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Part I
Introduction

In the first part of this book, we give a general introduction and review all the
aspects of classical electrodynamics and quantum mechanics that are needed in
later chapters. This brief summary will help us also to agree on the notation used
throughout. The reader may very well be familiar with most of the material pre-
sented here, in which case it could be skipped and referred back to if needed.
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1
Introduction

1.1
Motivation

X-ray physics has been essential throughout the last century and continues to
be so to this date. It has catalyzed and survived multiple revolutions in physics,
and has undergone several renaissances, usually coupled with the advent of new
generations of X-ray sources. A couple of events are particularly noteworthy: In
1900, Planck provided an explanation for the spectrum that is emitted by a thermal
radiation source by assuming that the radiation is quantized into energy packets
of magnitude ℏ𝜔 per mode [1, 2]. In 1905, Einstein explained the photoelectric
effect by assuming that electromagnetic radiation is corpuscular [3]. It has been
shown since that a semiclassical theory, which treats the electromagnetic radi-
ation classically and only the matter system quantum mechanically, is actually
sufficient to explain this effect. Nevertheless, both Planck’s and Einstein’s obser-
vations suggested that classical electromagnetic field theory needs to be extended
to include corpuscular and nondeterministic elements. By combining the special
theory of relativity with quantum physics, scientist such as Dirac [4], Feynman [5],
Schwinger [6], and Tomonaga [7] developed quantum electrodynamics (QED), the
quantum theory of light, which is one of the crown jewels of modern physics. In
this book, we develop and apply QED in its nonrelativistic limit, as it is sufficient
for many current X-ray applications.

1.2
Comparing X-Rays with Optical Radiation

For optical radiation, the invention of the laser [8], an acronym for light
amplification by stimulated emission of radiation, led to experiments that could
only be understood with a quantum theory of radiation. It thereby greatly
accelerated the development of the field of quantum optics in the 1960s. We build
on the achievements made in that discipline and describe their extension to the
X-ray regime.
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Figure 1.1 Ionization energies Eion, shown
as black lines and related to the bottom axis,
and the radial expectation values ⟨r⟩, shown
as grey lines related to the top axis, of neu-
tral atoms as a function of the atomic charge

number Z. The top and the bottom axes are
aligned so that an energy at the bottom,
interpreted as an X-ray energy, corresponds
to the wavelength shown at the top.

X-ray and optical radiation fields are very similar in principle, but there are
striking differences for practical applications. For example, unlike for optical radi-
ation, X-ray wavelengths are comparable to atomic dimensions and interatomic
distances, so they offer the potential to analyze structures with atomic resolution
when we use techniques such as elastic X-ray scattering. The photon energy E is
related to the wavelength 𝜆 and the light frequency 𝜔 through

E = ℏ𝜔 = hc
𝜆

⇒ E [eV] = 12398
𝜆 [Å]

= 0.6582𝜔
[

rad
fs

]
. (1.1)

Here, h is the Planck constant, ℏ = h∕2𝜋 is the reduced Planck constant, and c is
the speed of light. Figure 1.1 shows the spatial extent of atoms measured by the
radial expectation value ⟨r⟩ as a function of the atomic charge number and for
different atomic shells. It can be seen that ⟨r⟩ is of the same order of magnitude as
typical X-ray wavelengths.

In the X-ray regime, inner-shell atomic processes tend to dominate. Excited
atomic states decay quickly and exhibit an element-specific response associated
with the emission of electrons or photons that are characteristic for the partic-
ipating atomic shells. Also shown in Figure 1.1 are the ionization energies for
different principal shells, corresponding to X-ray absorption edges. Both analyz-
ing the relaxation products and tuning the X-ray energy to an atomic resonance
and thereby identifying the atoms can be used for the analysis of materials. The
details of these resonances depend also on the atomic environment, making it a
useful tool to study nearest neighbor interactions. The interaction of X-rays with
matter is generally relatively weak, as long as we stay away from atomic resonant
energies, so that materials tend to be relatively transparent to X-rays.
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1.3
Novel X-Ray Sources

