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1.1
Introduction

The Standard Model (SM) is a theory to explain interactions of elementary particles
at the most fundamental level. Its essence can be summarized as follows.

1) The fundamental constituent blocks of matter are quarks and leptons.
2) The mathematical framework for the force dynamics are gauge theories.
3) The vacuum is in a kind of super-conducting phase.

The phase transition to the pseudo-superconducting phase is the action of the
Higgs field. However, the precise dynamics of the symmetry breaking is not known.
For this reason, the SM was believed to lose its predictive power on phenomena at
energy scale over O(TeV).

The electroweak (EW) interaction of fermions (i.e., quarks and leptons) is medi-
ated by the gauge particles W±, Z0. The role of the Higgs is to attach masses
to the gauge particles and fermions without breaking the gauge symmetry. The
symmetry is broken spontaneously by self-interactions of the Higgs field, which
is referred to as the Higgs mechanism. It is the fundamental framework of the SM,
and its basic notion is well founded because the SM reproduces experiments quite
well.

However, it is also the least known sector in the SM. The Higgs potential was
chosen for its simplicity and may not be realized in the real world. In fact, evidences
are accumulating that some kind of symmetry is at work in the Higgs sector that
is not yet identified. Only direct production of the Higgs particle and detailed
investigation of its dynamical properties will clarify the properties of the Higgs
field.

The gauge sector of the SM has been proved to reproduce experiments to a
high degree of precision. From its perspective, the Higgs sector’s role is only to
provide masses to otherwise massless particles, and nothing else matters. Very
little information on the Higgs is obtained from the gauge sector. Besides, there is
no guiding principle to unify the mass generation mechanism of the fundamental
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fermions (aka the Yukawa interaction), and this remains the weak point of the
SM to qualify it as a unified theory. If a defect exists in the so-far-infallible SM, it
is highly probable that it is found in the Higgs sector. As the Higgs particle was
discovered at the large hadron collider (LHC) in 2012,1) the next urgent problem of
the SM is to elucidate its dynamical structure.

In this chapter, we will discuss the fundamental properties of the Higgs particle
and theoretical constraints on its mass, as well as how to proceed after its
discovery [3–5]. We review methods to discover the Higgs, because properties of
the Higgs are best elucidated by its detection strategy. We will also discuss the
likely possibilities of the Higgs properties that go beyond the SM, including the
supersymmetric extension and the possibility of strong dynamical breaking of the
EW symmetry.

1.2
Higgs Interactions

1.2.1
Standard Model

The symmetry of the EW interaction in the SM is based on a mixture of SU(2) and
U(1). The weak force in its original form, that is, before mixing and spontaneous
symmetry breakdown, has chiral symmetry.

In SU(2) terminology, the weak force carriers constitute an isospin triplet. All
the left-handed fermions constitute doublets. All the right-handed particles belong
to SU(2) singlets (I = I3 = 0), that is, they do not carry weak charges. In the SM,
all the leptons can be classified by their isospin component as

Leptons

{
I3 = + 1

2

I3 = − 1
2

ΨL =
(
νe

e−

)
L

,

(
ν𝜇
𝜇−

)
L

,

(
ντ
τ−

)
L

I = I3 = 0 e−R , 𝜇
−
R , τ

−
R

(1.1)

The leptons that have I3 = 1∕2, that is, the neutrinos, are electrically neutral and
those that have I3 = − 1

2
have electric charge Q = −1 in units of the positron charge.

1) The LHC is located at CERN in Geneva,
and is designed to reach the total center-of-
mass energy

√
s = 14 TeV with luminosity

5 × 1034 cm−2 S−1. The detectors comprise
two general-purpose detectors (A Toroidal

LHC ApparatuS, ATLAS, and compact muon
solenoid, CMS) and two dedicated detectors,
LHCb for B-physics and ALICE for heavy-ion
physics.
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In the SM, right-handed neutrinos do not exist.2) For the quarks

Quarks
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(1.2)

where D ′T ≡ (d ′, s ′, b ′)T are the Cabibbo–Kobayashi–Maskawa (CKM) rotated
fields:

⎡⎢⎢⎣
d ′

s ′

b ′

⎤⎥⎥⎦ = VCKM

⎡⎢⎢⎣
d
s
b

⎤⎥⎥⎦ , VCKM =
⎡⎢⎢⎣
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎤⎥⎥⎦ (1.3)

The quarks with I3 = 1∕2 have Q = 2∕3, and those with I3 = −1∕2 have Q = −1∕3.
Each quark carries another degree of freedom, that is, three colors, which are the
source of the strong interaction. Its dynamics constitutes a field of its own, but in
the discussion of the EW force, we put aside their interactions and simply consider
the fact that they only provide three extra degrees of freedom.

We denote the Higgs doublet3) the left-handed electron doublet, and the gauge
boson triplet as

Φ =
[
𝜙+

𝜙0

]
, ΨL =

[
νL

e−L

]
, W𝜇 = (W+

𝜇 , W0
𝜇, W−

𝜇 ) (1.4)

The original Lagrangian of the EW interaction before mixing and spontaneous
symmetry breaking is given by

ℒEW = Ψi𝛾 𝜇D𝜇Ψ − 1
4

F𝜇ν ⋅ F 𝜇ν − 1
4

B𝜇νB
𝜇ν

+ (D𝜇Φ)†(D𝜇Φ) − V(Φ) − ye[eR(Φ†ΨL) + (ΨLΦ)eR] (1.5)

F𝜇ν = ∂𝜇W ν − ∂νW𝜇 − gWW𝜇 × W ν (1.6a)

B𝜇ν = ∂𝜇Bν − ∂νB𝜇 (1.6b)

2) In reality, they do exist as demonstrated by
the discovery of the neutrino oscillation. In
the context of this textbook, no inconvenience
is encountered by assuming the massless
neutrino in this chapter and it greatly sim-
plifies discussions. The neutrino oscillation
phenomena will be treated in the next
chapter.

3) We loosely call Φ or all the four scalar fields as
the Higgs. But to be more accurate, after the
symmetry breakdown, 𝜙+ and the imaginary
part of 𝜙0 are absorbed by the gauge bosons
to give them mass, and only one field, the
real part of 𝜙0, remains as a massive physical
field. It is renamed as h, which is the genuine
Higgs field.
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D𝜇 = ∂𝜇 + igWW𝜇 ⋅ t + i(gB∕2)Y (1.6c)

V(Φ) = 𝜆

(|Φ|2 + 𝜇2

2𝜆

)2

𝜆 > 0 (1.6d)

where t is the generator of the SU(2) symmetry group. Notice that, except in the
Higgs potential, there are no mass terms (quadratic term in the fields) in the
Lagrangian.4)

We shall use νe, e−, and so on, to denote the quantized fields, that is, νe(x) =
𝜓νe

(x), e−(x) = 𝜓e(x), and so on, where there is no confusion. Here, we have written
down only the Lagrangian of ΨT = (νe, e−), which will be needed in the following
discussions. The Lagrangian for other fermions can be written down similarly.

The first line of Eq. (1.5) is referred to as the gauge sector and the second line as
the Higgs sector. V(Φ) is the self-interacting potential of the Higgs field. The whole
expression satisfies the SU(2) × U(1) gauge symmetry manifestly. It is important
to remember that both the gauge and the Higgs sectors are constructed to respect
the gauge symmetry separately. The last term of Eq. (1.5), referred to as the Yukawa
interaction, was added to generate fermion masses. It can be written down as

eR(Φ†ΨL) + (ΨLΦ)eR = eRνeL𝜙
− + νeLeR𝜙

+ + eReL𝜙
0† + eLeR𝜙

0 (1.7)

The self-interaction of the Higgs is the cause of the spontaneous symmetry
breakdown of the SU(2)L × U(1), giving mass to the gauge bosons and the
fermions.

Electroweak mixing: As the neutral component of W and B couple to the
same fermions, mixing occurs, and physical neutral gauge bosons 𝛾 and Z0 are
expressed as

Z𝜇 = 1√
g2

W + g2
B

(gWW 0
𝜇 − gBB𝜇) ≡ cos 𝜃WW 0

𝜇 − sin 𝜃WB𝜇

𝛾𝜇 = 1√
g2

W + g2
B

(gBW 0
𝜇 + gWB𝜇) ≡ sin 𝜃WW 0

𝜇 + cos 𝜃WB𝜇

(1.8)

where 𝜃W (or sin 𝜃W ) is referred to as the Weinberg angle. As a result, the gauge
interaction of the fermions is described by the interaction Lagrangian

−ℒint =
gW

2
ΨL𝛾

𝜇W𝜇 ⋅ 𝛕ΨL +
gB

2
Ψ𝛾 𝜇B𝜇Ψ

=
gW√

2
ΨL𝛾

𝜇
(

W+
𝜇 τ+ + W−

𝜇 τ−
)
ΨL

+ gZΨ𝛾 𝜇(I3L − Q sin2 𝜃W )ΨZ𝜇 + eΨ𝛾 𝜇QΨA𝜇 (1.9)

4) The quadratic as well as the quartic terms exist
in the SM Higgs potential. But in some exten-
sions of the SM, they are absent in the tree

Lagrangian. They are generated radiatively as
a result of the Higgs–gauge interaction [6].
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where τ± = (τ1 ± τ2)∕2 and the coupling strength of Z and A is given by

gZ =
gW

cos 𝜃W

= e
sin 𝜃W cos 𝜃W

, e = gW sin 𝜃W (1.10)

1.2.2
Lagrangian After Symmetry Breaking

The whole Lagrangian of the SM satisfies manifestly the SU(2) × U(1) gauge
symmetry. Symmetry breaking occurs when the coefficient of the quadratic term in
the potential is driven negative. It happens when the environmental temperature
goes below a certain critical temperature. The potential minimum moves away
from Φ = 0, that is, the vacuum moves to where one of its components is finite.5)

We say that the Higgs field has acquired the vacuum expectation value (VEV)
<𝜙0>= v∕

√
2. The factor 1∕

√
2 is conventional. The vacuum is no longer at Φ = 0.

As the symmetry around two different points are different, that is, the potential has
no original symmetry at the new vacuum point, we say the symmetry is broken.
In the terminology of condensed matter physics, the ground state is now Bose
condensate, with v representing an order parameter. Physical phenomena that
are observed as excitations from the new vacuum no longer exhibit the original
symmetry. Notice, however, that the symmetry of the potential is not really lost.
Physical phenomena are generally small excitations around the vacuum, which
is a local minimum of the potential. Power expansions of the potential around
Φ = 0 and around 𝜙0 = v∕

√
2 have different mathematical expression. Naturally, a

physical phenomenon interpreted from viewpoint of the new vacuum look different
from that in the old vacuum. Mathematically, it is possible to work using the field
variables based on the old vacuum compromising easy physical interpretation. In
this sense, the symmetry is not broken but hidden.

The condition that 𝜙0 = v∕
√

2 is at potential minimum sets the value of 𝜇2.

∂V
∂𝜙0

||||𝜙0=v∕
√

2
= 0

SB
−−→ 𝜇2 = −𝜆v2 (1.11)

where SB denotes the symmetry breaking. Without loss of generality, the Higgs
field before and after the symmetry breakdown can be reexpressed as follows:

Φ = ei 𝝎
v
⋅ 𝛕

2

[
0
𝜙0

]
≡ U−1

[
0
𝜙0

]
SB
−−→ Φ′ = UΦ =

[
0

v+h√
2

]
(1.12)

‘‘h’’ is the physical Higgs field we are interested in and is most significant in
this chapter. The Higgs components 𝛚 in the phase are removed by the gauge
transformation U and become the third component of the massive gauge bosons.
In mathematical language, the 𝝎 fields are gauged away. Stated differently, the
spontaneous symmetry breakdown is equivalent to choosing a gauge and fixing
it. We write the covariant derivative and the Higgs doublet after the symmetry

5) It is customary to choose the vacuum point at 𝜙0 = v√
2
, Im[𝜙0] = 𝜙+ = 𝜙− = 0.
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breaking as

D𝜇Φ
SB
−−→ UD𝜇U−1UΦ ≡ D′

𝜇Φ′ =
[
∂𝜇 + igW𝐖′

𝜇 ⋅ t + i
gB

2
B𝜇

] ⎡⎢⎢⎣
0

v + h√
2

⎤⎥⎥⎦ (1.13)

Then we rename D′
𝜇Φ′, 𝐖′

𝜇 as D𝜇Φ, 𝐖𝜇 .
In terms of the newly defined field variables, the Higgs sector of the Standard

Model Lagrangian is reexpressed as

ℒh =(D𝜇Φ)†(D𝜇Φ) − 𝜆
(
Φ†Φ − v2

2

)2

− ye[eR(Φ†ΨL) + (ΨLΦ)eR]

SB
−−→ 1

2

(
∂𝜇h∂𝜇h − m2

hh2
)
−

(
𝜆vh3 + 𝜆

4
h 4

)
+ 2(

√
2GF)

1
2 h

(
m2

WW+
𝜇 W−𝜇 +

m2
Z

2
Z𝜇Z𝜇

)

+
√

2GFh2

(
m2

WW+
𝜇 W−𝜇 +

m2
Z

2
Z𝜇Z𝜇

)
+

∑
f

(
mf +

√
2GFmf h

)
f f (1.14)

where the electron (e) term has been expanded to include all the fermions (f ). The
coupling constants GF , yf , and 𝜆 are related to the masses by

gW = e
sin 𝜃W

= 2(
√

2GF)
1
2 mW (1.15a)

gZ = e
sin 𝜃W cos 𝜃W

= 2(
√

2GF)
1
2 mZ (1.15b)

1
v
=

gW

2mW

= (
√

2GF)
1
2 = 1

246 GeV
(1.15c)

m2
h = 2𝜆v2, mf =

yf v√
2

(1.15d)

Notice that the mass of the fermions is directly proportional to the Yukawa coupling
constant. After the symmetry breaking, the SM has mass terms for the gauge
bosons, fermions, and the Higgs itself. As one can see from the above expressions,
the coupling strength of the Higgs is directly proportional to the mass of the
particles to which it couples. The self-coupling strength 𝜆 is also proportional to the
mass of the Higgs (squared). 𝜆 is an unknown parameter, hence the Higgs mass
cannot be determined a priori. The Lagrangian Eq. (1.14) is the starting point of the
Higgs interactions. Feynman rules for the Higgs interaction are given in Figure 1.1.

1.2.3
Decay Modes

Decays to a Fermion Pair Once the Lagrangian is given, it is straightforward to
write down the matrix element for the decay of the Higgs to two fermions in the
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f
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h0 mh
2

mh
2

1

2
−i

gw

gw
2 gz

2 gw
2

mw
2

gw

mwmw
igwmwgμν igzmzg

μνmf

(a) (b) (c) (d)

(e) (f) (g)

W ±
μ

W ±μ

Zμ

Zμ

Zν

Zν

2
3i

2 2
i igμν gμν 3

4

−

i−

W+ν
−

W +
ν

−

Figure 1.1 Feynman rules for the Higgs interaction. The coupling constants yf , 𝜆, and so
on, are reexpressed in terms of the mass of the particles to which the Higgs couples.

tree approximation.

ℳ(h → f f ) = (
√

2GF)
1
2 mf u(p1)v(p2) (1.16)

The decay width becomes

Γ(h → f f ) =
NcGFm2

f
mh

4
√

2π

(
1 −

4m2
f

m2
h

)3∕2

(1.17)

where Nc = 1 for leptons and Nc = 3 for quarks. As the coupling strength is
proportional to the mass, the dominant mode is the decay to the heaviest fermions
that is allowed energetically. For mh < 2mW , h → bb is the most dominant decay
mode.

