Contents

Scientific Biographies of the Authors xiii
Scientific Biographies of the Co-Authors to Chapter 16 xvii
Preface xix

Part I General 1

1 Introduction 3
 Wolfram Oelßner
 Reference 6

2 Carbon Dioxide in General 7
 Detlev Möller, Manfred Decker, Jens Zosel, and Wolfram Oelßner
 2.1 Chemical and Physical Properties of Carbon Dioxide 7
 2.1.1 Chemical Properties of Carbon Dioxide 7
 2.1.1.1 Chemical Properties 7
 2.1.1.2 Industrial Use of Carbon Dioxide 8
 2.1.2 Physical Properties of Carbon Dioxide 9
 2.1.2.1 Mechanical Properties 9
 2.1.2.2 Thermally Related Properties 10
 2.1.2.3 Electrical Properties 12
 2.1.2.4 Optical Properties 12
 2.2 The Carbon Cycle 13
 2.2.1 Sources of Carbon on Earth 13
 2.2.2 Carbon Pools and Global Cycling 18
 2.2.3 Carbon Budget 23
 2.2.4 Subsurface CO₂ Monitoring 28
 2.3 Anthropogenic CO₂ 29
 2.3.1 Biomass Burning 30
 2.3.2 Land-Use Change and Deforestation 33
 2.3.3 Fossil Fuel Burning 35
 References 37
Part II Principles of Carbon Dioxide Sensors and Measuring Methods 45

3 Analytical Methods for the Detection of Gaseous CO₂ 47
Gerald Gerlach, Armin Lambrecht, and Wolfram Oelßner

3.1 Spectroscopy 47
3.1.1 Molecular Vibrations of Molecules, in Particular CO₂ 48
3.1.2 Characteristic Wave Numbers and Wavelengths of Gases 49
3.1.3 Absorption of Radiation in Molecules 52
3.1.4 Molecular Absorption in the Infrared Range 52
3.1.5 Line Shapes for Molecular Absorption in the Infrared Range 53
3.1.5.1 Line Broadening 54
3.1.5.2 High-Resolution Transmission Molecular Absorption Database 54
3.1.5.3 Lorentzian Line Shape 54
3.1.5.4 Gaussian Line Shape 55
3.1.5.5 Applicability of Line Shapes 55
3.1.5.6 Spectral Resolution of Individual Ro-vibrational Absorption Lines 55
3.1.6 CO₂ Absorption in the Infrared Range 55
3.1.7 Laser Spectroscopy 58
3.1.7.1 Basic Measurement Concepts 60
3.1.7.2 Properties of Lasers Suitable for TLAS 61
3.1.7.3 Laser Absorption Spectroscopy Measurement Schemes 62
3.2 Gas Chromatography 67
3.2.1 Functional Principle 67
3.2.2 Classification of Chromatographic Methods 69
3.2.3 Gas Chromatography Instrumental Components 69
3.2.3.1 Autosampler 70
3.2.3.2 Sample Injection Port 70
3.2.3.3 Column 71
3.2.3.4 Carrier Gas 72
3.2.3.5 Stationary Phase 72
3.2.3.6 Detectors 75
3.2.3.7 Data Analysis 75
3.2.4 Gas Chromatography of Gaseous CO₂ 76
3.3 Analytical Determination of CO₂ in Liquids 76

References 81

4 Electrochemical CO₂ Sensors with Liquid or Pasty Electrolyte 87
Manfred Decker, Wolfram Oelßner, and Jens Zosel

4.1 Severinghaus-Type Membrane-Covered Carbon Dioxide Sensors 87
4.1.1 The Severinghaus Principle 87
4.1.1.1 Stow's Electrode with [Na⁺] = 0 mol l⁻¹ 92
4.1.1.2 Severinghaus Electrode with [Na⁺] > 0.001 mol l⁻¹ 93
4.1.2 Sensor Electrolyte 95
4.1.3 Membrane Materials 96
4.1.4 Temperature Dependence 98
4.1.5 Response Behaviour 98
4.1.6 Calibration of Electrochemical CO₂ Sensors 102

4.2 Coulometric and Amperometric CO₂ Sensors 103
4.2.1 Operation Principle 103
4.2.2 IrO₂ Electrode 105
4.2.3 Amperometric CO₂ Sensors 105

