
- - also, see Ornstein-Uhlenbeck process
- Master equations 237-238, 253-254, see also detailed balance
- - exercises 259
- hybrid Monte Carlo 283, 285
statistical error
- minimization 51-53,56
- exercises 63
stiff equations 305
Stirling approximation 10, 11, 93
stochastic
- differential equation 172-173
- - driven by white noise 174-177
- - - interpretation, see stochastic integral
- - for the Ornstein-Uhlenbeck process
- - colored noise 181
- - numerical simulation 191-192
- - - Milshtein algorithm 192-197
- - - - integration error 197-198
- - - - numerical implementation 199-200
- - - - multidimensional 212-213
- - - Euler-Maruyama algorithm 197-198
- - - Exact generation of Ornstein-Uhlenbeck trajectories 201-202
- - - Exact generation of process $g_{h(t)}$ 205-206
- - - Euler algorithm for Ornstein-Uhlenbeck noise 203-204
- - - Heun method
- - - - white noise 207-208
- - - - Ornstein-Uhlenbeck noise 208-209
- - - - numerical implementation 207-211
- - - - multidimensional 213-216
- - - exact integration of linear terms 224-225
- - - - Heun method 226-227
- - - - midpoint Runge-Kutta 227-229
- - - - predictor-corrector 228-229
- - - - integration error 229-230
- - - exercises 230-233
- integral 177-179
- - Ito interpretation 177
- - Stratonovich interpretation 179
- - exercises 187
- partial differential equation 287-288
- - coarse graining 289-291
- - finite difference methods 291-293
- - - Milshtein 297
- - - - stability analysis 298
- - - - numerical implementation 299-300
- - - Heun 299
- - - - stability analysis 299
- - - - numerical implementation 300
- - pseudospectral methods 311-312
- - - coarse graining in Fourier space 312-313
- - - exact integration of the linear terms 313
- - - - Heun 314
- - - - - numerical implementation 314-315
- - - - predictor-corrector 315-316
- - - - - numerical implementation 316
- - exercises 322-323
- process 167, 170
- - Langevin approach 169-170, 173, see stochastic differential equation
- - Einstein's approach 167-169, 181, see Fokker-Planck equation
- - characterization 170-172
- - , see also Brownian motion, white noise, colored noise, Wiener process, Ornstein-Uhlenbeck process
- - exercises 187-189
- resonance, exercise 245

Stokes law 169
storage

- of nodes in a square lattice 138
- of Fourier modes 304-305

Stratonovich

- calculus 178-179
- interpretation 178-179
structure factor 342-344
successions of random variables $16-18$, see also Markov chain
- generalization 171, see stochastic process
surface growth 288
susceptibility, see magnetic susceptibility
Swendsen and Wang algorithm 351
symmetry breaking 135
symplectic algorithms 278, see also leap-frog algorithm
systematic
- error, see error/systematic
- correction 365
t
tempering
- simulated 361
- parallel 361
thermalization
- dynamical methods 99-100, 119-120
- Ising model 140-141
- critical region 156, 163
thermodynamic
- limit 157, 255
- potential 126, 137, 364
trajectory
- in phase space 167
- of a Brownian particle, see Brownian motion
- stochastic 170-171
- - random walk 171
- - Wiener process 174-175
- - averages 173
- - numerical generation 191-192, see stochastic differential equation/numerical generation
- - exercises 230-233
- deterministic 181
transient anomalous fluctuations, exercise 233
transition rates
- in Markov chains 27
- - exercises 30
- in dynamical methods $100,105-106$
- - Metropolis 108
- - Glauber 108
- - van Beijeren and Schulman 108
- - multidimensional 115-116
- - heat-bath 116
- in Master equations 235, 236, 243
- - exercises 257-259
- in multicanonical simulations 365
translational invariance 340-344
trial 85-86
- repeated $97-98,104,116,145$
- - exercises 163
tuning parameters, see parameter tuning turbulence, see Nikolaevskii equation

u

unbiased estimator, see estimator/unbiased uniform

- distribution 8-9
- - generation
- - - effect of finite precision 327
- - - requirements 329
- - - residual correlations 332
- - generators
- - - von Neumann method 328-329
- - - congruential 329-330
- - - feedback shift register 333-334
- - - RCARRY and lagged Fibonacci 335
- sampling methods, see sampling methods uniform
universality class 152
update
- random 115
- sequential 115-116, 142
- collective 130,132, 163, 275, 351-356
- exercises 163
upstream space derivatives 293
- use in the advection equation 297
- - exercises 321-322
v
van Beijeren and Schulman transition probability 108
variance, 2
- Bernoulli distribution 7
- binomial distribution 8
- Chi distribution 16
- exponential distribution 11
- first passage time 221
- - exercises 232
- Gamma distribution 14
- Gaussian distribution 12
- geometric distribution 8
- interpretation 20-22
- minimum
- - in importance sampling 51-53, 56
- - - exercises 63
- - in dynamical methods 119
- Poisson distribution 10
- sample - 22, 35-37, 51, 56, 58, 60, 97, 100, 102
- sum of random variables 17
- - independent 22
- uniform distribution 9
- exercises 29

Verlet algorithm, see leap-frog algorithm
von Neumann

- algorithm for random number generation 328-329
- - exercises 335
- ansatz 294
- stability analysis 293-294
- - advection equation 296-297
- - diffusion equation 295-296
- - Fokker-Planck equation with constant coefficients 296
- - KPZ equation 297-299
- - exercises 321-322
\boldsymbol{w}
Wang-Landau method 364
weight function 390
white noise
- characterization 174-177
- in space and time 288
- - discretization, see coarse graining
- - in Fourier space 312-313
- Itô interpretation, see Itô
- Stratonovich interpretation, see Stratonovich
- time discretization, see stochastic differential equation/integration
- exercises 187-189

Wick's theorem 18-20

Wiener process 174

- correlation 175
- derivative 175-177
- in the numerical integration of sde with white noise 193-196
- in the solution of the linear equation with multiplicative noise 219
- mean 175

Wolf algorithm 351-356
z
ziggurat rejection method 94