Decay to Bosons If the Higgs mass is greater than 2mW or 2mZ, it can decay to W
or Z pairs. The decay amplitude to the W pair can be calculated from the third line
of Eq. (1.14) to give

ℳ(h → W+W−) = 2(
√

2GF)
1
2 m2

W𝜀
∗
𝜇(p1, 𝜆1)𝜀𝜇(p2, 𝜆2) (1.18)

where p1, p2, 𝜆i, 𝜀
𝜇 denote the momenta, polarization state, and polarization vectors

of W±. Then the decay width to pairs with transverse (𝜆 = ±) and longitudinal
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(𝜆 = 3) polarization are given by

Γ(h → WT WT ) =
GFm 4

W

2
√

2πmh

(1 − 4y2
W )1∕2 (1.19a)

Γ(h → WLWL) =
GFm3

h

8
√

2π
(1 − 2y2

W )2(1 − 4y2
W )

1
2 (1.19b)

Γ(h → W+W−) = 2Γ(h → WT WT ) + Γ(h → WLWL) (1.19c)

=
GFm3

h

8
√

2π
(1 − 4y2

W + 12y 4
W )(1 − 4y2

W )
1
2 (1.19d)

where yW =
mW

mh

, yZ =
mZ

mh

(1.19e)

From the above expression, one sees that, if mh ≫ mW , the W pairs that decayed
from the Higgs are dominantly polarized longitudinally. The decay width to Z can
be obtained similarly.

Γ(h → ZZ) =
GFm3

h

16
√

2π
(1 − 4y2

Z + 12y 4
Z)(1 − 4y2

Z)
1∕2 (1.20)

There is a factor 2 difference between the W pair decay modes which originate from
the Bose statistics for identical particles. For mh ≫ mZ,Γ(h → WW) ≈ 2Γ(h → ZZ).

Carrying out calculations for all possible decay modes and adding all, one can
obtain the total decay width of the Higgs particle. If mh < 2mW , the main decay
mode is h → bb. If mh > 2mW , it mainly decays to WW and ZZ. Figure 1.2 shows the
total decay width and branching ratios of the Higgs as a function of the Higgs mass.
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Figure 1.2 (a) Total decay width of the
Standard Model Higgs. Also shown are
those of two neutral Higgs (h and H) for
the supersymmetric extension of the Higgs
sector. tan 𝛽 = v2∕v1 is the ratio of the

two vacuum expectation values of the con-
densed Higgs field of the supersymmetry.
(b) Branching ratios of the dominant decay
modes of the Standard Model Higgs boson.
(Reproduced with permission of [7].)
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The reason why Γ(h → ZZ) decreases around mh ∼160 GeV is because the
channel h → WW opens here.

1.3
Mass

The Higgs was discovered in 2012 with mass mh ≃ 125 GeV. However, its mass
value is not just one parameter among many. The size of the Higgs mass has
an important significance in considering the mechanism of the spontaneous
symmetry breakdown and the future scenario of the physics beyond the SM.

1.3.1
Predictions from EW Data

Much information had been obtained from radiative correction data at the large
electron–positron (LEP) collider and the Tevatron. As we learned in Chapter 5
of [2], main contributions to the radiative corrections come from heavy particles,
namely top and the Higgs. From the Z decay and W production data, one can
determine the value of the Weinberg angle sin 𝜃W and the coupling ratio 𝜌 of the
neutral versus charged current interaction.

𝜌 ≡ 𝜌0(1 + Δ𝜌) ≡ GN

GW

6) =
m2

W

m2
Z

cos 𝜃2
W

Δ𝜌 = 𝛿𝜌t + 𝛿𝜌h + · · ·

𝛿𝜌t ≃
3GFm2

t

8
√

2π2
≈ 0.0096

( mt

173 GeV

)2

𝛿𝜌h ≃ −
3GFm2

Z
sin 𝜃2

W

8
√

2π2

(
ln

m2
h

m2
W

− 5
6

)2 (1.21)

As the top mass was determined by direct productions at the Tevatron, its value
can be used to test the validity of the EW prediction. The observed top mass agreed
quite well with the prediction given by the precision EW data [8]. It is a major
triumph of the SM. Now that the top mass is given, Eq. (1.21) can be used to predict
the Higgs mass. As the Higgs contribution is logarithmic, sensitivity to the Higgs
mass is weak. An overall fit to the world data for the mass value prior to LHC
operation is given in Figure 1.3.

In this way, one can predict the value of the SM Higgs boson mass. A very recent
analysis shows [10, 12]

mh = 120+12
−05 GeV (1.22)

6) GN is the four-Fermi coupling constant of the neutral current interaction corresponding to GF of
the charged current. At the tree level, GN = GF . Note that GN is also used to denote the Newton’s
gravitational constant elsewhere.
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Figure 1.3 Higgs mass exclusion plot as a function of the Higgs mass before the Higgs
discovery. (Reproduced with permission of [9–12].)

leading to a 95% CL limit in the SM

114 < mh < 144 GeV (1.23)

Here we discuss the theoretical implications of this value.

1.3.2
Vacuum stability

Comparison of theoretical radiative corrections with precision experimental data
predicts a rather low Higgs mass. Let us consider first what theoretical constraints
can be obtained from the SM framework. A constraint for the lower mass limit
can be obtained from vacuum stability. One condition for spontaneous symmetry
breaking of the vacuum was that 𝜆, that is, the coefficient of the quartic term in the
Higgs potential, must remain positive.

V(𝜙) = 𝜆

(
Φ†Φ − v2

2

)2

= V(0) −
m2

h

2
Φ†Φ + 𝜆(Φ†Φ)2

m2
h = 2𝜆v2

(1.24)

A negative value of 𝜆makes the vacuum unstable for large values of |Φ|. Positivity
of 𝜆 is guaranteed only at the tree level. Taking into account the radiative corrections
to the Higgs propagator, the value of the coupling constant 𝜆 is governed at one-loop
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level by the following renormalization group equation [3, 13].7)

d𝜆
dτ

= 𝛽(𝜆) = 3
4π2

(𝜆 − 𝜆+)(𝜆 − 𝜆−), 𝜆− ≤ 𝜆+ (1.25a)

𝛽(𝜆) = 1
16π2

[
12𝜆2 + 6𝜆y2

t − 3y 4
t − 3

2
𝜆(g2

W + g2
B) +

3
16

{
2g 4

W + (g2
W + g2

B)
2
}]

(1.25b)

where τ = ln(Q2∕Q2
0 ). yt =

√
2mt∕v is the Yukawa coupling constant, and gW and

gB are the SU(2) and U(1) gauge coupling constants, respectively. Contributions
from quarks other than the top are neglected because the coupling strength is
directly proportional to its mass value. The 𝜆 that obeys Eq. (1.25) is no longer
a constant, but a dynamical variable that depends on τ. The original 𝜆 can be
considered as that defined by the condition 𝜆 = 𝜆(Q)|Q=Q0 (=v). Inclusion of the
radiative corrections changes the potential shape, and hence the VEV of the Higgs
𝜙0 has to be redefined as that which gives the minimum to the modified potential.

Let us disregard, for simplicity, the Q2 dependence of yt, gW , gB. Then, 𝛽(𝜆) is a
quadratic function of 𝜆 and has zeros at 𝜆 = 𝜆±. For 4m 4

t > 2m 4
W + m 4

Z
, we have

𝜆− < 0 < 𝜆+. The solution depends on the magnitude of the initial value 𝜆0 = 𝜆(Q0).
Depending on whether 𝜆0 > 𝜆+ or 0 < 𝜆0 < 𝜆+, the solution to Eq. (1.25) is given by

𝜆 − 𝜆−
𝜆 − 𝜆+

= ±Ae−𝛿τ (1.26a)

𝛿 = 3
4π2

(𝜆+ − 𝜆−) (1.26b)

For 𝜆0 > 𝜆+, the value of 𝜆 will always remain positive. If 0 < 𝜆0 < 𝜆+, the beta
function is negative (𝛽(𝜆) < 0). In this case, for sufficiently large Q , 𝜆 becomes
negative at a certain value Q = Λ. The resultant potential is negative at large 𝜙 and
has no minimum. In other words, the vacuum is unstable. This happens for small
𝜆, in which case the top quark contribution dominates and drives 𝜆 to a negative
value for sufficiently large Q2. For small 𝜆, Eq. (1.25) becomes

d𝜆
dτ

≃ 1
16π2

[
−3y 4

t + 3
16

{
2g 4

W + (g2
W + g2

B)
2
}]

(1.27)

To provide an intuitive understanding through easy analytic implementation, we
assume yt, gW , and gB are constant, and integrate Eq. (1.27) and obtain

𝜆(Λ) = 𝜆(v) + 1
16π2

[
−3y 4

t + 3
16

{
2g 4

W + (g2
W + g2

B)
2
}]

ln

(
Λ2

v2

)
(1.28)

To ensure that 𝜆(Λ) remains positive, the Higgs mass (= 2𝜆v2) must satisfy

m2
h >

v2

8π2

[
3y 4

t − 3
16

{
2g 4

W + (g2
W + g2

B)
2
}]

ln

(
Λ2

v2

)
(1.29)

More elaborate calculation can be carried out by integrating Eq. (1.25). A detailed
calculation incorporating two loop-level radiative corrections has been carried out
in [14] and gives the lower limit as a function of Λ, which is shown as the lower
curve of Figure 1.4.

7) For basics of the renormalization group equation, see Section 7.2 of [2].
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Figure 1.4 Triviality (upper) bound and vac-
uum stability (lower) bound on the Higgs
boson mass as functions of the new physics
or cutoff scale Λ for a top quark mass mt =
175 ± 6 GeV and 𝛼s(mz) = 0.118 ± 0.002.

The allowed region lies between the bands,
and the colored/shaded bands illustrate the
impact of various uncertainties. (Reproduced
with permission of [13–15].)

A state-of-the-art quantum correction at the next-to-next-to-leading order (NNLO)
calculations has been carried out recently [16]. Assuming the validity of Eq. (1.25)
all the way up to the grand unified theory (GUT) energy, one obtains

mh > 129.4 + 1.4 ×
(

mt (GeV) − 173.1

0.7

)
− 0.5 ×

(
𝛼s(mZ) − 0.1184

0.0007

)
± 1.0 GeV

(1.30)

1.3.3
Theoretical Upper Limit

Perturbative Unitarity The Higgs mass cannot be indefinitely large. The simplest
argument is supplied by the unitarity condition of the tree-level scattering ampli-
tude. Let us consider scattering of the gauge boson W. Feynman diagrams that
contribute to the elastic scattering are presented in Figure 1.5.

The gauge invariance provides a compensating mechanism for particular ampli-
tudes from diverging to infinity and suppresses divergence to at most the
logarithmic level (see arguments in Chapter I of [2]). For instance, each amplitude
in Figure 1.5a–c grows ∼ s2 but combined together they cancel each other and
the divergence is at most ∼ s. Terms that grow by ∼ s are cancelled by the Higgs
intermediate processes (Figure 1.5d,e), and the resultant overall divergence is at
most ∼ lns. At the tree level, the contribution of the Higgs intermediate scattering
amplitude is approximately given by [17]
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h0
h0

W+ W−

W+ W− W+ W−
W+ W−

W+ W−

W+ W− W+ W−

W+ W−
W+ W− W+ W−

k1 k2

k3 k4

k1 + k2 γ,z

γ,z

(a)

(c) (d) (e)

(b)

Figure 1.5 Feynman diagrams for W+W− → W+W−.

ℳ(W+
L W−

L → W+
L W−

L ) = −
√

2GFm2
h

[
s

s − m2
h

+ t

t − m2
h

]
+ O

(
m2

W

s

)
(1.31)

We have considered only the scattering amplitude by longitudinally polarized Ws
because they are the ones that give bad divergence at large s. This is due to the fact
that the longitudinal polarization produces a factor ∼ p𝜇pν∕m2

W in the denominator
of the gauge boson propagator. Decomposing the scattering amplitude into partial
waves, it can be expressed as

ℳ = 16π
∑

(2J + 1)aJ(s)PJ(cos 𝜃) (1.32)

At high energy (s ≫ m2
W ), the S wave amplitude can be extracted to give

a0(WLWL → WLWL) = −
GFm2

h

8
√

2π

[
2 +

m2
h

s − m2
h

−
m2

h

s
ln

(
1 + s

m2
h

)]
(1.33)

At sufficiently high energy, the first term is dominant. The unitarity requires|a0| ≤ 1. As the Born amplitude is real, the requirement becomes |ReA0| ≤ 1∕2.
Then

mh ≤
[

2
√

2π
GF

] 1
2

= 872GeV (1.34)
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Another argument one may use is that, for the Higgs to qualify as an elementary
particle, its mass has to exceed its width, that is, mh > Γh. This gives the condition

Γ(h → WW + ZZ) ≃
3GFm3

h

16
√

2π
< mh (1.35)

and mh < 1.4 TeV is obtained. However, if the Higgs mass is as large as this, it
means 𝜆 is also very large (𝜆∕4π ≥ O(1)) because m2

h
= 2𝜆v2. The self-interaction of

the Higgs is strong, and one questions the validity of the perturbative calculation.
All one can claim is that the Higgs mass should be less than ∼ 1 TeV.

Triviality Another constraint on the upper limit can be obtained from the renor-
malization group equation. As we are discussing a possible outcome at large 𝜆, we
can neglect all the terms except 𝜆 in Eq. (1.25). Then we can obtain the following
solution. Setting Q0 = v

1
𝜆(v)

− 1
𝜆(Q)

= 3
4π2

ln

(
Q2

v2

)
(1.36)

In order for the above equation to be valid in the perturbative approach, 𝜆(Q) has to
be finite and reasonably small. Then, 𝜆(v) can only vanish in the limit Q → ∞. This
means that the equation of motion that the Higgs obeys must be a free equation
without interaction. It is a ‘‘trivial’’ solution. Rewriting the above formula, one
obtains

𝜆(Q) = 𝜆(v)

1 − 3
4π2

𝜆(v) ln

(
Q2

v2

) (1.37)

For sufficiently large Q2, the denominator vanishes, which is referred to as the
Landau pole, and the value of 𝜆 diverges. As the perturbative treatment fails for
large 𝜆, it means that the equation that the Higgs field satisfies has to be considered
as an effective theory valid only at low energy. The perturbative approach may
be justified for Q ≲ Λ, for which 𝜆(Q) remains finite and sufficiently small. The
maximum value of 𝜆(v) within the constraint can be obtained from Eq. (1.36) by
setting 𝜆(Q) = ∞. Therefore

m2
h ≤ 2v2 max[𝜆(v)] = 8π2v2

3 ln(Λ2∕v2)
(1.38)

If we assume that the perturbative approach is valid and 𝜆 remains small until
Λ = MPlanck ≃ 1019 GeV, we obtain mh < 150 GeV. This value does not depend
on how we set the value of 𝜆(Q). If we use 𝜆(Q) = 1 instead of 𝜆(Q) = ∞, the
numerical value of the Higgs mass is almost the same.

This is an interesting fact. Suppose there is a grand unification at large Q (∼1016

GeV), and no new physics comes in until the grand unification scale, the Higgs
has to be light. The supersymmetry (SUSY) approach we discuss later, in which
the Higgs is considered as elementary, falls in this category. Conversely, if the
Higgs is heavy, for which it could be a composite, the new physics will appear at
relatively low energy. Assuming it happens actually, we may rephrase the existence
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condition of the Higgs as mh < Λ, which leads to mh ≲ 800 GeV. The upper curve
of Figure 1.4 shows how the upper limit of the Higgs mass changes as a function
of the cutoff Λ. The allowed range of the Higgs mass depends on where we set the
cutoff Λ. If we assume no new physics until the GUT energy (∼1016 GeV), we have
a severe constraint 140 ≲ mh ≲ 200 GeV. The mass of the discovered Higgs is less
than the lower limit but at the fringe of the limit.

Till date, we argued assuming that a new physics will appear at large 𝜆. Is this
assumption correct? The large 𝜆 may simply mean breakdown of the perturbation
theory and may not necessarily guarantee the appearance of new physics. If the
perturbative approach fails for Q > 𝜆NT, the region ΛNT < Q < Λ is where no new
physics appears but nonperturbative approach is necessary. Whether such a region
exists can be probed using lattice quantum chromodynamics (LQCD). Here, the
lattice interval plays the role of the cutoff. Within the lattice QCD formalism, one
can perform similar calculations as we did using the perturbation theory, and an
upper limit of the Higgs mass was obtained as mh < 640 GeV [18,19]. It appears that
there is no region where the nonperturbative treatment is required. The conclusion
we derived using the perturbation theory seems reliable. Therefore, if the Higgs
was not found with mass mh < 1 TeV, we could expect new physics nearby. That is,
the assumption mh ≲ 1 TeV seems reasonable. Note, however, mh ≲ 1 TeV is the
theoretical maximum value within reasonable allowance and was not the best guess
value. One should remember that predictions of the Higgs, be it phenomenological
guess or renormalization group equation argument, pointed to a rather low Higgs
mass.