4.3 Conductometric CO₂ Sensors 108

4.4 Quinhydrone CO₂ Electrode 110

References 111

5 Potentiometric CO₂ Sensors with Solid Electrolyte 117
Hans Ulrich Guth
5.1 Indirect Measurement of CO₂ in Hot Water Gas 117
5.2 Direct CO₂ Measurement with Solid Electrolyte Cells 119
5.2.1 Functional Principles of Solid Electrolyte CO₂ Cells 119
5.2.2 General Setup 123
5.2.2.1 Pellet Sensors 123
5.2.2.2 Thick-Film Sensors 123
5.3 Solid-State Sensors Based on Changes in Capacity and Resistivity 129
References 130

6 Opto-Chemical CO₂ Sensors 133
Gerald Gerlach and Wolfram Oelßner
6.1 Liquid Reagent-Based Opto-Chemical CO₂ Sensors 133
6.2 CO₂ Detector Tubes 136
6.3 Fibre-Optic Fluorescence CO₂ Sensors 141
6.3.1 Fibre-Optic Sensors 141
6.3.1.1 Light Propagation in Optic Fibres 141
6.3.1.2 General Set-Up and Basic Components 142
6.3.1.3 Optical Fibres 142
6.3.1.4 Interaction Between Light and External Measurand 144
6.3.1.5 Advantages of Fibre-Optic Sensors 146
6.3.2 Fibre-Optic Fluorescence Gas Sensors 146
6.3.2.1 General 146
6.3.2.2 Fluorescent Sensor Dyes for CO₂ Detection 146
6.3.2.3 Fibre-Optic CO₂ Sensors 148
6.3.2.4 Commercial Fibre-Optic CO₂ Sensor Solutions 150
References 152

7 Non-dispersive Infrared Sensors 157
Gerald Gerlach
7.1 Basic Principle and General Set-Up 157
7.1.1 General Set-Up 157
7.1.2 Gas Selectivity 159
7.2 NDIR Components 159
7.2.1 Infrared Detectors 159
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1.1 Pyroelectric IR Sensors</td>
<td>160</td>
</tr>
<tr>
<td>7.2.1.2 Thermopiles</td>
<td>164</td>
</tr>
<tr>
<td>7.2.1.3 Comparison of Detectors</td>
<td>165</td>
</tr>
<tr>
<td>7.2.2 Wavelength Selection by IR Filters</td>
<td>167</td>
</tr>
<tr>
<td>7.2.2.1 IR Filters</td>
<td>167</td>
</tr>
<tr>
<td>7.2.2.2 Fabry–Pérot Filters</td>
<td>168</td>
</tr>
<tr>
<td>7.2.3 IR Radiation Sources</td>
<td>171</td>
</tr>
<tr>
<td>7.2.3.1 Requirements</td>
<td>171</td>
</tr>
<tr>
<td>7.2.3.2 IR Radiation Source Selection</td>
<td>171</td>
</tr>
<tr>
<td>7.2.3.3 Thermal Emitters</td>
<td>173</td>
</tr>
<tr>
<td>7.2.4 Gas Sensors for Measuring CO₂ in Gas Mixtures</td>
<td>174</td>
</tr>
<tr>
<td>7.3 NDIR Sensors</td>
<td>175</td>
</tr>
<tr>
<td>7.3.1 Commercial NDIR Sensors</td>
<td>175</td>
</tr>
<tr>
<td>7.3.2 Application for Very Small Concentrations and for Liquid Samples</td>
<td>177</td>
</tr>
<tr>
<td>7.3.2.1 Pre-Concentrators for Low Gas Concentrations</td>
<td>177</td>
</tr>
<tr>
<td>7.3.2.2 Measurement of Dissolved CO₂ in Liquids by Using Permeation Methods</td>
<td>177</td>
</tr>
<tr>
<td>7.4 IR Spectrometers</td>
<td>178</td>
</tr>
<tr>
<td>7.4.1 Types of IR Spectrometers</td>
<td>178</td>
</tr>
<tr>
<td>7.4.2 Applications</td>
<td>181</td>
</tr>
<tr>
<td>7.5 IR Imaging for CO₂ Detection</td>
<td>182</td>
</tr>
<tr>
<td>References</td>
<td>184</td>
</tr>
</tbody>
</table>