Advances in the development of X-ray sources, such as synchrotrons and, more
recently, X-ray free-electron lasers (FELs), continue to excite interest in the
X-ray science community. We now discuss the major devices and techniques
used to produce X-rays at such facilities, which are mostly based on utilizing
the synchrotron radiation emitted by relativistic electron bunches in a magnetic
field. If the Lorentz factor 𝛾 = E∕mc2, where E is the kinetic energy of an electron
and mc2 is its rest energy, is large, then the radiation is directed approximately
tangentially to the electron orbit. The spectrum of the emitted radiation is
continuous. This scenario is realized, for example, in bending magnets in a
storage ring.

The characteristics of synchrotron radiation can be greatly enhanced by using
insertion devices such as wigglers and undulators, leading to larger intensities and
narrower spectral energy distributions of the radiation. These devices consist of
periodically arranged, short dipole magnets of alternating polarity, through which
electrons move in wavelike trajectories. This motion leads to the emission of nearly
monochromatic radiation that is concentrated in a narrow angular cone with an
opening angle of about ±1∕𝛾 . Calling the magnetic period in the lab frame 𝜆u,
then, owing to relativistic contraction, the electron sees an undulator period of
𝜆∗u = 𝜆u∕𝛾 , so it oscillates at a higher frequency 𝜔∗ = 𝛾2𝜋c∕𝜆u and emits dipole
radiation accordingly. On Lorentz transformation of this radiation back into the
lab frame, we obtain a wavelength 𝜆light = 𝜆∗u∕𝛾 = 𝜆u∕𝛾2. This wavelength can be
adjusted by varying the kinetic energy E of the electrons. When all the electrons
propagate independently, then the emitted radiation fields add incoherently, and
the radiation power is proportional to number of electrons Ne.

An FEL is essentially a very long undulator in which the electrons emit
quasi-coherent, almost-monochromatic, and well-collimated radiation. Unlike
in a laser, the roles of the active laser medium and of the energy pump are both
taken over by the relativistic electron bunch. For visible and infrared FELs, optical
resonators can be used, and the energy gain per passage of only a few percent is
sufficient. These are called low-gain multi-pass FELs. For vacuum-ultraviolet and
X-ray FELs, such optical resonators are not an option because sufficiently efficient
mirrors are not available, so that large gains per single passage are required. The
theory for these high-gain, single-pass FELs is covered in References [9–13].

Without a seed laser, the FEL principle is based on self-amplification of spon-
taneous emission (SASE) and starts from shot noise in the FEL beam which is
related to the arrival time of each electron at the undulator. This leads to a statis-
tically fluctuating output that exhibits spikes in the intensity I(t). The width of the
spikes is characterized by the coherence time 𝜏c =

√
𝜋∕𝜎𝜔, where 𝜎𝜔 is the SASE

gain bandwidth. The spectral intensity I(𝜔) also exhibits spikes, and the width of
the spectral spikes is proportional to 1∕Tb, where Tb is the electron bunch length.
SASE FEL radiation statistics and coherence are discussed more in Section 7.2.3,
where we present the general properties of chaotic light sources.
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1.4
Unit Systems

In this book, we use the International System of Units, abbreviated SI units, which
stands for Le Système international d’unités. The SI system is popular and often
used in engineering because it connects seamlessly to the material learned in
introductory physics classes and expressions can be readily evaluated. Further, it
allows checking of formulas through dimensional analyses. We now discuss how
to convert other unit systems, which are also often used in theoretical physics,
from and to the SI system. The SI system uses the units meter for length, kilogram
for mass, and second for time (MKS system), from which other mechanical
units are derived. For instance, the “newton” (N) with 1 N = 1 kg m s−2 is the
unit for mechanical force. In electromagnetism, the “ampere” for the electric
current was introduced independently of the MKS system, and so an additional
proportionality constant is necessary to relate electromagnetic units to kinematic
units. This constant is taken as the vacuum permittivity 𝜖0. All other units are
derived from these base units. The values of some important physical constants
in the SI system are shown in Table 1.1.