Metastable Vacuum So far we assumed a positive 𝜆, which is necessary for a stable
vacuum. However, even if 𝜆 goes negative, as long as the vacuum life is longer than
the cosmic life time, it is still a viable solution [20]. It is argued that, if the Higgs is
light, the vacuum develops an instability below the Planck scale but the EW vacuum
is still sufficiently long-lived [21]. The observed value of the Higgs mass (mh ∼125
GeV, see Section 1.7.6) at LHC is lower than that in Eq. (1.30), which was obtained
assuming the vacuum stability within the framework of the SM extrapolated all
the way to the Planck scale. Given the LHC mass value, the stability of the EW
vacuum has been reevaluated, and the result is shown in Figure 1.6a [8,22]. Indeed,
the quartic coupling constant 𝜆 goes negative at large scale, which points to the
metastability or instability of the SM vacuum.

The LHC discovery of the Higgs mass (mh ≃ 125 GeV) is at the verge of vacuum
metastability. Figure 1.6b shows that the mass value of the Higgs (mh = 125 ± 1
GeV) points to a position in the metastable region [16,23,24]. The stability condition
is sensitive also to the value of the top mass and the strong coupling constant
𝛼s. Within the present accuracy (Δmh = ±1 GeV and Δmt = ±2 GeV), the allowed
region extends both to the stable and the unstable region. A future experiment at
the e−e+ linear collider (ILC) could reach Δmh = ±50 MeV, and Δmt = ±200 MeV,
and narrow down the region to the small circle in Figure 1.6b [23].

In summary, the question of the Higgs mass value is an important one directly
related to how the new physics will appear. The observation of a Higgs mass of
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Figure 1.6 (a, b) Renormalization group
evolution (RGE) of the Higgs self-coupling
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(Reproduced with permission of [8, 22].) The
2𝜎 ellipses in the mH − mtop, pole plane are
drawn for the three cases that one obtains
from the current top quark and Higgs mass
measurements at the Tevatron and LHC,
and which can be expected in future mea-
surements at the LHC and at the ILC. The
colored area denotes where the SM vacuum
is absolutely stable, metastable, and unsta-
ble up to the Planck scale. (Reproduced with
permission of [16, 23].) (Please find a color
version of this figure on the color plates.)

∼125 GeV would give vacuum stability up to only scales between 109 and 1010 GeV,
and stability up to the Planck scale would require new physics. Such new physics
could be the SUSY, but other models have also been discussed [25, 26].

This is the reason why the discovery and the determination of the Higgs mass
were so important. As the dynamical properties of the Higgs are directly related to
the framework of the SM, it is necessary to know how it is produced. We have to
be aware that the production and detection mechanisms differ depending on the
mass of the Higgs. They also differ if an e−e+ collider is used. We shall review how
to produce and detect the Higgs in section 1.7.

1.4
Little and Big Hierarchy Problem

As we emphasized at the beginning of this chapter, the Higgs sector is the least
known territory in the SM. All we know is that the gauge symmetry is broken
by some VEV referred to as the Higgs mechanism. The Higgs Lagrangian in the
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SM was chosen for its simplicity, satisfying the minimum requirements for the
spontaneous symmetry breaking. We have no idea about the dynamic properties
of the Higgs. We do not know whether the Higgs field is an elementary particle, or
a composite, or a representation of some dynamical phenomenon. Because of the
lack of detailed knowledge of the mechanism of the EW phase transition, the SM
loses its predictability for phenomena beyond the teraelectronvolt (TeV) range. It
had been expected that new physics would appear at the energy scale of ∼O(1) TeV.
However, from the analysis of the electroweak precision data (EWPD) obtained
at LEP and Tevatron, reproducibility of the SM is so accurate that any possible
deviation due to new physics has to be suppressed by making its cutoff (i.e., energy
scale) larger than ∼O(10) TeV. The same EWPD constrains the Higgs mass to be
light, ∼100 GeV with upper limit mh < 219 GeV [7, 27], as we saw in Figure 1.3.
Indeed, the mass value of the discovered Higgs turned out to be ≈ 125 GeV. Let us
see what problem arises by ‘‘the too good SM.’’

In the SM, the mass correction to a scalar particle is quadratically divergent
because, unlike gauge particles or chiral fermions, there is no known symmetry to
suppress the divergence.

Now, if one tries to make corrections to the Higgs mass assuming the validity of
the SM up to the energy scale ∼10 TeV, it gives rise to an unacceptably large Higgs
mass value.

This can be seen as follows. There are three types of radiative corrections to the
Higgs mass that arose from the diagrams in Figure 1.7a–c.

Each of them gives a correction to the Higgs mass [28]:

top loop − 3
8π2

y2
t Λ

2 ∼ −(2 TeV)2 (1.39a)

gauge loop + 1
16π2

g2Λ2 ∼ +(0.7 TeV)2 (1.39b)

Higgs loop + 1
16π2

𝜆2Λ2 ∼ +(0.5 TeV)2 (1.39c)

The numbers in the third column indicate the values necessary to keep the Higgs
mass within the phenomenological limit. If we insert Λ = 10 TeV in the above
expressions, they give

(a) (b) (c)

Figure 1.7 Radiative corrections due to the Standard Model. (a) Yukawa coupling with the
top quark. (b) Gauge boson loop. (c) Higgs quartic self-interaction.



18 1 Higgs

Tree

Gauge

Higgs

Top

m2
H

Figure 1.8 Fine-tuning. Three different and large corrections end up with a small Higgs
mass.

∴ m2
h ≃ m2

tree − (100 − 10 − 5) × (200GeV)2 (1.40)

that is, the three large corrections have to conspire to give the small Higgs mass
value of ∼100 GeV. It is a fine-tuning of about 1 part in 100 (see Figure 1.8).

If one avoids the fine-tuning, then one has to limit the energy scale of the new
physics below 1–2 TeV. This is referred to as the little hierarchy problem. Obviously,
the Higgs mass is protected by some kind of symmetry.

The big hierarchy problem appears when one goes to GUTs, that is, if one tries
to unify the strong interactions with the EW interactions. As will be discussed in
Chapter 3, the grand unification occurs at the energy scale ∼1016 GeV, which is
referred to as the GUT scale. Extra gauge particles, denoted as X , Y , and Higgs
particles denoted as Φ, would also appear.

In the GUTs, the first phase transition occurs at the GUT scale EGUT ∼1016

GeV and separation of the strong and EW interactions ensue. The second phase

transition occurs at the EW scale EEW ∼1∕
√√

2GF = 246 GeV, which causes the
EW symmetry breakdown of the SM. The extra gauge and Higgs particles acquire
masses at the first phase transition.

As energy scale of radiative corrections are generally of the same order as the
mass scale of the participating fields, if the Higgs is to fulfill its role of the EW mass
generator as an elementary particle, its mass value should be of the order of the
EW energy scale. This means that the GUT radiative corrections due to extra gauge
bosons X , Y , and heavy Higgs have also to be suppressed to the same scale. This is
a fine-tuning to the precision of (mEW∕mGUT)2 ∼1028. This has to be done at every
order of the perturbation expansion that is considered unnatural. The problem is
referred to as the big hierarchy problem to distinguish it from the little hierarchy
problem we have described above.

There are three main approaches to this problem. The first is to introduce a
new symmetry, that is, the SUSY, and to try to cancel the diverging radiative
corrections order by order by introducing new particles. This is a perturbative
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approach, assuming the Higgs to be elementary. The second is to assume that a
new strong interaction that breaks the EW symmetry dynamically provides a form
factor (i.e., unbinding), with the binding energy playing the role of the cutoff.
This is a nonperturbative approach assuming the Higgs to be a composite particle.
The third approach is to introduce extra dimensions, a possibility that will be
treated in detail in Chapter 6. The second approach generally leads to a heavy
Higgs. Therefore, the preferred choice is the first approach. Still, there are models
that allow light Higgs (little Higgs model) in the dynamical symmetry-breaking
framework.

1.5
Higgs in the Supersymmetry

The SUSY connects fermions and bosons. It introduces a new partner to every
particle in the SM. The partners have spins differing by 1/2 and the same coupling
strength such that their additional contributions to the mass corrections cancel
those due to the SM partners. The SUSY approach is most attractive because
it has nice features in addition to solving the little as well as the big hierarchy
problem. By gauging the SUSY, it can produce gravity. Thus, it has the potential
to unify all the four forces. Moreover, it is capable of making many definitive
predictions that can be tested experimentally. Phenomenologically, it is the most
comprehensively studied branch of possible new physics. Details of the SUSY is
discussed in Chapters 4 and 5. Here we limit our discussions to its aspect that is
specifically related to the Higgs properties.

1.5.1
Two Higgs Doublets

Properties of the Higgs particle in the SM are determined by the Higgs potential.
Its form was chosen for its simplicity with minimum requirements, that is, positive
quartic coupling 𝜆 > 0, to stabilize the vacuum, and negative quadratic coupling
𝜇2 = −𝜆v2 < 0 to induce spontaneous symmetry breaking. So far, there are no
observables that contradict this assumption. Besides, the minimum model has
been an important guiding principle in exploring the origin and characteristics of
spontaneous symmetry breaking theoretically as well as in planning experiments
to discover the Higgs particles. However, with EWPD and GUTs in mind, it is
important to consider more generic models allowed by phenomenology. There are
two important observational constraints in extending the SM.

(1) 𝜌 =
GN

GF

=
m2

W

m2
Z

cos2 𝜃W

≈ 1.

(2) No FCNC (flavor-changing neutral current)
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The first is the neutral to charged coupling constant ratio which stays close to
unity despite many radiative corrections. A custodial SU(2) symmetry (see Section
3.3.5 of [2]) is believed to be active to protect it. For the second, it is guaranteed by
the unitarity of the CKM matrix (Glashow–Iliopoulos–Maiani, GIM, mechanism)
in the SM, but if one wants a new physics, an extended GIM mechanism is
required.

At the tree level, condition (1) is satisfied automatically if the additional Higgs
is a member of doublets (see Eq.(5.12c) of [2]). Therefore, the simplest extension
is to require an extra Higgs doublet. The SUSY also requires a minimum of two
Higgs doublets. When two Higgs doublets are assumed, there are several ways
to satisfy condition (2). The most conventional assumption is to require that one
Higgs doublet couples only to up-type quarks (u,c,t) with Q = +2∕3 and the other
only to down-type quarks (d,s,b) with Q = −1∕3. Let Φ1, Φ2 denote two complex
Y = 1, SU(2) doublet scalar fields. The most general SU(2) gauge-invariant scalar
potential can be written down as [5]

V =m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − {m2

12Φ
†
1Φ2 + h.c.}

+ 1
2
𝜆1(Φ

†
1Φ1)2 +

1
2
𝜆2(Φ

†
2Φ2)2 + 𝜆3(Φ

†
1Φ1)(Φ

†
2Φ2) + 𝜆4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{1

2
𝜆5(Φ

†
1Φ2)2 +

[
𝜆6(Φ

†
1Φ1) + 𝜆7(Φ

†
2Φ2)

]
Φ†

1Φ2 + h.c.
}

(1.41)

All the coefficients are real if charge parity (CP) invariance is assumed. We simplify
the above potential by imposing the SUSY. In order not to make the arguments
too complicated, we adopt the MSSM (minimum supersymmetric extension of the
Standard Model) assumption here.

In MSSM, one of the doublets, which we denote as H1, has the same quantum
number (Y = −1) as the charge conjugate of Φ1 and couples to down-type quarks.
The other, denoted as H2, has the quantum number of Φ2 (Y = +1) and couples
to up-type quarks. As to what the MSSM is, we defer the discussion to Chapter 5.

Here we treat the MSSM Higgs potential as given
(

see Eq. (5.9) [29]
)

. The MSSM

relates the coefficients of the quartic potential with the gauge coupling, simplifying
the potential to

VH = 𝜇2
1H†

1H1 + 𝜇2
2H†

2H2 − 𝜇2
3(𝜀ijH

i
1Hj

2 + h.c.)

+
g2

W + g2
B

8
(H†

1H1 − H†
2H2)2 +

g2
W

2
|H†

1H2|2 (1.42)

where 𝜀12 = −𝜀21 = 1, 𝜖11 = 𝜖22 = 0 and H i
1,H

j
2 are components of the Higgs

doublet H1 and H2. gW , gB are the gauge coupling constants of SU(2)L and U(1)Y ,
respectively. As Hc

1 and H2 have the same quantum number, we define two complex
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neutral and two charged scalar fields by

H1 =
[

H1
1

H2
1

]
= Φc

1 =
[
𝜙0†

1
−𝜙−

1

]
8) (1.43a)

H2 =
[

H1
2

H2
2

]
= Φ2 =

[
𝜙+

2
𝜙0

2

]
(1.43b)

Then, the potential Eq. (1.42) is rewritten as follows:

VH = 𝜇2
1(|𝜙0

1|2 + |𝜙−
1 |2) + 𝜇2

2(|𝜙0
2|2 + |𝜙+

2 |2) − 𝜇2
3(𝜙

0†
1 𝜙

0
2 + 𝜙

−
1𝜙

+
2 + h.c.)

+
g2

W + g2
B

8

(|𝜙0
1|2 + |𝜙−

1 |2 − |𝜙0
2|2 − |𝜙+

2 |2)2 +
g2

W

2
|||𝜙0†

1 𝜙
+
2 − 𝜙+

1𝜙
0
2
|||2

(1.46)

To break the symmetry spontaneously, we choose the VEVs to satisfy <𝜙+
1 >=<

𝜙−
2 >= 0 so that the charge conservation is respected. Then, to obtain the final VEV,

it is enough to consider only the neutral fields. We assume that the minimum of
the potential is at

<Hc
1>=

[
0
v1√

2

]
, <H2>=

[
0
v2√

2

]
(1.47)

There are two important conditions for the potential:

(1) For the vacuum stability, the potential has to be bound from below. For|𝜙0
1| ≠ |𝜙0

2|, it is automatic, but for |𝜙0
1| = |𝜙0

2|, one needs a condition𝜇2
1 + 𝜇

2
2 > 2𝜇2

3.
(2) To obtain symmetry breaking, the coefficient of the quadratic term must be
negative, which amounts to 𝜇4

3 > 𝜇
2
1𝜇

2
2.

The minimum of the potential can be obtained by substituting𝜙0
1 = v1∕

√
2, 𝜙0

2 =
v2∕

√
2 in the potential and requiring ∂VH∕∂v1 = ∂VH∕∂v2 = 0. We obtain two

8) This way of arranging the Higgs doublets may strike odd for those who are accustomed to the
four-component Dirac spinor representation. Indeed, in [1] and [2] of this book (and also in
Equation (1.7)) , the Yukawa interaction to give mass to a quark doublet is arranged as follows:

−ℒYukawa = yd(ΨLΦ)dR + yu(ΨLΦc)uR + h.c.