8 Photoacoustic Detection of CO₂ 191
Frank Kühnemann

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Photoacoustic Effect and Photoacoustic Gas Detection</td>
<td>191</td>
</tr>
<tr>
<td>8.1.1 Photoacoustic Cell as Gas-Specific Radiation Detector</td>
<td>192</td>
</tr>
<tr>
<td>8.1.2 Photoacoustic Detection in the Sample Cell</td>
<td>193</td>
</tr>
<tr>
<td>8.2 Photoacoustic Signal Generation</td>
<td>194</td>
</tr>
<tr>
<td>8.3 Photoacoustic Gas Analysis with Thermal Sources</td>
<td>197</td>
</tr>
<tr>
<td>8.3.1 Photoacoustic Cell as Gas-Specific Radiation Detector</td>
<td>197</td>
</tr>
<tr>
<td>8.3.2 Miniaturized PA Detection Systems</td>
<td>199</td>
</tr>
<tr>
<td>8.3.3 Photoacoustic Detection in the Gas Sample</td>
<td>200</td>
</tr>
<tr>
<td>8.4 Laser-Based Photoacoustic Trace Gas Detection</td>
<td>202</td>
</tr>
<tr>
<td>8.4.1 General Overview</td>
<td>202</td>
</tr>
<tr>
<td>8.4.2 Resonant Photoacoustic Cell Design</td>
<td>203</td>
</tr>
<tr>
<td>8.4.3 Acoustic Detectors</td>
<td>204</td>
</tr>
<tr>
<td>8.4.3.1 Quartz-Enhanced Photoacoustic Spectroscopy</td>
<td>205</td>
</tr>
<tr>
<td>8.4.3.2 Cantilever-Enhanced Laser-PAS</td>
<td>208</td>
</tr>
<tr>
<td>8.4.4 Detection Limits of CO₂ Gas Analysis with Laser-Based PAS</td>
<td>209</td>
</tr>
<tr>
<td>References</td>
<td>210</td>
</tr>
</tbody>
</table>

9 Acoustic CO₂ Sensors 215
Gerald Gerlach

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Basic Principles of Resonant Sensors</td>
<td>216</td>
</tr>
<tr>
<td>9.1.1 General Set-Up</td>
<td>216</td>
</tr>
</tbody>
</table>
9.1.2 Piezoelectric Resonators 218
9.1.2.1 Circuit Model 218
9.1.2.2 Resonance Frequencies 220
9.1.2.3 Types of Piezoelectric Resonant Sensors 221
9.2 Quartz Crystal Microbalance Sensors 222
9.2.1 Quartz as Resonator Material 222
9.2.2 Thickness Shear Mode Sensors 223
9.2.2.1 Vibration Modes 223
9.2.2.2 Sensitivity 225
9.2.2.3 Commercial QCM Sensors 226
9.2.3 CO₂-Sensitive Coating 226
9.2.4 Other Applications of CO₂-Sensitive QCMs 226
9.3 Surface Acoustic Wave Sensors 228
9.3.1 Operation Principle 228
9.3.1.1 Excitation of Surface Acoustic Waves 228
9.3.1.2 Operation Modes of SAW Sensors 229
9.3.2 SAW Sensor Materials 231
9.3.3 SAW Devices 232
9.3.4 CO₂-Sensitive SAW Sensors 235
9.4 Ultrasonic CO₂ Sensors 235
9.4.1 Operation Principle 235
9.4.1.1 Velocity of Sound in Gases 235
9.4.1.2 Basic Set-Up 239
9.4.2 Ultrasonic Sensors for CO₂ Detection 240
References 241

10 Miscellaneous Approaches 247
Wolfram Oelßner, Manfred Decker, and Gerald Gerlach
10.1 Hydrogel-Based CO₂ Sensors with Pressure Transducer 247
10.2 Miniaturized and ISFET-Based CO₂ Sensors 250
10.3 Thermal Conductivity CO₂ Detectors 253
10.4 Membrane-Based CO₂ Sensors with Pressure Measurement 256
References 258

