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1.1
A General Introduction

1.1.1
A Prologue

In this chapter, which essentially deals with exact solutions to the wave equations,
we begin by introducing the topic of non-diffracting waves (NDW), including
some brief historical remarks, and by a simple definition of NDWs; afterward
we present some recollections – besides of ordinary waves (Gaussian beams,
Gaussian pulses) – of the simplest NDWs (Bessel beams, X-shaped pulses, etc.).
More details can be found in the first two (introductory) chapters of the volume
on Localized Waves published [1] in 2008. In section 1.2 we go on to show
how to eliminate any backward-traveling components (also known as non-causal
components), first in the case of ideal NDW pulses, and then, in section 1.3, for
realistic, finite-energy NDW pulses. In particular, in section 1.3.1 we forward a
general functional expression for any totally-forward non-diffracting pulses. Then,
in section 1.4 an efficient method is set forth for the analytic description of truncated
beams, a byproduct of its being the elimination of any need of lengthy numerical
calculations. In section 1.5 we explore the not-less-interesting question of the
subluminal NDWs, or bullets, in terms of two different methods, the second one
being introduced as it allows the analytic description of NDWs with v = 0 that is
of NDWs with a static envelope (‘‘frozen waves’’ (FW)) in terms of continuous
Bessel beam superpositions. The production of such FWs (which, indeed, have
been generated experimentally in recent time for optics) is developed theoretically
in section 1.6 also for the case of absorbing media. Section 1.7 discusses the
role of special relativity and of Lorentz transformations (LTs), which is relevant
for the physical comprehension of the whole issue of NDWs. In section 1.8 we
present further analytic solutions to the wave equations, with use of higher-order
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Bessel beams (namely, non-axially symmetric solutions). Next, section 1.9 deals in
detail with an application of NDWs to biomedical optics by having recourse to the
generalized Lorenz–Mie theory (GLMT). In section 1.10 we exploit the important
fact that ‘‘soliton-like’’ solutions can be found also in the rather different case of the
ordinary, linear Schroedinger equation – which is not a properly said wave equation –
within standard quantum mechanics; by also constructing, for instance, a general
exact non-diffracting solution for such equation. These ‘‘localized’’ solutions to the
Schroedinger equation may a priori be of help for a better understanding, say, of de
Broglie’s approach and of the particle-wave duality. Some complementary issues
are mentioned in the last section.

Let us now start by recalling that diffraction and dispersion are long-known
phenomena limiting the applications of beams or pulses.

Diffraction is always present, affecting any waves that propagate in two or three-
dimensional (3D) media. Pulses and beams are constituted by waves traveling
along different directions, which produces a gradual spatial broadening. This effect
is a limiting factor whenever a pulse is needed, which maintains its transverse
localization, like, for example, in free space communications, image forming,
optical lithography, and electromagnetic tweezers, etc.

Dispersion acts on pulses propagating in material media causing mainly a
temporal broadening, an effect due to the variation of the refraction index with the
frequency, so that each spectral component of the pulse possesses a different phase
velocity. This entails a gradual temporal widening, which constitutes a limiting
factor when a pulse is needed that maintains its time width, like, for example, in
communication systems.

It has been important, therefore, to develop techniques able to reduce those
phenomena. NDW, known also as localized waves, are, indeed, able to resist
diffraction for a long distance. Today, NDW are well-established both theoretically
and experimentally, and have innovative applications not only in vacuum, but also
in material (linear or nonlinear) media, also showing resistance to dispersion.
As mentioned, their potential applications are being explored intensively, always
with surprising results, in fields like acoustics, microwaves, and optics, and are
also promising in mechanics, geophysics [2], and even elementary particle physics
[3] and gravitational waves. One interesting acoustic application has been already
obtained in high-resolution ultra-sound scanning of moving organs in the human
body. We shall see that NDWs are suitable superpositions of Bessel beams. And
worth noticing is that peculiar superposition of Bessel beams can be used to obtain
‘‘static’’ NDW fields, with high transverse localization, and whose longitudinal
intensity pattern can assume any desired shape within a chosen interval 0 ≤ z ≤ L
of the propagation axis; such waves with a static envelope [1, 4–7], that we called
FW, have been produced experimentally in recent times in the case of optics, as
reported elsewhere also in this book. These FWs promise to have very important
applications (even in the field of medicine and of tumor curing [8]).

To confine ourselves to electromagnetism, let us recall again the present-
day studies on electromagnetic tweezers, optical (or acoustic) scalpels, optical
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guiding of atoms or (charged or neutral) corpuscles, optical lithography, optical (or
acoustic) images, communications in free space, remote optical alignment, optical
acceleration of charged corpuscles, and so on.