ΨL =
[

uL
dL

]
, Φ =

[
𝜙+

𝜙0

]
,Φc =

[
𝜙0†

−𝜙−

]
(1.44)

The reason why the Higgs fields are expressed like Eq. (1.43) is because, in the supersymmetric
formalism, two-component left-handed Weyl spinors are the preferred bases to express fermion
fields. Both quark and Higgs doublets are in the left-handed representation. The SU(2) invariant
made of two doublets is expressed as (see Appendix A of [1])

− yu(uR)
c𝜀ijq

i
LHj

2 + yd(dR)
c𝜀ijq

i
LHj

1,

(q 1
L , q2

L) = (uL, dL), 𝜀12 = −𝜀21 = −1 (1.45)

Thus, the position of the neutral component in the Higgs doublets should be reversed to produce
the correct mass terms when they get the vacuum expectation value.
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relations as

𝜇2
1 = 𝜇2

3

v2

v1
− 1

8
(g2

W + g2
B)(v

2
1 − v2

2) = 𝜇2
3 tan 𝛽 −

m2
Z

2
cos 2𝛽

𝜇2
2 = 𝜇2

3

v1

v2
+ 1

8
(g2

W + g2
B)(v

2
1 − v2

2) = 𝜇2
3 cot 𝛽 +

m2
Z

2
cos 2𝛽

(1.48)

where the important angle 𝛽 is defined by

tan 𝛽 ≡ v2

v1
(1.49)

The VEV of the SM, v2 ≡ v2
1 + v2

2, is fixed by the relation mW = gWv∕2, which leads
to the second equality in Eqs. (1.48). The Z mass-squared, in turn, is given by

m2
Z =

𝜇2
1 − 𝜇

2
2 tan2 𝛽

tan2 𝛽 − 1
(1.50)

One sees that the two equations in Eq. (1.48) automatically satisfy the vacuum
stability and the symmetry-breaking conditions.

1.5.2
Coupling Strengths of MSSM Higgs

As the SUSY relates the gauge sector to the Higgs sector, the coupling of the Higgs
is uniquely determined once the SUSY parameters (tan 𝛽, tan 𝛼) are given. 𝛼 is the
mixing angle of neutral Higgs fields and is given by Eq. (1.63). As it is lengthy to
write down all the interactions, we list a few in Tables 1.1–1.4 [4, 30] to illustrate
the constraints imposed by the SUSY.

Here, 𝜑SM denotes the Higgs in the SM.
The coupling of the charged Higgs to the fermion is given by

ℒINT =
gW

2
√

2mW

t
[
mt cot 𝛽(1 + 𝛾 5) + mb tan 𝛽(1 − 𝛾 5)

]
bH+ + h.c. (1.51)

This equation is written in terms of (t,b), but couplings to other fermions can be
written down similarly. The couplings being specified, all the remaining parameters
are the masses of the particle. Therefore, the production cross section, and hence
the detection method, can be determined once the mass value is specified.

Table 1.1 Coupling strength of the neutral Higgs to the fermion.

ℒINT ∼ − gW
2

mf

mW
f Oif 𝜙i

𝜙i h0 H0 A 𝜑SM

f = t
cos 𝛼
sin 𝛽

sin 𝛼
sin 𝛽

−iγ 5 cot 𝛽 1

Oi

f = b − sin 𝛼
cos 𝛽

cos 𝛼
cos 𝛽

−iγ 5 tan 𝛽 1
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Table 1.2 Coupling strength of the neutral Higgs to the vector boson.

ℒINT ∼ igV mV Oig𝜇ν V𝜇V ν𝜙i

(gW = e∕ sin 𝜃W , gZ = e∕ sin 𝜃W cos 𝜃W )
𝜙i h0 H0 A 𝜑SM

Oi − sin(𝛼 − 𝛽) cos(𝛼 − 𝛽) 0 1

Table 1.3 Coupling strength of the neutral CP-odd Higgs to the vector boson.

ℒINT ∼ V𝜙(p)𝜙(p′) ∼ gZ
2

Oi(p − p′)𝜇Z𝜇A0𝜙i

𝜙i h0 H0 𝜑SM

Oi cos(𝛼 − 𝛽) − sin(𝛼 − 𝛽) 0

Table 1.4 Coupling strength of the charged Higgs to the vector boson.

ℒINT ∼ V𝜙(p)𝜙(p′) ∼ −i gW
2

Oi(p − p′)𝜇W±
𝜇 H∓𝜙i

𝜙i h0 H0 𝜑SM

Oi cos(𝛼 − 𝛽) sin(𝛼 − 𝛽) 0

We give a partial list of allowed and forbidden couplings at the tree level. The
radiative corrections modify them, but they are omitted.

○ ∶ [VVH0, VVh0], [ZA0H0, ZA0h0], ZH+H−, [W±H∓H0, W±H∓h0]
[ZZH0, ZZh0], · · ·

× ∶ VVA0, ZW±H∓, ZH0h0, ZH0H0, Zh0h0, ZA0A0, · · ·
(1.52)

The coupling of the pair in the [⋅⋅, ⋅⋅] is like ∼ [sin x, cos x] and complementary in
the sense that, if one is smaller, the other is larger. The complementarity is related
to the unitarity. In a theory where the symmetry is spontaneously broken, processes
containing the Higgs have a role to compensate a class of diverging integrals (see
discussions in Chapter 1 of [2]). For example, if a process in which both H0, h0 are
exchanged contributes to compensation of diverging WW integrals, the combined
effect of the H0, h0 has to be the same as the SM’s Higgs which constrains the
relation between the two. That is,

g2(h0WW) + g2(H0WW) = g2
W (1.53)

Referring to Table 1.2, one sees that the above equation is satisfied. Furthermore,
we also have

g2(h0ZZ) + g2(H0ZZ) = g2
Z (1.54a)

g2(h0A0Z) + g2(H0A0Z) = g2
Z (1.54b)

These considerations mean that one of A0, h0,H0 has a detection probability similar
to that of the SM Higgs.
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1.5.3
Mass Spectrum of MSSM Higgs

Spontaneous breakdown of the symmetry induces mixing and changes the mass
eigenvalues. Out of eight scalar fields, three are taken up by the gauge bosons to
give them mass, and five appear as physical particles. Three of them are neutral and
the rest two are charged. If the CP invariance is assumed, the real and imaginary
parts of the scalar fields do not mix and the charged Higgs’s are also separated. Let
us derive the mass of the CP-odd neutral scalar first. By extracting terms quadratic
in Im𝜙0

1 and Im𝜙0
2, we obtain the following mass matrix:

M2
A = 𝜇2

3 ×
(Im𝜙0

1, Im𝜙0
2)

[ v2

v1
−1

−1 v1

v2

](
Im𝜙0

1
Im𝜙0

2

)
(1.55)

As the determinant vanishes, one eigenvalue is 0 corresponding to the would-be-
Goldstone boson which was eaten by the Z boson.9) The other corresponds to a
CP-odd neutral scalar field, which we denote as A. By diagonalizing the mass matrix,
we obtain masses and expressions for the field A as well as the would-be-Goldstone
field G0.

m2
A = 𝜇2

3(tan 𝛽 + cot 𝛽) =
2𝜇2

3

sin 2𝛽
(1.56)

A =
√

2
(
−Im𝜙0

1 sin 𝛽+ Im𝜙0
2 cos 𝛽

)
, (1.57a)

G0 =
√

2( Im𝜙0
1 cos 𝛽 + Im𝜙0

2 sin 𝛽) (1.57b)

The mass matrix of the charged Higgs can be obtained similarly.

M2
H± =

(
𝜇2

3

v1v2
+

g2
W

4

)
× (𝜙+

1 , 𝜙
+
2 )

[
v2

2 −v1v2

−v1v2 v2
1

](
𝜙−

1
𝜙−

2

)
= (m2

A + m2
W ) × (𝜙+

1 , 𝜙
+
2 )

[
sin2 𝛽 − sin 𝛽 cos 𝛽

− sin 𝛽 cos 𝛽 cos2 𝛽

](
𝜙−

1
𝜙−

2

) (1.58)

where we used Eq. (1.49) and (1.56) in going to the second line. Again, one of the
masses vanishes. The other mass has a finite eigenvalue and is physical. They are
related by

m2
H± = m2

A + m2
W (1.59)

H± = −𝜙±
1 sin 𝛽 + 𝜙±

2 cos 𝛽, G± = 𝜙±
1 cos 𝛽 + 𝜙±

2 sin 𝛽 (1.60)

9) The Goldstone bosons that are absorbed by gauge particles are referred to as the would-be-Goldstone
bosons, and physical Goldstone bosons that acquire mass through additional external force are
referred to as the pseudo Nambu-Goldstone bosons (pNGBs) to distinguish them from the zero-mass
Goldstone bosons.
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In order to obtain the mass matrix of the two CP-even neutral Higgs particles, we
set 𝜙0

1 = v1∕
√

2, 𝜙0
2 = v2∕

√
2, 𝜙±

1 = 𝜙±
2 = 0 and calculate

M2
CP+ = 1

2

∂2VH

∂vi∂vj

|||||vi , vj=0

=
[
𝜇2

3 tan 𝛽 + m2
Z

cos2 𝛽 −𝜇2
3 − m2

Z
sin 𝛽 cos 𝛽

−𝜇2
3 − m2

Z
sin 𝛽 cos 𝛽 𝜇2

3 cot 𝛽 + m2
Z

sin2 𝛽

]

=

[
m2

A sin2 𝛽 + m2
Z

cos2 𝛽 − 1
2
(m2

A + m2
Z
) sin 2𝛽

− 1
2
(m2

A + m2
Z
) sin 2𝛽 m2

A cos2 𝛽 + m2
Z

sin2 𝛽

]
(1.61)

Diagonalizing the mass matrix, we obtain

m2
H, h = 1

2

[
m2

A + m2
Z ±

√
(m2

A + m2
Z
)2 − 4m2

Z
m2

A cos2 2𝛽

]
(1.62)

It is customary to denote the heavier one of the two mass eigenstates as H0 and the
lighter one as h0. They are given by

H0 =
(√

2Re𝜙0
1 − v1

)
cos 𝛼 +

(√
2Re𝜙0

2 − v2

)
sin 𝛼 (1.63a)

h0 = −
(√

2Re𝜙0
1 − v1

)
sin 𝛼 +

(√
2Re𝜙0

2 − v2

)
cos 𝛼 (1.63b)

tan 2𝛼 =
m2

A + m2
Z

m2
A − m2

Z

tan 2𝛽, −π
2
≤ 𝛼 ≤ 0 (1.63c)

From the above equations, we have the relations

m2
H± > m2

W

mH0 > max(mA,mZ) ≥ min(mA,mZ) cos 2𝛽 ≥ mh

m2
h + m2

H0 = m2
Z + m2

A

(1.64)

Thus, the supersymmetric structure of the theory has imposed very strong condi-
tions on the Higgs spectrum. Out of six parameters that describe the MSSM Higgs
sector (mh,mH,mA,mH± , 𝛽, 𝛼), only two parameters that can be taken as tan 𝛽 and
mA are free parameters at the tree level.

The relations Eqs. (1.64) mean that at least one of the three neutral Higgs
particles is lighter than Z. Therefore, if one can prove the existence of a light Higgs
h0 with mass smaller than Z, the possibility of the SUSY, or at least its minimum
version MSSM, is very large. Notice, however, that this story is valid only for the
tree approximation. Inclusion of radiative corrections modifies the mass value,
especially those including the massive top and its spin 0 partner ‘‘stop’’ quark. The
correction to the light Higgs mass is given by [31–34] [30, 35]
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m2
h → m2

h + 𝛿m2
h

≃ m2
Z + 3

2π2

(
m 4

t

v2

)[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1 −

X2
t

12M2
S

)]
10) (1.65)

where Xt = At − 𝜇 cot 𝛽 is the mixing parameter in the stop sector [see Eq. (5.35)].
We have characterized the scale of ‘‘stop’’ (t̃1, t̃2) masses with MS ≡ (mt̃1

mt̃2
)1∕2.

Figure 1.9 shows the values of corrected mh as well as mH0 , mH± as a function of
mA for two values of tan 𝛽 = 3, 30 with the maximum mixing scenario. mh almost
saturates and is insensitive to tan 𝛽 or mA whether they take values larger than
those given in Figure 1.9. Thus one sees that, even after the radiative corrections,
the mass of the light Higgs remains relatively small, mh ≲ 120 ∼ 140 GeV. The
existence of the light Higgs is a solid prediction of the SUSY. The mass value
(mh = 125.7 ± 0.4 GeV) determined by LHC is near the upper limit of the SUSY
predictions. It means that parameters of the MSSM to reproduce the observed
value are near the boundaries of allowed regions. The stop mass, in particular,
takes a large value (≳ a few tetraelectron volts) in the conventional scenario of the
MSSM [36].
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Figure 1.9 Mass of the MSSM Higgs bosons as functions of mA for two values of tan 𝛽 =
3, 30 with maximal mixing scenario with the stop (t̃) mass mt̃ = 2 TeV and all other SUSY
parameters set to 1 TeV. (Reproduced with permission of [30].)

10) There are two ‘‘stop’’ mass eigenstates t̃1, t̃2 that are obtained by the mixing of t̃L, t̃R, which are
super partners of the top (tL, tR). MS is defined as the geometric mean of the two stop masses(
MS =

√
{m(t̃1)m(t̃2)

)
. The mixing is induced by the Yukawa coupling of the Higgs to both

particles.
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In the SM, the Higgs mass is basically a free parameter. In the MSSM model,
however, the light Higgs (h) is bounded from above with its mass given by
Eq. (1.65). This is obtained in the so-called decoupling regime where the value
of mA is set high, pushing masses of other Higgses (H0, H±) high also. This is
a scenario to maximize mh in the framework of SUSY. An analysis of the Higgs
mass guided by the naturalness condition (i.e., no excessive fine tuning) is shown
in Figure 1.10a. One sees that a large mixing (large At − 𝜇 cot 𝛽, see Eqs. (1.65),
(5.35)

)
as well as a large stop mass is required to realize the observed value of

the Higgs. As the lighter stop is considered as the lightest of all squarks, it means
that other squark masses are at least higher than ∼ 700GeV, consistent with
direct search results. The difference of the two curves in the figure (Suspect and
FeynHiggs) may be considered as the theoretical uncertainty. Validity of various
SUSY models was also examined and is shown in Figure 1.10b. The observed
Higgs mass value excludes the GMSB (gauge mediated symmetry breaking) and
AMSB (anomaly mediated symmetry breaking) in their simplest version. They
will be discussed in Section 5.4 and 5.5. For no or small mixing, a much higher
value of MS is required. The limit of MS < 3 TeV may be set from naturalness
consideration. If one removes the constraint on these models, freedom of realizing
the observed mass increases, and many alternative models are being discussed.

In the high scale SUSY, for instance, the mass scale of all the SUSY particles are
set high, while in the split SUSY [40–42], only the scalars (squarks and sleptons) are
pushed beyond the LHC reach (∼109 GeV). Figure 1.11 shows the predicted range
of the Higgs mass [16]. However, fermions, that is, gauginos and higgsinos, remain
at the low energy scale. One conspicuous feature of the split SUSY is a long-lived
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Figure 1.10 (a) Higgs mass as a function
of the scalar top mass. Other SUSY param-
eters were fixed at values guided by natu-
ralness conditions. Large mixing and stop
mass are required. (Reproduced with per-
mission of [37]. (b) The Higgs mass shown
as a function of MS = (mt̃1

mt̃2
)1∕2 for the

various constrained MSSM models. Note

that, for reasonable values of MS ≲ 3000
GeV, simple versions of GMSB, AMSB are
ruled out. CMSSM (constrained minimum
supersymmetric extension of the Standard
Model discussed in Section 5.3) survives.
(Reproduced with permission of [38, 39].
(Please find a color version of this figure on
the color plates.)
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gaugino, which could have lifetime as long as 100 s [43, 44]. This is because the
gluino’s decay has to go through the heavy squark loops. However, the split SUSY
retains basic virtues of the SUSY, that is, gauge unification (see Section 3.6), the
dark matter candidate and possibly the light SM-like Higgs boson [45].

In summary, the mass of the Higgs is still within the allowed limit of the MSSM,
but many parameters are pushed almost to their extreme limits, thereby excluding
many of the more constrained models.

1.6
Is the Higgs Elementary?

So far, we treated the Higgs as an elementary particle. Notice, however, that
the Higgs mechanism was constructed using superconductivity as a model. In
superconductivity, spontaneous symmetry breaking is induced by the Cooper pair,
which is a composite of two electrons. In QCD, chiral symmetry breaking is
induced by the condensate of the quark–antiquark pair. It is quite logical to think
that the Higgs may also be a composite. In this case, one considers a new, strong
interaction which works among new particles and regards the Higgs as a bound
state of some particle pairs.11) Representative models are the technicolor (TC) model
and, more recently, the little Higgs model.