11 Survey and Comparison of Methods 263
Hans Ulrich Guth, Gerald Gerlach, and Wolfram Oelßner

Part III Applications 273

12 Environmental CO₂ Monitoring 275
Detlev Möller and Wolfram Oelßner
12.1 CO₂ and Climate Change 275
12.1.1 The Carbon Dioxide Environmental Problem 275
12.1.2 Rise of Atmospheric CO₂ 276
12.2 Atmospheric CO₂ 279
12.2.1 Pre-industrial CO$_2$ Level 279
12.2.2 Pre-industrial CO$_2$ Level Derived from Ice Core Data 283
12.2.3 CO$_2$ Increase in the Twentieth Century 286
12.2.3.1 Mauna Loa CO$_2$ Record 286
12.2.3.2 Latitudinal Variation 289
12.2.3.3 Timely Variations 290
12.2.3.4 The City Dome CO$_2$ 291
12.2.4 Atmospheric CO$_2$ Residence Time 292
12.2.5 Atmospheric CO$_2$ Chemistry 294
12.3 Oceanic and Water CO$_2$ and Carbonate Content 297
12.3.1 CO$_2$ Water Chemistry 297
12.3.2 Total Dissolved Carbon (DIC) 301
12.3.3 Changing Seawater Carbonate 303
12.3.4 Oceanic CO$_2$ Measurements 307
12.3.5 CO$_2$ Measurements in Waters and Boreholes 312

References 317

13 CO$_2$ Safety Control 329
Wolfram Oelßner
13.1 Limit Values for CO$_2$ Concentrations at Workplaces 329
13.2 CO$_2$ in Buildings and Workplaces 330
13.2.1 Air Quality with Respect to CO$_2$ 330
13.2.2 Sick-Building Syndrome 332
13.2.3 Dangerous Areas 334
13.3 CO$_2$ Warning Devices 336
13.3.1 CO$_2$ Detector and Dosimeter Tubes 336
13.3.2 Electrochemical CO$_2$ Sensors 337
13.3.3 NDIR CO$_2$ Sensors 338
13.3.3.1 Properties 338
13.3.3.2 Calibration of NDIR CO$_2$ Measuring Devices 341
13.3.3.3 Pressure Dependence 341
13.3.3.4 Response Time 342
13.3.4 Solid Electrolyte CO$_2$ Sensors 342
13.3.5 Gas Chromatograph with Thermal Conductivity Detector 343
References 343

14 CO$_2$ Measurement in Biotechnology and Industrial Processes 349
Wolfram Oelßner and Jens Zosel
14.1 Beverage and Food Industry 349
14.1.1 Sensor Principles 350
14.1.1.1 Electrochemical Sensors 350
14.1.1.2 p/T (Pressure/Temperature) Sensors 350
14.1.1.3 NIR-Based In-Line CO$_2$ Measurement 351
14.1.1.4 Thermal Conductivity Sensors 351
14.1.1.5 Other Sensor Principles 351
14.1.2 Application Examples 352
14.2 Bioreactors 356
14.3 Biogas Plants 359
References 362

15 CO₂ Measurements in Biology 367
 Wolfram Oelßner
15.1 Aquatic Animals 367
 15.1.1 Fish 367
 15.1.1.1 Influence of CO₂ Concentration on Fish 367
 15.1.1.2 Methods to Determine CO₂ Concentrations 368
 15.1.1.3 Behaviour of Fish in Regions with Increased CO₂ Concentration 369
 15.1.2 Mussels 372
 15.1.2.1 Respiratory Quotient 372
 15.1.2.2 Respiratory Exchange 373
15.2 Insects 376
 15.2.1 CO₂ Measurements on Butterfly Pupae 376
 15.2.2 CO₂ Measurements on Honeybees 379
15.3 Plants 381
References 385

16 CO₂ Sensing in Medicine 391
 Gerald Urban, Josef Guttmann, Jochen Kieninger, Andreas Weltin,
 Jürgen Wöllenstein, and Jens Zosel
16.1 Introduction 391
16.2 Physiological Background of CO₂ Sensing 392
16.3 Measuring Principles 393
 16.3.1 Electrochemical Principle: Severinghaus Method 393
 16.3.2 Optical Principles 394
 16.3.3 New and Unconventional CO₂ Measuring Principles 395
16.4 Clinical Applications 395
 16.4.1 Blood Gas Analysing Devices 395
 16.4.2 Monitoring Devices 396
 16.4.2.1 Transcutaneous pCO₂ Measurement (tcpCO₂) 396
 16.4.2.2 Blood Monitoring Devices: Direct Venous or Arterial Monitoring of
 Blood Gases 398
16.5 Comparison of Methods and Conclusions 399
16.6 CO₂ Analysis in Human Breath 399
 16.6.1 Methods for CO₂ Detection in Breath 400
 16.6.1.1 Qualitative and Semi-Quantitative Detection 400
 16.6.1.2 Quantitative Detection by Non-Dispersive Infrared Absorption 401
16.7 CO₂ Measurements on Baby Mattresses 405
References 408

Index 415