The cgs system is a variant of the SI system and measures length in centimeters,
mass in grams, and time in seconds. It defines mechanical units through the force
unit 1 dyne = 1 g cm s−2 and through the energy unit 1 erg = 1 g cm2s−2. The
formulas for mechanical laws are the same as for the SI system. There are multiple
options for the unit system of electromagnetic quantities, including the Gaussian,
electrostatic, and electromagnetic cgs systems. The cgs system avoids introducing
a new base unit for the electric current and derives all electromagnetic units from

Table 1.1 Physical constants in SI units.

Quantity Symbol Value Unit

Speed of light in vacuum c 2.9979 × 108 m/s
Planck constant h 6.6261 × 10−34 J s
Reduced Planck constant ℏ = h∕2𝜋 1.0546 × 10−34 J s
Fundamental charge e 1.6022 × 10−19 C
Vacuum permittivity 𝜖0 8.8542 × 10−12 F/m
Magnetic constant 𝜇0 1.2566 × 10−6 N/A2

Electron mass me 9.1094 × 10−31 kg
Proton mass mp 1.6726 × 10−27 kg
Neutron mass mn 1.6749 × 10−27 kg
Boltzmann constant kB 1.3806 × 10−23 J/K

8.6173 × 10−5 eV/K
Avogadro constant NA 6.0221 × 1023 1/mol
Bohr radius a0 = 4𝜋𝜖0ℏ

2∕mee2 5.2918 × 10−11 m
Fine structure constant 𝛼 = e2∕4𝜋𝜖0ℏc 7.2974 × 10−3

1∕𝛼 137.036
Classical electron radius re 2.8179 × 10−15 m
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the cgs system based on physical laws that relate electromagnetic phenomena to
mechanics. As a result, the formulas describing the laws of electromagnetism are
different from those of the SI system, as discussed below.

In yet other treatments, quantities are often measured in units of physical con-
stants. For example, mass may be measured in units of the electron mass me, and
charge in units of the fundamental charge e. Another way of saying this is that a set
of select universal physical constants are normalized to 1, meaning their numer-
ical value in terms of these units is unity. This often greatly simplifies formulas
and leads to more elegant mathematical descriptions. It also avoids introducing
unit prototypes such as the “International Prototype Metre” which is located in
Paris, France, at the expense of clarity, since a greater ambiguity is introduced.
For example, when a variable is not clearly defined, a statement such as “a = 10”
does not make it clear if a is a mass, a charge, or whatever, whereas in SI units,
“a = 10 kg” clearly identifies a as a mass. Of particular importance are atomic
units (au), including their two variants Hartree and Rydberg atomic units. The
values of fundamental constants within these two units systems, as well as for the
cgs and the SI systems, are shown in Table 1.2. Dimensionless physical constants
retain their values in any unit system. For example, the value of the fine structure
constant, given in the SI system as

𝛼 = e2

4𝜋𝜖0ℏc
, (1.2)

is universally

𝛼 ≈ 1
137.036

. (1.3)

In (1.2), e is the fundamental charge and 𝜖0 is the vacuum permittivity.
We now present a general treatment of the electromagnetic units and show how

the different unit systems are related. The Coulomb law gives the force on two
neighboring point charges and can be written as

F = kC
q1q2

r2 , (1.4)

Table 1.2 Redefined fundamental constants in different unit systems.