11) One does not necessarily introduce new particles or new interactions. For instance, the top
condensate model considers the Higgs as a bound state of top and anti-top quarks [46–48].
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1.6.1
Technicolor Model

A representative theory of the strong dynamical symmetry breaking is the TC model
[49–52]. Just like the pion is the NGB, which emerges from the chiral symmetry

breaking
(

SU(2)L × SU(2)R → SU(2)V
)

as a result of the qq condensation in QCD,

the Higgs can also be considered as the NGBs of the new gauge symmetry SU(NTC)
with new fermions (techni-fermions)

ΨL =
[

U
D

]
L

, UR, DR (1.66)

constituting the fundamental representation. If NTC = 3, one may consider TC as
the scaled-up version of QCD = color SU(3). For simplicity, however, we consider
NTC = 1, with only two flavors (U, D). Generalization to NTC > 1 can be done easily.
The fermion kinetic energy terms for this theory are

ℒkin = ΨLiD𝜇𝛾
𝜇ΨL + URiD𝜇𝛾

𝜇UR + DRiD𝜇𝛾
𝜇DR (1.67)

and like QCD, they have a chiral SU(2)L × SU(2)R symmetry in the mU = mD = 0
limit. The gauge boson is referred to as the techni-gluon, and the interaction by
exchange of the techni-gluon induces the formation of a condensate

<ULUR>=<DLDR>≃ F 3
TC (1.68)

which dynamically breaks the gauge symmetry SU(2)L × SU(2)R → SU(2)V . Just
like the QCD, the NGBs appear as the techni-pions (𝜋+

TC, π
0
TC, π

−
TC) = [DU, (UU −

DD)∕
√

2,UD], which are absorbed by the gauge bosons of the EW interaction.12)

When there are ND techni-fermion doublets, the constant FTC is modified to [52]

FTC ≃
v0√
ND

, v0 = 246 GeV (1.69)

for ND = 1 FTC = v0. In QCD, the VEV of the quark condensate is related to the
pion decay constant Fπ by the relation

<uLuR> ≃<dLdR>≃ F 3
π

Fπ = 96 MeV
(1.70)

Therefore, TC is a scaled-up QCD by a factor of

FTC

Fπ
= 246 GeV

96 MeV
≈ 2500 (1.71)

If the chiral symmetry is larger than SU(2)L × SU(2)R, it will contain extra NGBs
which are not eaten by the gauge particles. They will acquire mass (referred to as
pseudo-Nambu-Goldstone boson, pNGB) due to the nonzero techni-fermion mass, just

12) Notice that, in the simplest model, they have spin parity 0−. If the observed Higgs has spin parity
0+, one has to think of a p-wave excited state to assign the NGB boson to the Higgs. This is
another complication of the TC model.
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like SU(3)f lavor octet NGBs are massive in QCD. While the Higgs may not appear
in TC, it is likely that the strongly interacting pNGBs form a variety of resonances
(𝜌TC∕𝜔TC, aTC, etc.),13) just like the ππ pair forms the vector resonance 𝜌∕𝜔∕a1. In
such a case, a rich spectra of new particles will appear above the TeV region.

Extended technicolor: The basic idea of the TC is very attractive and solves
the fine-tuning problem by providing a natural cutoff (i.e., form factor of the
bound states) for the high-energy part of the radiative contributions. However,
realistic models have to reproduce the mass spectra of known fermions and
phenomenologically established constraints, that is, suppression of FCNC. The
mass generation mechanism of the ordinary fermions (denoted as f) is through
Yukawa coupling in the SM, but the Higgs in TC is a composite of the techni-
fermions. In order to generate the fermion mass, one has to have a new interaction
that couples both to ordinary and TC fermions. The standard choice is the ETC
(extended technicolor), a new gauge interaction at higher energy scale than the
typical TC energy, which is of the order of the EW symmetry breaking. Exchange of
the ETC gluon provides the fermion–fermion interaction and generates an effective
mass. On the other hand, the same ETC interaction produces the FCNC interaction,
and it is hard to construct a phenomenologically viable model. A remedy is the
walking TC model, which assumes that the gauge coupling 𝛼TC evolves slowly (i.e.,
it walks, not runs).

While the TC model itself is on a tightrope phenomenologically, we emphasize
that the notion of the dynamical symmetry breaking is a viable one [52]. Therefore,
we look for possible signals of the TC in the LHC data. Analyses are inevitably
model-dependent. We show below those based on the LSTC (low-scale technicolor)
model by [53, 54]. Here, the lightest techni-hadron is the techni-pion 𝜋TC. The next
lightest are 𝜌TC, 𝜔TC, and a1TC, which are almost degenerate.

Experimental searches: The CMS group looked for the TC particles that would
appear as an excess in WZ channels [55]. The main interest was to find 𝜌T∕aTC →
WZ as well as W ′ → WZ, where W ′ is a heavy W which appears in a variety of
models14). But, here we concentrate on 𝜌TC∕aTC signals which are collectively called
𝜌TC, as they cannot be distinguished in the WZ channel. Signals are X → 3l + ν.

Figure 1.12a shows their accumulated number of events as a function of the
WZ invariant mass. Formally, the invariant mass of WZ cannot be uniquely
determined. However, by assuming the W to have its nominal mass, the value of
the neutrino longitudinal momentum is constrained to one of the two solutions of
a quadratic equation. According to Monte Carlo simulations, the smaller of the two
turned out to be the right solution 75% of the time and this solution was adopted
for all events. The parameter sin𝜒 they used is given by [56]

sin𝜒 =
FTC

v0
=

FTC

246
GeV ≈ 1√

ND

≪ 1 (1.72)

13) IG(JPC) of πTC, 𝜌TC, 𝜔TC, a1TC are 1−(0−+), 1+(1−−), 0−(1−−), and 1−(1++).
14) Conventionally, it is assumed to have identical coupling strength as the SM W, which is referred

to as the Sequential Standard Model (SSM).
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Figure 1.12 (a) Distribution of the WZ
invariant mass. W′ in SSM with mass point
at 600 GeV is denoted as a white histogram.
(b) Exclusion region at 95% CL for the LSTC

(low-scale TC) model as a function of 𝜌TC
and πTC masses. (Reproduced with permis-
sion of [55].

The data agreed with the SM prediction, and no signal of TC resonances was
obtained. The right figure of Figure 1.12b shows the excluded region on the
M(πTC) − M(𝜌TC) plane. TC hadrons (𝜌TC etc.) with masses between 167 and 687
GeV have been excluded, assuming M(πTC) = (3∕4)M(𝜌TC) − 25 GeV. The region
M(πTC) > M(𝜌TC) is theoretically forbidden.

The ATLAS group, in their search for TC in dilepton decay channels, obtained
similar results [57].

1.6.2
Little Higgs Model

An alternative to the TC model recently being discussed is the ‘‘little Higgs model’’
[28, 58]. Like TC, it considers the Higgs as an Nambu Goldstone Boson (NGB)
produced by the spontaneously broken symmetry of a new, strong force [59,60]. But
unlike TC, which introduces a new force explicitly, it focuses on global symmetry
breaking, though the new interaction is implicit by its NGB assumption. It also
retains the light Higgs, and is thus more realistic phenomenologically.

Denoting the global symmetry as G, it must include the EW symmetry
(
G ⊃

SU(2) × U(1)
)
. Being the NGB, the Higgs is massless at the tree level. By treating

it in the framework of the nonlinear 𝜎 model (see the boxed paragraph and also
Appendix J of [2]), one can construct an effective theory of a new, strong interaction
which recovers the SM in the low-energy limit.
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The nonlinear 𝝈 model expresses the Nambu-Goldstone boson (NGB) as a
phase field analogous to Eq. (1.12).

Σ = 𝜎 + i𝛕 ⋅ 𝛑 → (v + 𝜌)ei𝛑⋅𝛕∕2v = (v + 𝜌)U (1.73)

where 𝜎 (or 𝜌 after symmetry breakdown) is a scalar field which induces
spontaneous symmetry breakdown and 𝛑 are the NGBs associated with broken
symmetry (in this case the global symmetry is SU(2) chiral symmetry). In this
expression, the phase transformation for 𝛑 becomes the shift transformation,
and hence the gauge invariance allows only derivative couplings for 𝛑. Therefore,
the zero mass at the tree level is automatic. The Lagrangian is expanded in
powers of field derivatives but otherwise constrained only by the symmetry.

ℒeff =
v2

4
Tr[∂𝜇U∂𝜇U†] + v2

8m2
𝜌

(
Tr[∂𝜇U∂𝜇U†]

)2 + · · · (1.74)

As the field derivatives are momenta, the first few terms give an effective
low-energy (

√
s ≪ m𝜌) Lagrangian.

Therefore, the starting point is a scaled-up chiral perturbation theory in which
the pion is replaced with the Higgs. The lightness of the pion mass is due to its
identity being the NGB. The Higgs as the NGB can acquire mass if the global
symmetry G is explicitly broken. This is achieved by converting the derivative to
a covariant derivative (i.e., by gauging), because the gauge interaction induces the
quadratic (i.e., mass term) as well as the quartic field configuration radiatively [6].
If the whole or part of the gauged symmetry contains the EW symmetry, one can
fulfill the aim to reproduce the SM as a low-energy effective theory.

The challenge, then, is to fulfill the requirement that the new strong force should
only appear beyond the energy scale ∼ O(10) TeV while keeping the Higgs mass
light. Let us rephrase the problem in more technical terms. Major corrections to
the Higgs mass diverge quadratically, as was shown in Eqs. (1.39). The correction
has the form

m2
h = 𝛿m2

h ∼
𝛼t

4π
Λ2 (1.75)

A 125-GeV mass would imply Λ ∼1 TeV. To solve the little hierarchy problem, we
need Λ ≳ O(10) TeV while keeping mh around ∼100 GeV. How can we achieve
this? Suppose that we can arrange the prefactor in front of Λ2 to be not (𝛼t∕4π)
but (𝛼t∕4π)2; that is, if the leading cutoff sensitivity appears not at one-loop but at
two-loop order, then the Higgs mass would be

m2
h ∼

( 𝛼t

4π

)2
Λ2 (1.76)

and we may obtain Λ ∼10 TeV keeping mh ∼100 GeV. One should remember that
this is not a real solution. The problem is just postponed temporarily. It will reap-
pear as we extend the energy beyond the 10-TeV scale. For the moment, however, we
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will be content with the temporary solution. The real solution, commonly referred
to as the UV completion, remains to be solved. The essence of the ‘‘little Higgs’’ is
to achieve this extra prefactor (𝛼t∕4π), that is, to eliminate one-loop correction [61].

A solution to this problem has been proposed [62] by incorporating an enlarged
symmetry and embedding two parallel global symmetry breaking in such a way
as to compensate the two competing corrections with each other so that only a
logarithmic divergence appears. This is referred to as collective symmetry breaking.
To reproduce the SM Higgs, one has to start with a larger group G. The collective
symmetry breaking assumes that G breaks down to a subgroup H which contains
SU(2) × U(1) in the SM. The Higgs appears as an NGB of the broken symmetry.
But under normal circumstances, the gauge interaction will induce quadratically
divergent contributions to the Higgs mass as in the SM. To avoid this, one
assumes that G contains a subgroup consisting of two copies of SU(2) × U(1) ∶
G ⊃ H1 × H2 = [SU(2)1 × U(1)1] × [SU(2)2 × U(1)2]. The trick is to arrange this in
such a way that each Hi commutes with a different subgroup Y ⊃ [SU(2) × U(1)]SM.
When X , a subgroup of G (G ⊃ X ⊃ Y), is gauged, the Higgs mass is still protected
by the global symmetry of H1 and H2.

The group structure of the little Higgs is illustrated in Figure 1.13.
Many models have been proposed. As the group structure of realistic models is

rather complicated, we discuss a toy model [28] to understand the mechanism of
the collective symmetry breaking, which is the essence of the little Higgs model.

Collective Symmetry Breakdown For simplicity, we omit the U(1) part of the SM and
start with a global group G = SU(3)L × SU(3)R breaking to H = SU(2)L × SU(2)R.
We consider two sets of scalar fields in the fundamental representation that
transform independently according to

ΣL → Σ′
L = e−i𝛼LΣL, ΣR → Σ′

R = e−i𝛼RΣR (1.77)

The primary reason that we need two sets of scalar fields is to compensate the
two competing corrections with each other. Another reason is that, by gauging
a subgroup of the symmetry, one set of the NGB fields is eaten by the gauge
particles and disappear. An example can be seen in Eq. (1.73). There, if the broken

GGauged

HYX SU(2) × U(1) H1,H2

Figure 1.13 Group structure of the little
Higgs model. A global group G sponta-
neously breaks down to H at a scale f =
Λ∕4π. The origin of the symmetry break-
ing is irrelevant below the scale Λ. H must

contain SU(2) × U(1) as a subgroup so
that, when a part of G, labeled X, is weakly
gauged, the unbroken electroweak group
Y = SU(2) × U(1) comes out [61].
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symmetry is the gauged SU(2), the NGBs would be absorbed by the gauge bosons
of SU(2) and totally disappear. By preparing two sets, at least half of them survive
to become the Higgs we want. For compensation, the two scalar fields need to
communicate with each other. Therefore, the symmetry to be gauged has to include
both contributions equally. It can be achieved by reformulating the two symmetry
groups into diagonal groups.

SU(3)L × SU(3)R
→ SU(3)V × SU(3)A = SU(3)L+R × SU(3)L−R

(1.78)

The two fields (ΣL and ΣR) will transform as 𝟑 under SU(3)V and as 𝟑 and 𝟑 under
SU(3)A. By gauging SU(3)V , both of them couple to the same gauge fields and thus
are able to communicate with each other.

The twofold SU(3) with 8 + 8 = 16 generators end up with 3 + 3 unbroken
generators corresponding to the two SU(2) groups. This means that (8 − 3) × 2 = 10
generators are broken, thereby yielding 10 massless NGBs. After gauging SU(3)V ,
five of the NGBs are eaten up, giving mass to five gauge bosons but the other NGBs
remain massless at this stage. The onset of the gauge interaction does not break the
symmetry at the tree level, but breaks it when higher order terms, that is, radiative
corrections, are taken into account. We will come back to this subject shortly.

Denoting the VEV of the symmetry breaking as f , the low-energy (i.e., E ≪ f )
dynamics can be described by two sets of scalars denoted as Σ1 and Σ2:

Σ1(x) = ei𝜃1 f
⎡⎢⎢⎣

0
0

f + 𝜌1(x)

⎤⎥⎥⎦ = ei𝜃E∕f eiΦ(x)∕f
⎡⎢⎢⎣

0
0

f + 𝜌1(x)

⎤⎥⎥⎦
Σ2(x) = ei𝜃2 f

⎡⎢⎢⎣
0
0

f + 𝜌2(x)

⎤⎥⎥⎦ = ei𝜃E∕f e−iΦ(x)∕f
⎡⎢⎢⎣

0
0

f + 𝜌2(x)

⎤⎥⎥⎦
(1.79)

Φ(x) =
5∑

a=1

ha(x)t3+a = 1√
2

⎡⎢⎢⎣
0 0 h+

0 0 h0

h− h0∗ 0

⎤⎥⎥⎦ +
𝜂

2
√

3

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 −2

⎤⎥⎥⎦
h± =

h1 ∓ ih2√
2

, h0 =
h3 − ih4√

2
, 𝜂 = h5

(1.80)

𝜌1,2 are real scalar fields that have condensed to acquire the VEV f . They have heavy
mass ∼ f and are integrated out in the effective field theory.15) The above choice of
VEV leaves the SU(2)L × SU(2)R part of the symmetry unbroken. The phase fields
𝜃E are eaten up by the gauge fields, or are gauged away in mathematical terms.
That is, by suitable gauge transformation they are removed from the NGB sector
to become third components of the gauge bosons. ta = 𝜆a∕2, a = 4 − 8 are SU(3)
broken generators and 𝜆a are the Gell–Mann matrices. One sees that the complex

scalar H =
(

h+

h0

)
forms an SU(2) doublet and the real 𝜂 a singlet. That the field

15) This is a fancy expression to say that at low energies contributions of 𝜌1,2 are negligible.
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Φ satisfies the SU(2) symmetry can be seen as follows: Denoting U2 as SU(3)
transformation matrix which conserves its SU(2) part

U2 =
[

Û2 0
0 1

]
(1.81)

it is easy to show that Φ obeys the usual SU(2) transformation law Φ′ = Û2ΦÛ†
2 .

Σ → Σ′ = U2Σ = U2ei𝜃E∕f eiΦ∕f U†
2U2

⎡⎢⎢⎣
0
0

f + 𝜌1

⎤⎥⎥⎦ = ei𝜃′
E
∕f eiΦ′∕f

⎡⎢⎢⎣
0
0

f + 𝜌1

⎤⎥⎥⎦
Φ′ = U2ΦU†

2 = U2
1√
2

⎡⎢⎢⎣
0 0 h+

0 0 h0

h− h0∗ 0

⎤⎥⎥⎦U†
2 + U2

𝜂

2
√

3

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 −2

⎤⎥⎥⎦U†
2

(1.82)

= 1√
2

[
0 Û2H

H†Û†
2 0

]
+ 𝜂

2
√

3

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 −2

⎤⎥⎥⎦
The symmetry breaking has happened at the scale f , which is higher than the EW
symmetry breaking scale, that is, f ≫ vEW = 246 GeV. H(x) will become the Higgs
field of the SM, but at this stage they are simply massless NGBs.

The effective Lagrangian is expressed in terms of field derivatives because
of the shift symmetry, as shown in Eq. (1.73) and (1.74). Note that the shift
symmetry not only prohibits the mass term but also forbids the gauge couplings
as well as the Yukawa couplings. The identity Σ†Σ = f 2 constrains the number of
independent operators that can be written at each order in the derivative expansion
of the Lagrangian. The leading term contains only one term, ℒ2 = ∂𝜇Σ†∂𝜇Σ, and
contains no mass term. By gauging the SU(3)V part, the dominant Lagrangian is
converted to

ℒ = (D𝜇Σ1)†(D𝜇Σ1) + (D𝜇Σ2)†(D𝜇Σ2)

D𝜇 = ∂𝜇 + igAa
𝜇ta (a = 1 ∼8)

where Σ1 = eiΦ∕f
⎡⎢⎢⎣
0
0
f

⎤⎥⎥⎦ , Σ2 = e−iΦ∕f
⎡⎢⎢⎣
0
0
f

⎤⎥⎥⎦
(1.83)

The Lagrangian Eq. (1.83) describes an effective theory valid only at low energies
and is unrenormalizable. The cutoff energy Λ and the symmetry breaking VEV f
is related by Λ ≃ 4πf . A simple way to see this is to look at the analogous situation
in the SM where the radiative correction of the Higgs loop to the mass is given by
Δm2

h
≃ 𝜆2(Λ∕4π)2 [see Eq. (1.39c)]. A requirement that it should not exceed the tree

level Higgs mass m2
h
= 2𝜆v2 gives Λ ≃ 4πv.

The Gauge Interaction The gauge interaction induces radiative corrections to the
mass and connects the two fields by diagrams described in Figure 1.14. Out of
eight gauge bosons, three (the SU(2) part) remain massless, which we call WL, and
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Figure 1.14 Radiative corrections to the
Higgs potential. Gauge corrections (a) yield
quadratic cutoff dependence which does not
contribute to the Higgs potential because
W, Z and W ′, Z ′ contributions cancel
each other, (b) yields log-divergent con-
tribution to the Higgs mass. The Yukawa

corrections (c) yields quadratic cutoff
dependence which does not contribute to
the Higgs potential because t and T con-
tributions cancel each other, (d) yields the
log-divergent contribution. Q ′ = (tL, bL, TL),
t1,2 = (TR ± itR)∕

√
2.

will become the SM gauge bosons later. The remaining five will acquire masses of
order f and constitute a SU(2) complex doublet (W ′+,W ′0) and a singlet Z′ (to be
mixed with yet to enter U(1) group).

After cutting off the loop integral at Λ, Figure 1.14 produces a Higgs potential in
the Lagrangian

−
g2

16π2
Λ2(Σ†

1Σ1 + Σ†
2Σ2) (1.84)

As Σ†
i
Σi = f 2 = constant, it does not produce anything. The shift symmetry of

Φ is at work here. From the symmetry point of view, the field H contained in
Φ is rotated away because of the SU(2) invariant form of Σ†Σ which guarantees
vanishing mass of the NGBs. For the mass generation of Φ, the Lagrangian has to
have some symmetry-breaking term. Let us look at Figure 1.14b. This produces a
term

−
g4

16π2
ln

(
Λ2

f 2

) |||Σ†
1Σ2

|||2 (1.85)

The quadratic divergence terms are canceled between the massless and the massive
gauge bosons. So if Σ†

1Σ2 constrains the quadratic H†H terms, we have fulfilled
what we had aimed. Expanding Σ1 and Σ2 in terms of Φ, we have

Σ1 = eiΦ∕f
⎡⎢⎢⎣
0
0
f

⎤⎥⎥⎦ =
(

1 + i
Φ
f
− Φ2

2f 2
+ · · ·

)⎡⎢⎢⎣
0
0
f

⎤⎥⎥⎦ =
⎛⎜⎜⎜⎝

ih+∕
√

2

ih0∕
√

2

f
(

1 − H†H
4f 2

)
⎞⎟⎟⎟⎠ + · · ·

Σ2 =
⎛⎜⎜⎜⎝

−ih+∕
√

2

−ih0∕
√

2

f
(

1 − H†H
4f 2

)
⎞⎟⎟⎟⎠ + · · ·

(1.86)



1.6 Is the Higgs Elementary? 37

where the ellipses · · · contain higher order terms as well as 𝜂-dependent terms.
Then

Σ†
1Σ2 = −1

2
(H†H) + f 2

(
1 − H†H

4f 2

)2

+ · · · = f 2 − (H†H) + (H†H)2

16f 2
+ · · ·

(1.87)

∴ |||Σ†
1Σ2

|||2 = −2f 2(H†H) + 9
8
(H†H)2 + · · ·

Thus we have produced a bilinear term as well as a quartic term of the scalar
potential that is necessary to reproduce the SM. Notice that the sign of the
bilinear term is negative and that of the quartic term is positive as is required
for the symmetry breaking and the stability of the potential.16) After the symmetry
breaking, the Higgs mass is given by

m2
h ≃

g 4

16π2
f 2 ln

(
Λ2

f 2

)
∼ O

[(
f

4π

)2
]

(1.88)

where the last equality follows from Λ ≃ 4πf , g 4 ln(4π)2 ≃ 1. As mh ∼ O(100) GeV,
we have f ≃ 4πmh ∼1 TeV, Λ ≃ 4πf ∼10 TeV. Thus the scale Λ of new physics has
been pushed off to the safety zone as required by the EW precision data keeping
the Higgs mass light.

Yukawa Interaction So far, we have discussed only the gauge field correction to
the mass. Now we want to investigate the contribution of the Yukawa, that is,
the top quark, interaction. As the original symmetry is SU(3), the fermion in
the fundamental representation contains a new fermion field, which we denote
as T . Let us consider a left-handed SU(3) triplet Q ′T

L = (tL, bL, TL) and singlets
tR, bR, TR. The top quark Yukawa interaction in the SM gives a dangerously
large quadratically divergent contribution to the Higgs mass term as we saw in
Eq. (1.39a)]. To achieve the same collective symmetry breakdown as the gauge
interaction, we expect that contributions of the top quark and the new quark T
will compensate each other. Contributions of the other quarks are negligible. Their
mass is much smaller.

16) Both coefficients of the quadratic and quartic
terms are suppressed simultaneously in this
simple model. However, a realistic model
should have suppression on the bilinear
term but not on the quartic term. If both
terms are suppressed, it is not possible to

simultaneously obtain the correct W boson
and phenomenologically acceptable Higgs
mass. In the more realistic model, this
is achieved by enlarging G to [SU(4)] 4,
which breaks to H = [SU(3)] 4, but this is a
complication we will not enter into.



38 1 Higgs

When the symmetry breaks down to SU(2) by the scalar VEVs, the part QT
L =

(tL, bL) inside Q ′
L transforms as a doublet under the SU(2). With the following

SU(3)-invariant Yukawa interaction Lagrangian

ℒYukawa =
ht√

2

[
tc
1 Σ

†
1Q ′

L + tc
2 Σ

†
2Q ′

L

]
ht = h(1)

t = h(2)
t , t1,2 = 1√

2
(TR ± itR)

(1.89)

where h(i)
t s are the top Yukawa coupling constants, one can show [61] that the

diagrams shown in Figure 1.14c, d exactly yield contributions as given in Eq. (1.84)
and Eq. (1.85) in which g is replaced with ht. Hence, Figure 1.14c gives a quadrat-
ically divergent integral for each t and T but cancel each other. Figure 1.14d gives
only a logarithmically divergent integral. Thus the collective symmetry breakdown
cancellation mechanism is also at work for the Yukawa interaction.

To construct a viable model, we have to extend the symmetry to include U(1) and
formulate the whole group structure in such a way as to satisfy phenomenological
constraints such as the absence of FCNC. Several models have been proposed.

The most popular model is the littlest Higgs model [63], which is also the most
economical in group structure. Its choice of the group is G = SU(5), which breaks
to H = SO(5). The subgroup of SU(5) that is gauged is [SU(2) × U(1)]1 × [SU(2) ×
U(1)]2, which breaks to SU(2)D × U(1)Y . Out of the 14 (=24-10) NGBs generated
as a result of G → H breakdown, 4 are absorbed by the massive AH,ZH,W

±
H

corresponding to the broken SU(2) × U(1) generators. The other 10 scalars arrange
themselves to form a complex SU(2) doublet H with the right quantum number of
the SM Higgs plus a complex SU(2) triplet.

Others include the simplest model [64], the minimal moose [65], etc. For more
details, one may refer to reviews [28, 58].

After the formulation of the models, construction of a mathematically consistent
and closed framework (i.e., UV completion) remains to be solved.

Finally, notice that in the supersymmetric model, cancellation of the divergence
was done between particles with different spins. In the little Higgs model, it is
done between particles with the same spin.

Experimental signals for the little Higgs are the existence of heavy W ′±, Z ′ and
the new fermion T . It is a common feature of many beyond-the-SM models and
will be discussed in Section 3.4.2.

1.7
Production and Detection of Higgs

Although discovery of the Higgs was at the core of the past effort in going beyond
the SM, one should not forget that the most important aim is to understand
the Higgs mechanism and not just the discovery of the Higgs particle per se.
In elucidating the Higgs mechanism, we should consider strategies to cover
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a broader range of dynamic reactions that are related to the Higgs associated
interactions. The Higgs was discovered at LHC. But it is expected that the detailed
dynamical structure could only be clarified by an electron collider, that is, the
International Linear Collider (ILC).17) Therefore it is important to understand the
methodology of detecting the Higgs at the e−e+ collider as well as at the hadron
collider. We should be aware of the advantage and disadvantage of the hadron
collider compared to the electron collider. In view of this, we first review past LEP
experiments for the Higgs search before discussing the detection method at the
hadron collider.

1.7.1
Higgsstrahlung e−e+ → hZ

At LEP, the following two production mechanisms were effective (see Figure 1.15)

∙ At
√

s = mZ ∶ e−e+ → Z → hZ∗ → hll (Z∗is virtual). (1.90)

∙ At
√

s > mZ ∶ e−e+ → Z∗ → hZ (Higgsstrahlung). (1.91)

As mh > mZ, the process (1.90) is no longer relevant for the future consideration.
Therefore, we only consider the Higgsstrahlung. At LEPII (

√
s = 200 GeV), the

method to use the Higgsstrahlung [Figure 1.15a] was viable. The selection of events
was made by looking at Z → ll, qq, requiring the invariant mass of the lepton or
quark pair to coincide with mZ. Identification of Z → νν, h → qq was also possible
by requiring ‘‘1 jet + missing energy.’’ This is possible because the total energy
of the Zh system is known and the Higgs mass can be reconstructed from the
observables. The Higgs was not discovered at LEP, and the obtained upper limit
was 114 GeV at 95% CL.

1.7.2
W Boson Fusion

When the Higgs mass goes beyond 100 GeV, the vector boson fusion process
(e−e+ → e−e+V∗V∗ → e−e+h, V = W,Z) becomes the dominant process in the e−e+

collider (see Figure 1.15b, c). Although the gluon fusion is the dominant process at
LHC as far as Higgs production is concerned, the W boson fusion will again take
over for sufficiently large s. The WW reaction has a unique feature that the gluon
fusion does not have. Longitudinal components of W are the would-be-Goldstone
bosons of the Higgs, that is, it is a direct result of the spontaneous symmetry
breaking. In fact, there exists an equivalence theorem that, at sufficiently high

17) The ILC is considered as the next major
project in particle physics. It is an electron–
positron collider using straight linacs stretch-
ing up to 20 km in length. The energy has

not been decided yet but is envisaged to start
from ∼500 GeV eventually going over 1 TeV.
It could be set lower to optimize for the Higgs
study.
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Figure 1.15 Higgs production mech-
anisms and their total cross section.
(a) Higgsstrahlung: e−e+ → Z∗ → Zh.
Valid for mZ <

√
s ≲ 300 GeV and 60

GeV< mh < 100 GeV. (b) W boson
fusion: e−e+ → W−W+ → h. Valid
for

√
s > 300 GeV and mh > 100 GeV.

(c) Total cross section for the Higgs produc-
tion via vector boson fusion in e−e+ annihi-
lation as a function of

√
s when mh = 100

GeV. The total cross section for the process
e−e+ → hZ is also shown for comparison.
(Reproduced with permission of [66].)

energy (s ≫ m2
W ), WLWL,WLZL scattering are equivalent to the scatterings between

the would-be-Goldstone bosons (h0, h±) [67]. In this regard, the WW reactions are
inherently suited to elucidate the dynamics of the Higgs mechanism.

In order to understand the WW reaction mechanism, including the Higgs
production at the hadron collider, we first study the idea of boson fusion and the
equivalent W approximation in the electron collider. In the hadron collider, the
main QCD processes are not the quark–quark interactions but the gluon–gluon
reaction. It is related partly to the large coupling of the gluon but also has its
origin in the vanishing mass of the gluon. In the EW production of the Higgs at
the hadron collider, the total energy is large enough so that ŝ ≫ m2

W , where ŝ is
the total energy of the elementary process of interest (i.e., partons). At such high
energies, even the gauge bosons can be regarded as nearly massless and we expect
the boson–boson interactions to play an important role just like the gluon–gluon
interactions in QCD. In this respect, we can make use of the tools we acquired in
quantum electrodynamics (QED). The following discussion is provided to prepare
the WW scattering as one of main tools for probing the dynamics of the Higgs
sector after the discovery of the Higgs particle.

Equivalent W Approximation As for the boson fusion cross section, an exact for-
mula in the tree approximation exists [66, 68], but the effective W approximation,
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which is easier to understand intuitively, gives a good approximation (error < 20%)
and we will use it hereafter. This is an application of the Weiszäker–William approx-
imation (see Section 17.6.3 of [1]). It replaces an electromagnetic e–A (A represents
an atom) process by the equivalent 𝛾∗−A process where the almost-real photon flux
is provided by the electron. Replacing the photon with W and the electromagnetic
coupling by the EW coupling, one gets the equivalent W approximation. In other
words, the equivalent W approximation is valid at the high energy where the
relevant total energy ŝ is sufficiently large compared to the W mass. Then the
Bremsstrahlung formula in QED can be used, which almost restricts the W emis-
sion in the forward region (𝜃 ≈ 0). One may recall that a similar consideration was
adopted in formulating the DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)
evolution equation in QCD to compute the parton flux. Here, the electron is
replaced by the quark, and the virtual photon by the gluon.

In phenomenological expressions, the W mass is retained in the propagator,
which provides a natural cutoff below pT < mW . In this approximation, we consider
the incoming e−∕e+ beam as a supplier of the gauge boson flux. Once we get an
equivalent flux function, it can be treated like the parton distribution functions
in QCD, and the WW, ZZ, ZW scattering formula can be constructed using
factorization formulas as used in hadron–hadron collisions.