Quantity Symbol Hartree Rydberg Gaussian cgs SI
amu amu

Electron mass me 1 1/2 9.1094 × 10−28 g 9.1094 × 10−31 kg
Fundamental
charge

e 1
√

2 4.8032 × 10−10 esu 1.6022 × 10−19 C

Reduced Planck
constant

ℏ 1 1 1.0546 × 10−27 erg s 1.0546 × 10−34 J s

Coulomb
constant

1
4𝜋𝜖0

1 1 1 8.9876 × 109 F/m
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where q1 and q2 are the charges separated by a distance r. Given that the units for
F and r are already defined, the choice for the constant kC determines the unit of
the charge and with that the unit of the electric current I = q∕t. The electric field
is defined as E = F∕q in all unit systems. The Bio–Savart law for the magnetic field
can be written as

dB = kB
Idl × r

r3 . (1.5)

Equation (1.5) gives the magnitude and direction of the static magnetic field
induced by an electric current I along a unit vector dl at position r. The choice of
the constant kB determines the unit of the magnetic field B. Maxwell’s equations
in vacuum, independent of the unit system, are

∇ ⋅ E = 4𝜋kC𝜌, (1.6)
∇ ⋅ B = 0, (1.7)

∇ × E = −
kC

kBc2
𝜕B
𝜕t

, (1.8)

∇ × B = 4𝜋kBJ +
kB
kC

𝜕E
𝜕t

, (1.9)

where 𝜌 is the electric charge density. The values of kC and kB for different unit
systems are given in Table 1.3. The choice of these units has implications for all
other physical laws. For example, the Schrödinger equation for an electron in a
hydrogen atom is written in SI units as(

− ℏ2

2me
∇2 − 1

4𝜋𝜖0

e2

r

)
𝜓(r, t) = iℏ𝜕𝜓(r, t)

𝜕t
, (1.10)

where 𝜓(r, t) is the wave function and me is the electron mass, whereas in Hartree
atomic units it simplifies to(

−1
2
∇2 − 1

r

)
𝜓(r, t) = i𝜕𝜓(r, t)

𝜕t
. (1.11)

Table 1.4 shows the factors to convert au and cgs-Gaussian units to SI units.

Table 1.3 Electric and magnetic proportionality constants kC and kB in different unit
systems.

Unit system kC kB

Electrostatic cgs 1 c−2

Electromagnetic cgs c2 1
Gaussian cgs 1 c−1

Hartree amu 1 1
Rydberg amu 1 1
SI (4𝜋𝜖0)−1 𝜇0∕4𝜋
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Table 1.4 Multiplication factors to convert to SI units.

Quantity Hartree amu Rydberg amu Gaussian cgs

Length 5.2918 × 10−11 m 5.2918 × 10−11 m 10−2 m/cm
Mass 9.1094 × 10−31 kg 1.8219 × 10−30 kg 10−3 kg/g
Time 2.4189 × 10−17 s 4.8378 × 10−17 s 1
Frequency 4.1341 × 1016 Hz 2.0671 × 1016 Hz 1
Speed 2.1877 × 106 m/s 1.0938 × 106 m/s 10−2 (m/s)/(cm/s)
Momentum 1.9929 × 10−24 kg m/s 1.9929 × 10−24 kg m/s 10−5 (kg m/s)/(g cm/s)
Force 8.2387 × 10−8 N 4.1194 × 10−8 N 10−5 N/dyne
Power 1.8024 × 10−1 W 4.5059 × 10−2 W 10−7 W/(erg/s)
Energy 4.3597 × 10−18 J 2.1799 × 10−18 J 10−7 J/erg
Charge 1.6022 × 10−19 C 1.1329 × 10−19 C 3.3356 × 10−10 C/esu
Charge density 1.0812 × 1012 C/m3 7.6453 × 1011 C/m3 3.3356 × 10−4 (C/m3)/(esu/cm3)
Current 6.6236 × 10−3 A 2.3418 × 10−3 A 3.3356 × 10−10 A/(esu/s)
Current density 2.3653 × 1018 A/m2 8.3627 × 1017 A/m2 3.3356 × 10−6 (A/m2)/(esu/s/cm2)
Electric field 5.1422 × 1011 N/C 3.6361 × 1011 N/C 2.9979 × 104 (N/C)/(dyne/esu)
Potential 2.7211 × 101 V 1.9241 × 101 V 2.9979 × 102 (J/C)/(erg/esu)
Magnetic field 2.3505 × 105 T 3.3241 × 105 T 10−4 T/Gauss
Proton mass 1.6726 × 10−27 kg 3.3452 × 10−27 kg 10−3 kg/g
Neutron mass 1.6749 × 10−27 kg 3.3499 × 10−27 kg 10−3 kg/g