Let us start from the W bremsstrahlung by an electron. Extension to that by a
quark is straightforward. Assume that the electron with energy-momentum p1 and
the positron with p2 are the suppliers of the colliding Ws with momenta x1p1 and
x2p2 of the parents e−e+ and that its flux is given by F(x1) and F(x2). The cross
section for the Higgs production 𝜎(e−e+ → e−e+h; s) can be expressed in terms of
the vector boson fusion process cross section 𝜎(VV → h; ŝ):

𝜎(e−e+ → e−e+h; s) = ∫ dx1dx2 F(x1)F(x2)𝜎̂(VV → h; ŝ)

ŝ = x1x2s
(1.92)

For m2
h
≫ m2

W and τ = m2
h
∕s

𝜎̂(VV → h) =
16𝜋2mh

ŝ
Γ(h → VV)𝛿(ŝ − m2

h)

=
16𝜋2mh

ŝ2
Γ(h → VV)τ𝛿(x1x2 − τ)

(1.93)

Substituting Eq. (1.93) into Eq. (1.92), we obtain

𝜎(e−e+ → e−e+h) =
16π2mh

ŝ2
Γ(h → VV)τdL

dτ
(1.94)

where

dL
dτ

= ∫
1

τ

dx
x

F(x)F( τ
x
) (1.95)

dL∕dτ is the luminosity of the WW flux that the e−e+ beam provides. Substituting
the expression for the decay rate [Eqs. (1.19)] into the above expression, we
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obtain

𝜎(e−e+ → e−e+h) = π2𝛼

sin2 𝜃Wm2
W

τdL
dτ (1.96)

Kinematics of the W flux in e → e + W prepared by its parent particle is the same
as that of the gluon flux in QCD with replacements of the coupling constant
and symmetry factors. Thus the flux of W prepared by the electron can be
obtained using the same formula as used to derive the splitting functions in
QCD.

F(x) =
g2

8π2
PBC←A(x)

PBC←A(x) =
x(1 − x)

2

∑|V(A → BC)|2
p2

T
+ (1 − x)m2

W

18)

(1.97)

where g is the coupling constant of W/Z with the electron. Despite the inherent zero-
mass approximation for the W bremsstrahlung, the mass term in the denominator
was retained to provide a natural cutoff at small pT . Substituting actual expressions
of the (e → e + W) Lagrangian, one gets

g2
∑|V(A → BC)|2 =

∑|u(pC)∕ε(gV − gA𝛾
5)u(pA)|2 (1.99)

Here, gV and gA are the vector and the axial-vector coupling strength and are
different for V = W or V = Z. Using

W ∶ gV = gA =
gW

2
√

2

Z ∶ gV =
gZ

2

(
I3 − 2Q sin2 𝜃W

)
, gA =

gZ

2
I3

gW = e
sin 𝜃W

, gZ = e
sin 𝜃W cos 𝜃W

(1.100)

18) This is a general formula [69] to calculate the
splitting function in QCD when a parton ‘‘a’’
splits into partons ‘‘b’’ and ‘‘c,’’ the former
having fractional momentum pb = xpa and
the latter pc = (1 − x)pa, except that in QCD
the mass is set to zero.

d𝜎(a + d → c + X)

≃ Fbc←a(x)dx
d𝜙
2π

d ln p2
T d𝜎(b + d → X)

Fbc←a =
𝛼s

2π

[
x(1 − x)

2

|∑|V(a → bc)|2
p2

T

]
(1.98)

See Appendix K of [2].



1.7 Production and Detection of Higgs 43

one calculates the flux for ŝ ≫ m2
W to obtain [70, 71]

FT (x) =
(g2

V + g2
A)

8𝜋2

1 + (1 − x)2

x
ln

(
ŝ

m2
W

)
(1.101a)

FL(x) =
(g2

V + g2
A)

4𝜋2

(1 − x)
x

(1.101b)

The luminosity function FT (x) for the transversely polarized W is identical to the
Weiszäcker–Williams formula (see Eq. (17.89) of [1]) for the photon flux given
by the electrons if one replaces (g2

V + g2
A)∕(4π) → 𝛼. Substituting Eqs. (1.101) in

Eq. (1.95), one gets the VV luminosity for the transversely and longitudinally
polarized gauge bosons [72].

dL
dτ

||||ee∕VT VT

=

[
g2

V + g2
A

8π2

]2 [
ln

ŝ

m2
W

]2
1
τ

[
(2 + τ)2 ln

1
τ
− 2(1 − τ)(3 + τ)

]
(1.102a)

dL
dτ

||||ee∕VLVL

=

[
g2

V + g2
A

4π2

]2
1
τ

[
(1 + τ) ln

1
τ
− 2(1 − τ)

]
(1.102b)

The Higgs production cross section becomes [66, 68, 72]

𝜎(e−e+ → e−e+h) =

(
𝛼

sin2 𝜃W

)3
1

16m 3
h

[ m 3
h

m2
W

{
(1 + τ) ln

1
τ
− 2(1 − τ)

}
+

m2
W

2mh

(
ln

ŝ

m2
W

)2 {
(2 + τ)2 ln

1
τ
− 2(1 − τ)(3 + τ)

}]
(1.103)

The first line is the contribution of the longitudinal W, and the second line is that
of the transverse W’s.

1.7.3
Productions at the Hadron Collider

The main mechanism of the Higgs production at the LHC is gluon fusion, and
the submechanism is vector boson fusion. Their Feynman diagrams are shown
in Figure 1.16a,c. Two other reactions that can be used to identify the Higgs
are tth-associated production (Figure 1.16d) and Higgsstrahlung by the quarks
(Figure 1.16e).

Gluon Fusion The production cross section of the Higgs by gluon fusion is given
by [73, 74]

𝜎(pp → pph) = 2 × 1
4
× 1

64
× 16π2

m3
h

Γ(h → gg) τdL
dτ

dL
dτ

= ∫ dx1dx2 𝛿(x1x2 − τ)g(x1)g(x2)
(1.104)
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Figure 1.16 Feynman diagrams for the Higgs production. (a) Gluon fusion. (b) Shape of
the loop integral of the gluon fusion diagram. (c) Boson fusion. (d) tth-associated produc-
tion. (d) QCD + EW production

where g(x) is the gluon distribution function in the proton. The extra factors in
front of Γ(h → gg) relative to Eq. (1.94) (1∕4, 1∕64) are due to spin and color degrees
of freedom of the gluon, and the factor 2 is due to the Bose–Einstein statistics of
the two gluons. The decay width of h → gg

Γ(h → gg) =

√
2GF[𝛼s(mh)]2

8π3

m3
h

9
|I|2 (1.105)

can be derived from an effective Lagrangian

ℒhgg = −
(√

2GF

) 1
2
𝛼s(mh)

12π
IG𝜇νG

𝜇νh (1.106)

where G𝜇ν is the gluon field strength. Here, the quantity I originates from fermion
loops and is given by

I =
∑

j

Ij = Nc

∑
j
∫

1

0
dx ∫

1−x

0
dy

1 − 4xy

1 − xy

(
m2

h

m2
j

)
− i𝜀

(1.107)

The spectral shape of the loop integral for the gluon fusion |I|2 is plotted in
Figure 1.16b. Its value is dominated by the heaviest quark, that is, the top. |I|2
takes a maximum value 3.2 for 𝜆Q = mQ∕mh ≃ 0.4 and |I|2 ≃ 1 for 𝜆Q ≳ 1. For
𝜆Q ≪ 1, |I|2 ∼ (𝜆Q log 𝜆Q ) 4. That is, 𝜎(gg → h) decreases like 𝜆 4

Q ∼1∕m 4
h

. The total
production cross section of the Higgs in the hadron collider which incorporates
NNLO in QCD [75] is given in Figure 1.17. The largest cross section comes from
𝜎(gg → h), which is the top line. The broad bump in the cross section reflects the
shape of the loop integral.
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Figure 1.17 SM Higgs boson production cross sections for pp collisions at 14 TeV. The
top line is due to the gluon fusion, and the line pp → qqH denotes the W boson fusion.
Other channels are also indicated. (Reproduced with permission of [8, 76, 77].)

Luminosity of W Boson Fusion The W flux provided by a quark is identical to that
by an electron except for replacement of e − W coupling with q − W coupling. The
quark flux, in turn, is provided by the proton in a hadron collider. Therefore, the
Higgs production through WW fusion in the hadron collider can be obtained from
that of the electron collider by convoluting with parton distribution functions. Or,
equivalently, the W luminosity in the pp reaction is given by convoluting that of
e−e+ collision with the parton distribution functions fi(x) [70, 71].

dL
dτ

||||pp∕VV
=

∑
ij
∫ dx1dx2 fi(x1)fj(x2) ×

[
∫ d𝜉d𝜂 F(𝜉)F(𝜂)𝛿(x1𝜉x2𝜂 − τ)

]
(1.108)

Putting x1x2 = τ′, the content of
[
· · ·

]
is expressed as

1
τ′ ∫

dx
x

F(x)F

( τ
τ′

x

)
= 1

τ′
dL
d𝜉

||||𝜉=τ∕τ′ ≡ 1
τ′

dL
d𝜉

||||qq∕VV
(1.109)

The WW luminosity in the pp collision becomes

dL
d𝜉

||||pp∕VV
=

∑
ij
∫

1

τ

dτ′
τ′ ∫

1

τ′

dx
x

fi (x)fj

(
τ′
x

)
dL
d𝜉

||||qq∕VV
(1.110)

Then the cross section is given by

𝜎(pp → VV → h; s) = ∫
1

τ
dτ dL

dτ
||||pp∕VV

𝜎̂(VV → h; τs) (1.111)

where the variables in 𝜎̂(VV → h), dL∕d𝜉|qq∕VV are to be replaced from those of the
electron collision to those of the quark collision. The reduction rate of theW boson
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fusion cross section as a function of mH is much slower than that of the gluon fusion
cross section. So, it will eventually dominate over the gluon fusion, but at the LHC
the dominant contribution still comes from the gluon fusion. Detailed calculations
at NLO (next-to-leading order) in QCD have been obtained by [78, 79]. Figure 1.17
gives the most recent plot on the cross sections including other channels [8, 77].
The main contributions to the Higgs production cross sections come from gluon
or W fusions, but some other modes are also useful for obtaining better S/N
(signal-to-noise ratio) by identifying the accompanying particles.

1.7.4
Signals at LHC

We already know that the Higgs was discovered with mass in the neighborhood
of 125 GeV. Nevertheless, we discuss possible signals of Higgs production and
decays in the various mass regions because the discovery alone is not our final
goal. We want to study the dynamics of the Higgs, and it is useful to consider how
it would change if the Higgs mass was different. Study of competing processes is
also important.

In the e−e+ reaction, the competing processes posses physical meanings of their
own right. All the open channels have branching ratios of the same order (see
Figure 1.18a), and are useful in elucidating one aspect of the physics or another.

Considering channels other than that of specific interest as noises, the S/N in
the e−e+ reaction is at most of the order of 100. Therefore, if enough number of
events are obtained, it is relatively easy to identify the produced Higgs by looking at
its decay products such as h → jj (2 jets), ll (l = e, 𝜇, τ). In the two-body production
e−e+ → Zh, the invariant mass of the Higgs can be obtained by simply identifying
the Z.

But in hadron productions, backgrounds due to QCD processes are large and
S/N for the Higgs production is minuscule, as can be seen from Figure 1.18b.
To illustrate the difficulty of the event selection in the hadron collider, we show a
typical event display at the LHC in Figure 1.19. There are ∼25 vertices per beam
crossing. The bunch crosses every 25 ns, totaling up to 600 million collisions per
second. A signal in such a proliferation of events is literally a needle in a haystack.

One has to choose the decay channels carefully to identify the parent Higgs,
depending on its mass.

At LHC, for a luminosity of L = 1034∕cm−2∕s−1.19) one can obtain in a year
(assume 1 year = 107 s) ∫ L = 1041∕cm−2 = 100 fb−1. For the process having a total
cross section 1 pb one can obtain 105 Higgs particles. Let us investigate whether this
number is sufficient to discover the Higgs. As the decay branching ratio changes
as a function of the mass (see Figure 1.2) and backgrounds for each channel are
different, an optimum detection method has to be adopted depending on the mass
value. As the experimental lower limit had already reached a value mh = 114 GeV
before the LHC, we consider cases for a mass larger than this value. The following

19) The improved design luminosity is up to 5 × 1034∕s−1∕cm−2. So this is a modest number.
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Figure 1.18 Production cross sections for several representative processes at e+e− colliders
(a) and hadron colliders (b), as a function of the machine center-of-mass energy. (Repro-
duced with permission of [80].)

Figure 1.19 Event display for a trigger per beam crossing in the ATLAS detector with 25
reconstructed vertices. This event happened to include a Z → 𝜇𝜇 event. The display with
track pT threshold of 0.4 GeV and all tracks are required to have at least three pixels and
six SCT (SemiConductor Tracker) hits. (Reproduced with permission of [81, 82].)

list is only an example. Although we have listed some useful modes in discovering
the Higgs for particular mass range, most of the modes can be used eventually at
any mass range as the intensity goes up and backgrounds are better understood.
Comparison of observed data with them will provide important information on the
properties of the Higgs.
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Figure 1.20 ATLAS (A Toroidal LHC Appa-
ratuS) is a general-purpose detector with
balanced performance including hadronic
events. Its magnet is an air-cored one with
inner (outer) radius 5 (10)m and length 26
m, and produces a field strength of 0.8 T
(2 T at the center). The electromagnetic
calorimeter is a liquid argon detector of

accordion shape [see Figure 12.35 of [1]].
The overall size is 20𝜙 × 44 m, and weighs
6000 tons. Resolutions are good but not par-
ticularly good for all measurements. (Repro-
duced with permission of [83].) (Please find
a color version of this figure on the color
plates.)

Two large general-purpose detectors, ATLAS and CMS were constructed and
are in operation (see Figure 1.20, 1.21). The CMS has a better resolution for
gamma/lepton signals but is less versatile for hadron detection. Components of the
general purpose collider detectors and their functions were explained in Section
12.6 of [1]. Two special purpose detectors, LHCb for the B-physics and Alice for the
heavy ion collisions were also constructed.

1.7.5
Higgs Detection Methods

(1) 110 GeV< mh <130 GeV h → 𝛾𝛾 : For the mass mh < 2mW , h → bb is the
main decay mode. However, the QCD background is overwhelming and their
separation is difficult. Looking at Figure 1.2, there exists a usable mode h → 𝛾𝛾

with a branching ratio of ∼10−3. That is, in the inclusive decay mode

p + p →h + X , h → 𝛾 + 𝛾 (1.112)
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Figure 1.21 CMS (compact muon solenoid)
is a detector at LHC. The length is about
one-half of that of the ATLAS detector but its
weight (= 12.5 kton) is twice that of ATLAS.
It uses PbWO4 (lead glass) for the electro-
magnetic calorimeter and realizes a resolu-
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one catches two 𝛾 ’s and identifies their parent Higgs by reconstructing the 2𝛾
invariant mass. However, catching 2𝛾 alone may suffer from large backgrounds
due to 2𝛾 production by QCD and misidentification of QCD jets. One needs a 𝛾
detector (electromagnetic calorimeter) with high energy resolution [3,85]. This is a
clean channel but needs high luminosity.

tth (h → bb): Another method is to use associated production accompanied with
W or tt in qq → WhX , tthX and identify isolated leptons from W or tt. With this
method, one can obtain cleaner signals, but the problem is whether one can get
enough statistics [86–88]. The experimental groups ATLAS and CMS are capable
of discovering the Higgs in this decay mode within the mass range 80 − 130
GeV [89, 90].

(2) 120 GeV< 𝐦𝐡 <180 GeV h → ZZ∗ → 4l: This is a golden mode in the search for
the Higgs. Although the mass value is too low to decay to two real Z’s, production
of four leptons through virtual Z intermediate states is possible. This channel is
promising for the range 120 < mh < 180 GeV except for the narrow region around
170 GeV (see Figure 1.2).

h → 𝛕𝛕 (mh <140 GeV): One looks for 𝜇±+ missing energy + X [91]. The Higgs
mass cannot be reconstructed in this channel, but the signal can be observed
as an excess of events above backgrounds which come mainly from WWX and
tt → WWbb → llνν.
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h → W−W+ → llνν (mh ∼170 GeV) [92, 93]: For the Higgs mass nearing 2mZ,
the signal significance in the h → ZZ∗ → 4l channel is reduced because of the
suppression of the ZZ∗ branching ratio as the WW decay mode opens up. For
mh = 170 GeV, h → WW∗ → llνν branching ratio is approximately 100 times larger
than that of the h → ZZ∗ → 4l channel. However, because of the presence of the
neutrino, it is not possible to reconstruct the true Higgs mass. Instead, an excess
of events may be observed. The transverse mass

mT =
√

2pll
T

Emiss
T

(1 − cosΔ𝜙) (1.113)

is expected to fall in the mass window mh − 30 GeV < mT < mh. Here, pll
T
, Emiss

T
,

and Δ𝜙 are momentum of the lepton pair, the missing transverse energy, and the
azimuthal angle in the transverse plane, respectively.

We summarize the Higgs discovery sensitivity of the ATLAS detector below
mh = 200 GeV in Figure 1.22 for integrated luminosity of 100 fb−120).

(3) 180 GeV< mh <800 GeV h → ZZ → 4l: If the Higgs mass is larger than 2mZ,
the main decay modes are WW and ZZ pairs. Hadronic decay modes are difficult to
separate completely from QCD backgrounds. The cleanest signal can be obtained

20) Notice that the Higgs was discovered with an integrated luminosity of 5 fb−1 at 7 TeV.
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from purely leptonic decay modes

p + p →h + X

h → Z + Z → e−e+(𝜇−𝜇+) + e−e+(𝜇−𝜇+)
(1.114)

This decay mode is referred to as the gold-plated channel [96–99]. As the branching
ratio is 1.1 × 10−3, the signal size is not large. But by requiring the invariant
mass of the two pairs of leptons m

ll
= mZ, one can reduce a large amount of the

background. The main components of the background include ZZ continuous
spectrum production and Zbb, Ztt.

(4) 700 GeV< mh <1000 GeV h → ZZ → llνν:
The discovery capability using the h → ZZ → 4l decay mode goes down as the

mass goes up and hits the limit at around 800 GeV. This is mainly due to the
reduction of the counting rate but also because the width becomes large (Γh > 250
GeV). The resonance is no longer a sharp peak but a slow bump and is hard to
identify. There is also a theoretical question as to whether such a wide resonance
can be considered as a particle.

To extend the mass range, one needs to use other channels that include neutrinos
in the final state. For the large-mass Higgs, if the hermeticity of the detector is
good (i.e., if a condition that the missing energy vector can be well defined for
large rapidity holds), one may be able to reconstruct the missing energy. The Higgs
signal in this case appears as the Jacobian peak in the transverse momentum,21) a
fact that is utilized in identifying the W boson at the Tevatron. Because of the facts
that one cannot reconstruct the invariant mass and the width becomes large, one
may not be able to expect a sharp peak in the event distributions. The signal appears
as an excess over the background, and therefore understanding the background is
very important for the detection of the Higgs using the missing energy.

In summary, the LHC was designed to discover the SM Higgs having mass
110 GeV < mH < 1 TeV. It covers the entire mass range that is theoretically allowed.

1.7.6
Discovery of Higgs

Both ATLAS and CMS groups announced the discovery of Higgs-like particles at
the mass value mh ≃ 125 GeV in the summer of 2012. We present the signals in
the decay channels h → 𝛾𝛾 in Figure 1.23 and h → 4l in Figure 1.24.

The Higgs-like boson was produced with approximately the right values for
production cross sections as well as for branch decay modes that are expected for
the Higgs in the SM.

21) A peak at the edge of a spectrum that appears by a sharp cutoff of kinematic variables (in this case
pT ).
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Figure 1.23 (a) CMS event display for the
Higgs in the h → 2γ mode. (Reproduced
with permission of [100, 101].) (b) Invariant
mass distribution of diphoton candidates
for the combined

√
s = 7 TeV and

√
s = 8

TeV data samples obtained by ATLAS. The
result of a fit to the data of the sum of a

signal component fixed to mH = 126.8 GeV
and a background component described
by a fourth-order Bernstein polynomial are
superimposed. The bottom inset displays
the residuals of the data with respect to the
fitted background component. (Reproduced
with permission of [102].)

1.7.7
SM Higgs?

The question arises whether the discovered Higgs-like particle is really the SM
Higgs or something similar to it in other models.

Spin Parity of the Higgs The spin parity of the Higgs-like particle is converging
to 0+, although statistics are poor at this stage (summer, 2013). The CMS group
analyzed the spin parity of the Higgs using a kinematic discriminant which includes
the description of the interference of identical leptons in the 4e and 4𝜇 final states.
The discriminant adopts the matrix element likelihood approach (MELA) which
uses

JP =
SM

SM + JP

=
⎡⎢⎢⎣1 +

JP (mZ1
,mZ2

, Ω⃗|m4l)

SM(mZ1
,mZ2

, Ω⃗|m4l)

⎤⎥⎥⎦
−1

(1.115)

as a discriminant between the different spin-parity hypotheses. Here, SM is
the probability distribution for the SM Higgs boson hypothesis, and JP is the
probability for an alternative model. Figure 1.25a shows the distributions of JP .
Distributions in data (points with error bars) and expectations for background and
signal are shown for the alternative hypothesis between 0+ and 0−. Figure 1.25b
shows a distribution of q = −2 ln(JP∕SM) for the 0+ and 0− hypothesis. The arrow
indicates the observed value.
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Table 1.5 shows a summary result of the spin-parity analysis.
The analysis (Table 1.5) favors 0+ as the JP assignment of the Higgs-like particle.

Coupling Strength The best way to determine whether the observed particle is the
SM Higgs is to measure its coupling strength. In the SM, the coupling strength and
the mass are directly related by mf = yf v∕

√
2 for the fermion and mV = gV v∕2 for the

vector boson where v = 246 GeV is the VEV of the Higgs. The probability to observe
a particular Higgs production and decay mode, say, gg → h → ff , is proportional to

𝜎 ⋅ BR(gg → h → ff ) =
𝜎gg ⋅ Γff

ΓH

= 𝜎SM ⋅ BRSM ⋅

(κ2
g κ2

ff

κ2
H

)
(1.116)

where ΓH, Γff , etc. are total decay width of the Higgs and partial decay width for
h → ff . The variables κ2

ff
= Γff ∕Γff ,SM are the ratios of the coupling strength to

those of the Standard Model. When the mass of the Higgs is fixed to the observed
value mH = 125 GeV, all the decay widths can be calculated. Therefore, the ratio
𝜇 ≡ (𝜎 ⋅ B)ob∕(𝜎 ⋅ B)SM is a measure of how good the SM assumption is.

As an example, we show a test of the gluon-fusion production of the Higgs versus
vector boson fusion production. Figure 1.26a shows the measured 𝜇s for various

channels keeping only the two production couplings
(

(gg → H) + (gg → ttH) and

the vector fusion process (V∗ → VH)
)

free. As one is looking at the same decay

channels, all the uncertainties in the decay processes cancel each other and one
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Table 1.5 List of models used in analysis of spin-parity hypotheses corresponding to the
pure states of the type noted.(Reproduced with permission of [103, 104].)

JP Production Commment Expect 𝜇 = 1 Observed 0+ Observed JP CLs

0− gg → X Pseudoscalar 2.6𝜎 (2.8𝜎) 0.5𝜎 3.3𝜎 0.16%
0+

h
gg → X Higher dim operators 1.7𝜎 (1.8𝜎) 0.0𝜎 1.7𝜎 8.1%

2+mgg gg → X Minimal couplings 1.8𝜎 (1.9𝜎) 0.8𝜎 2.7𝜎 1.5%

2+mqq gg → X Minimal couplings 1.7𝜎 (1.9𝜎) 1.8𝜎 4.0𝜎 <0.1%

1− gg → X Exotic vector 2.8𝜎 (3.1𝜎) 1.4𝜎 >4.0𝜎 <0.1%
1+ gg → X Exotic Pseudovector 2.3𝜎 (2.6𝜎) 1.7𝜎 >4.0𝜎 <0.1%

The expected separation is quoted for two scenarios when the signal strength for each hypothesis is
predetermined from the fit to data (0P model) and when events are generated with SM expectation for
the signal yield (𝜇 = 1). The observed separation quotes consistency of the observation with the 0+

model or the JP model, and corresponds to the scenario when the signal strength is predetermined
from the fit to data. The last column quotes the confidence level criterion for the JP model.

can see the difference of the production mechanism. No deviations from the SM is
observed.

Because of multichannel productions in the hadron collider, the accuracy of the
coupling constants that can be obtained at LHC has some limitations. We show how
they can be improved if an electron–positron linear collider is used [Figure 1.26b]
[106]. The discovered Higgs-like particle indeed behaves like the SM Higgs.
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Figure 1.26 (a) Comparison of gluon–gluon
fusion and vector boson fusion for the pro-
duction of the Higgs and subsequent decays
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to the Standard Model. (Reproduced with
permission of [105].) (b) Comparison of
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1.7.8
MSSM Higgs and Future Prospect

Neutral Higgs Next, we investigate whether the Higgs fits to the SUSY. The
detection method for the neutral Higgs (H0, h0 A0) in the MSSM at the electron
collider is almost identical to that of the SM Higgs with increased degrees of freedom
given by the existence of A0. In addition to channels e−e+ → h0Z∗, h0A0 → ττbb,
a four-jet final state was also available. Figure 1.27a shows the excluded region
on the mh0 -tan 𝛽 plane obtained at the LEP collider. The discovered Higgs is also
compatible with its interpretation as the light Higgs h0 in SUSY for small (≪ 1)
and large (≫ 1) tan 𝛽.

Prospects at LHC The discovery method of MSSM Higgses at the hadron collider
is similar to that of the SM Higgs. The difference is that the number of Higgs
species has increased and it affects the decay branching ratios. Figure 1.27a shows
the excluded region by LEP in the (mh − tan 𝛽) plane. Figure 1.27b shows the
ATLAS team’s work on their capability of finding one or more of the MSSM
Higgs using various methods with an integrated luminosity of 300 fb−1. Although
parameters may have been taken a little optimistically, one sees that all the regions
are covered. The LHC has the capability of discovering at least one of the neutral
members of the Higgs in the MSSM [35, 94, 108].

If the light Higgs is discovered at LHC, one still has to distinguish whether it is
the SM Higgs or that of SUSY. To pinpoint the parameter values, it is necessary to



56 1 Higgs

0

1

1

2

3
4
5
6

7
8

9
10

20

30

40

50

10

20 40 60 80 100 120 140 50 100 150 200 250 300 350 400 450 500

mh (GeV c−2) mA (GeV)

ta
n
 β

ta
n
 β

mh−max

Excluded

by Lep

Theoretically

inaccessible

H ZZ(
*

)

H hh bbγγ

A Zh llbb

H/A

H /A

tt

tth, h bb

h γγ and

bH+
, H+ τνt

Wh / tth, h

ττ

H /A μμ

4 leptons

s = 189 GeV

Ldt = 175 pb
−1

s = 200 GeV

Ldt = 200 pb
−1

Ldt = 300 fb
−1

Maximal mixing

ATLAS

LEP2

(a) (b)

γγ

Figure 1.27 (a) MSSM light Higgs exclu-
sion contours by LEP experiments, at 95%
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The figure shows the excluded and theoret-
ically inaccessible regions in the (mh, tan 𝛽)
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to right, for mt = 169.3, 174.3, and 179.3.
(Reproduced with permission of [7, 107].) (b)
Predicted 5𝜎 discovery contours for MSSM
Higgs boson detection in various channels
in the mA − tan 𝛽 plane. (Reproduced with
permission of [35, 94, 108].)

determine the decay branching ratios or to discover directly the charged Higgs or
CP-odd A0. Figure 1.28a shows the excluded regions by the LHC on the mA-tan 𝛽
plane prior to the discovery of the Higgs.

The discovery of the Higgs particles at mh = 125 GeV, if interpreted as the light
Higgs of the MSSM, constrains the allowed region. Figure 1.28b shows the allowed
band (green band) at the tree level with mh = 125 ± 3 GeV limit [111]. The dark
(blue) areas are the excluded regions by LEP and Tevatron/LHC [109, 110], and
the gray area is the allowed region like the one shown in the left figure prior
to the discovery of the Higgs particle. Note, however, that the limit is obtained
by choosing other parameters governing the higher order corrections such that a
maximum value for mh is obtained (mmax

h
benchmark scenario). While the lower

limit is fairly stable, the upper limit is strongly dependent on the choice of the
parameters. Therefore, at this stage, the green band should be interpreted only as
the most favorable parameter region. The gray region above the band is disfavored
but by no means prohibited.

Charged Higgs The charged Higgs can be produced at the LEP through the
reaction

e− + e+ → H− + H+ (1.117)
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Figure 1.28 (a) Expected and observed
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of [111–113].) (Please find a color version of
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The Higgs decays preferentially to heavy particles. At the LEP, the main decay
modes are H+H− → τ+ντ−ν and (cs)(cs). Referring to Eq. (1.51), one can show

BR(H+ → τ+ν)
BR(H+ → cs)

≈
m2

τ tan 4 𝛽

3m2
c

(1.118)

As the detection of the H+ in both leptonic and hadronic decay modes is possible
in the electron collider, the lower limit of the mH+ independent of the value of tan 𝛽
was obtained by the LEP2 [114].

mH± > 79.3GeV [8] (1.119)

At the hadron collider, the charged Higgs boson can be produced in different
modes, but for mH± < mt − mb it can be produced via the decay t → bH+, H± → τν.
In the top quark decays, the W bosons decay equally to leptons of the three
generations, while H+ may decay predominantly into τν. Hence, an excess of tt
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events with at least one hadronically decaying τ lepton (τhad) in the final state, as
compared to the rate for tt events with only electrons and/or muons, is a signature
for charged Higgs bosons. One can use the ratio Rl to determine

Rl =
BR(tt → bb + lτhad + Nν)

BR(tt → bb + ll ′ + Nν)
(1.120)

where ll ′ stands for electrons and muons with l ≠ l ′, and Nν stands for any number
of neutrinos. Figure 1.29 shows the excluded region [115].

The mass region below 90 GeV was excluded by the Tevatron experiments
[116–118].

As the mass of the charged Higgs is constrained by the relation Eq. (1.59),
the discovery of the neutral Higgs at mh = 125 GeV constrains the minimum
mass value of the charged Higgs to mH± > 152 ∼161 GeV [111]. This means that
the detection of the charged Higgs in the decay channel of t → b + H± is nearly
excluded.

1.8
Summary

The discovery of the Higgs filled the last vacancy of the SM particles. But it has
posed a new problem. The SM explains the EW data so well that it has pushed
the boundaries of new physics beyond the limits predicted by many theoretical
considerations. The mass of the detected Higgs is quite consistent with the
predictions made by using the radiative corrections of the SM and the precision
EW data obtained at LEP and Tevatron. The problem is that the Higgs is too
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light. The SM corrections to the Higgs mass diverge quadratically and, in order to
reproduce the observed Higgs mass, the cutoff energy scale is constrained to be at
most ∼ O(1TeV). It contradicts the EW precision data analysis that no new physics
should come in below O(10) TeV. This is the little hierarchy problem.

One possible remedy was the SUSY. It was an aspired-for model because of its
many desirable features. The mass value 125 GeV is within the range of predictions
of SUSY. But it lies almost at the extreme limit of the allowed range. Many
options of the SUSY were excluded. More details of the SUSY will be discussed
in Chapter 5. The composite Higgs is another possibility. However, the composite
models tend to produce a large mass, and the observed mass is at the low-end limit.
To understand the dynamics that govern the Higgs, we need more experimental
inputs.