1.5
Overview of Lagrangian and Hamiltonian Mechanics

The formal transition from a classical to a quantum physical description of
matter coupled to an electromagnetic wave field requires the introduction of
several mechanical concepts, including conjugate pairs of canonical mechanical
variables, the Lagrangian and Hamiltonian functions, and Poisson brackets. We
begin by discussing the Lagrangian function to describe the system, and then use
the principle of least action to derive the Lagrange equations. From these follow
the equations of motion [14].

1.5.1
Lagrangian Mechanics

A system with N degrees of freedom is characterized by N generalized coordinates
qj and N matching generalized velocities q̇j. For brevity, we write q = (q1,… , qN ).
The Lagrangian

 (q, q̇, t) = T(q̇) − V (q, q̇) (1.12)
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fully describes system. Here, V and T are the potential and kinetic energies,
respectively. This form of the Lagrangian is valid only for conservative, meaning
energy-conserving, systems. To determine the trajectory, we introduce the action,
which is a functional of the path q(t), as

S[q] = ∫
t2

t1

 (q, q̇, t) dt. (1.13)

The principle of least action states that the actual trajectory qact with velocity q̇act
makes the action S extremal (stationary):

0 = 𝛿S[q] (1.14)

= ∫
t2

t1

 (
qact + 𝛿q, q̇act + 𝛿q̇, t

)
−  (

qact, q̇act, t
)

dt (1.15)

= ∫
t2

t1

∑
j

(
𝛿qj

𝜕
𝜕qj

+ 𝛿q̇j
𝜕
𝜕q̇j

)
dt (1.16)

= ∫
t2

t1

∑
j
𝛿qj

[
𝜕
𝜕qj

− d
dt

(
𝜕
𝜕q̇j

)]
dt (1.17)

where the slight variation 𝛿q can be chosen arbitrarily, except that it has to vanish
at the boundaries t1 and t2, meaning that q(t1) and q(t2) are fixed. In the last step
leading to (1.17), we performed an integration by parts. Since 𝛿q is arbitrary, we
obtain the Euler–Lagrange equation

𝜕
𝜕qj

= d
dt

(
𝜕
𝜕q̇j

)
. (1.18)

There are N Euler–Lagrange equations in (1.18), one for each degree of freedom,
from which we can obtain the equations of motion.

1.5.2
Hamiltonian Mechanics

The Lagrangian  is a function of qj and q̇j. In the Hamiltonian description, the
system is characterized by qj and the generalized momenta pj, which are defined
as

pj =
𝜕
𝜕q̇j

. (1.19)

Then it follows from (1.18) that

ṗj =
𝜕
𝜕qj

. (1.20)

The Hamiltonian of the system is obtained through a Legendre transform of the
Lagrangian:

 (
{qj}, {pj}, t

)
=
∑

j
q̇jpj −  (

{qj}, {q̇j}, t
)
, (1.21)
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where we transition from the set of variables
{

qj
}

,
{

q̇j
}

, and t to the variables
{

qj
}

,{
pj
}

, and t. If V is independent of
{

q̇j
}

, then  = T + V is the total energy of the
system because inserting (1.19) into (1.21) yields

 =
∑

j
q̇j
𝜕T
𝜕q̇j

− T + V = 2T − T + V = T + V (1.22)

since T is a function of the squares of the generalized coordinates only. To derive
the equations of motion, we take the total differential of the Hamiltonian:

d =
∑

j

𝜕
𝜕qj

dqj +
𝜕
𝜕pj

dpj +
𝜕
𝜕t

dt (1.23)

=
∑

j

(
q̇jdpj + pjdq̇j −

𝜕
𝜕qj

dqj −
𝜕
𝜕q̇j

dq̇j

)
− 𝜕

𝜕t
dt (1.24)

=
∑

j

(
q̇jdpj − ṗjdqj

)
− 𝜕

𝜕t
dt. (1.25)

In (1.24), we used (1.21), and in (1.25) we used (1.19) and (1.20). Comparing the
coefficients of (1.23) and (1.25) leads to Hamilton’s equations of motion:

ṗj = −𝜕
𝜕qj

=
{

pj,}
,

q̇j =
𝜕
𝜕pj

=
{

qj,}
,

(1.26)

(1.27)

and
𝜕
𝜕t

= −𝜕
𝜕t

, (1.28)

where the Poisson brackets {, } are defined as

{u, v} =
∑

k

𝜕u
𝜕qk

𝜕v
𝜕pk

− 𝜕u
𝜕pk

𝜕v
𝜕qk

. (1.29)

In (1.29), u and v are generic functions depending on qk , pk , and t. It follows
from (1.26) that, if  is independent of qj, then pj is a constant of motion.
Equations (1.26) and (1.27) together form a system of 2N first-order differential
equations, whereas the Lagrangian equations of motion (1.18) are N second-order
differential equations. Also,

{qi, pj} = 𝛿ij, (1.30)
{pi, pj} = 0, (1.31)

where 𝛿ij is the Kronecker delta, as well as

u̇ =
∑

k

(
𝜕u
𝜕qi

dqi
dt

+ 𝜕u
𝜕pi

dpi
dt

)
+ 𝜕u

𝜕t
= {u,} + 𝜕u

𝜕t
(1.32)
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for any phase-space function u
({

qi
}
,
{

pi
}
, t
)
. From (1.32), it follows in particular

that

̇ = 𝜕
𝜕t

. (1.33)

This means that, if  is not explicitly time dependent, then  is constant and so
the total energy of the system is conserved.

1.6
Approximations

A full quantum theory for the interaction of matter and radiation, which we
develop in the following chapters, is difficult or impossible to solve exactly in
many cases, so many simplifications have been proposed, including the semiclas-
sical approximation, the dipole approximation, and the perturbative approach.
We now briefly describe the semiclassical and the dipole approximations, both
of which are used with caution in this book for the reasons described below.
The perturbation approximation, on the other hand, is used extensively and is
described in Chapters 10 and 11.

1.6.1
Semiclassical Approximation

In a fully quantum-theoretical treatment, we treat both matter and radiation as
quantum systems. Using the Hamiltonian formulation of electrodynamics, the
electromagnetic field is quantized similar to matter. We start out with the energy
density of the electromagnetic field as the Hamiltonian, and expand it classically in
electromagnetic waves. Commonly, these are plane waves. The expansion param-
eters are the dynamical variables that describe the electromagnetic field. Finally,
we transition to quantum mechanics by identifying these expansion parameters
as operators that satisfy certain commutation relations.

This procedure is significantly simplified when we make the semiclassical
approximation. The term semiclassical approximation has different meanings
in different contexts. Here, it means that we treat the atomic system quan-
tum mechanically and the radiation classically, so that the electromagnetic
field is a definite function of time through Maxwell’s equations. Within this
approximation, we can predict transfers of discrete amounts of energy, as, for
example, in the case of the photoelectric effect. This discrete transfer occurs
not because the electromagnetic field is quantized but because the electron
transitions involve discrete states due to the quantum properties of the electrons.

As in the semiclassical approximation, in the neo-classical approximation we
also treat the matter system quantum mechanically and the electromagnetic field
classically. In addition, we interpret the matter wave functions Ψ as the source for
the electromagnetic field. The product of the electron charge −e and the probabil-
ity density |Ψ|2 is taken as the charge density −e |Ψ|2. Similarly, the product of the
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electron charge and the probability flux density is taken as a charge current den-
sity, J = −e (Ψ∗∇Ψ − Ψ∇Ψ∗). As in the semiclassical approximation, the quantum
aspects of the predictions are again due to the quantum properties of the matter
system and not due to the radiation.

The classical description of light has been very successful and agrees with a full
quantum description in many instances. For example, it has been suggested to
describe even spontaneous emission from an atom in the semiclassical approx-
imation by considering radiation reaction, which is the effect of the field that is
created by a charge on itself [15]. However, it is usually not clear what the limits of
validity of the semiclassical theory are, and so this needs be checked on a case-by-
case basis by a more vigorous theory, such as QED. As it turns out, a full quantum
description is actually often elegant and conceptually simple once the formalism
has been developed.

1.6.2
Dipole Approximation

In the course of this book, we use the normal mode expansion of the electromag-
netic field on occasions, as, for example, in plane or spherical waves, which leads to
terms of the form eikr , where k = 2𝜋∕𝜆 is the wavevector, 𝜆 is the wavelength, and
r is the spatial position. In the optical regime, this expression is often expanded in
a Taylor series around kr = 0:

eikr =
N∑

n=0

f n(0)
n!

(kr)n + RN (kr) (1.34)

= 1 +
N∑

n=1

(ikr)n

n!
+ RN (kr), (1.35)

where f n(0) denotes the nth derivative of f (kr) = eikr evaluated at kr = 0, N is the
order of expansion, and RN (kr) is the remainder term (error). Using the Lagrange
form of the remainder term, it can be shown that there is a kr1 between 0 and kr
so that

RN (kr) =
f N+1(kr1)
(N + 1)!

(kr)N+1 (1.36)

with

||RN (kr)|| =
(
kr1

)N+1

(N + 1)!
<

(kr)N+1

(N + 1)!
. (1.37)

Particularly useful in the optical regime is the dipole approximation with N = 1,
leading in certain cases to matrix elements with the radiative characteristics
of a dipole. The dipole approximation often implies strict selection rules for
atomic transitions that generally do not hold for higher order approximations,
for example, when we include the quadrupole terms with N = 2.
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For the interaction of X-rays with atoms, this approximation is not always jus-
tified. For hydrogen, for example, r is on the order of

⟨nl r̂ nl⟩ = a0
2Z

[
3n2 − 3l(l + 1)

]
, (1.38)

where nl⟩ is a hydrogen eigenfunction, n is the principal quantum number, and
l is the angular quantum number. In particular for the 1s electron, ⟨nl r nl⟩ =
a0 ≈ 0.529 Å. For optical light with 𝜆 ≈ 6200 Å, we obtain k ≈ 0.001 Å−1, so that
kr ≈ 0.0005, and eikr ≈ 1 is an excellent approximation. For hard X-rays, on the
other hand, 𝜆 ≈ 1Å, therefore k ≈ 6.3 Å−1, so that kr ≈ 3.3, and eikr ≈ 1 is actually
a poor approximation. We tend to avoid the dipole approximation in this book
because it is not clear a priori what effect this approximation has on the validity of
the solution. The shortcomings of the dipole approximation become apparent, for
example, when we consider the angular distribution of the photoelectrons that are
emitted when X-rays interact with matter through single-photon ionization. This
is one of the dominant interaction processes when a photon collides with an atom
or a molecule. The deviations from the dipole approximation are noticeable even
well below 1 keV and are greatly enhanced just below the ionization threshold, as
discussed in more detail in Reference [16].