1.1.2
Preliminary, and Historical, Remarks

Ordinary beams and pulses are superpositions of plane waves that travel in
different directions; this causes diffraction and, consequently, an increasing spatial
broadening of the waves during propagation. Incidentally, we are considering here
only propagating, that is non-evanescent, waves.

Surprisingly, solutions to the wave equations exist, which represent in homo-
geneous media beams and pulses able to resist the effects of diffraction for long
distances. Such solutions are called NDW, or localized waves (LW); even if a better
name would be ‘‘limited-diffractions waves’’ [9, 10].

The theory of NDWs also allows compensating for effects like dispersion and
attenuation. Indeed, in dispersing homogeneous media, it is possible to construct
pulses that simultaneously resist the effects of diffraction and of surface dispersion.
And, in absorbing homogeneous media, it is also possible to construct beams that
resist the simultaneous effects of diffraction and of attenuation.

For earlier reviews about NDWs, we refer the reader, for instance, to the first
two chapters of the Localized Waves [1], as well as Advances in Imaging and Electron
Physics [11], and references therein. There, the reader will find general and formal
(simple) introductions to NDWs, with more details on the separate cases of beams
and of pulses, as well as on the rather different characteristics of the Bessel and
of NDWs, with respect to (w.r.t.) the Gaussian ones. The important properties of
the former w.r.t. the latter ones can find application, as well-known and as stressed
therein, in all fields in which an essential role is played by a wave–equation (e.g.,
electromagnetism, optics, acoustics, seismology, geophysics, and also gravitation,
and elementary particle physics).

Here, let us only insert the following, quite brief historical information.
The non-diffracting solutions to the wave equations (scalar, vectorial, spinorial

etc.) have been in fashion, both in theory and in experiment, for a couple of decades.
Rather well known are the ones with luminal or superluminal peak-velocity [1] like
the so-called X-shaped waves (see [9, 12, 13] and references therein), which are
supersonic in acoustics [10], and superluminal in electromagnetism (see [14]; see
also [15] and [16]).

It has already been recognized by Bateman [17] and later on Courant and Hilbert
[18], that luminal NDWs exist, which are solutions to the wave equations. After
subsequent early works, already quoted by us, a great deal of results [19] have
been published on NDWs, from both the theoretical and the experimental point
of view: initially, taking only free space into account, and, later on, considering
more complex media, which exibit effects such as dispersion (see, e.g. [20–22]),
nonlinearity [23], anisotropy [24–26], losses [5], and so on. Extensions of this type
have been carried out along with the development, for instance, of efficient methods
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for obtaining non-diffracting beams and pulses in the subluminal, luminal, and
superluminal regimes, thus allowing easier experimental verifications.

Indeed, in recent years, some attention [19, 27–33] started to be paid to the
(more ‘‘orthodox’’) subluminal NDWs, too. It should be stressed that, in any case,
the interest in NDWs resides not in their peak-velocity [34–36] but in that they
propagate in a homogeneous linear medium without distortion – and in a self-
reconstructing way [5, 37, 38] (apart from local variations, in the sense that their
square magnitude keeps its shape during propagation, while local variations are
shown only by its real, or imaginary, part).

In the past, however, little attention was paid to Brittingham’s 1983 paper
[39], wherein he obtained pulse-type solutions to the Maxwell equations, which
propagated in free space as a new kind of c-speed ‘‘solitons.’’ That lack of attention
was partially due to the fact that Brittingham had neither been able to get finite-
energy expressions for his ‘‘wavelets’’ nor to make suggestions about their practical
production. Two years later, however, Sezginer [40] was able to obtain quasi-
non-diffracting luminal pulses endowed with a finite energy: Finite-energy pulses
are known not to travel undistorted for an infinite distance, but nevertheless
propagate without deformation for a long field-depth, much larger than the one
achieved by ordinary pulses like the Gaussian ones (see, e.g., [41–52] and references
therein).

An interesting problem, indeed, was that of investigating what would happen
to the ideal Bessel beam solution when truncated by a finite transverse aperture. In
1987 a heuristical answer was found after the quoted series of pioneering papers
[41–44] from the experiments by Durnin et al. [45, 46], when it was shown that a
realistic Bessel beam, passing through a finite aperture, is able to travel keeping
its transverse intensity shape approximately unchanged all along a large ‘‘depth of
field.’’

In any case, only after 1985 a general theory of NDWs started to be exten-
sively developed [9, 12, 14, 53–65], both in the case of beams and in the case
of pulses. For reviews, see, for instance [1, 11, 13, 48, 50–52, 61] and references
within. For the propagation of NDWs in bounded regions (like wave-guides), see
[66–68] and references therein. For the focusing of NDWs, see, for example [1,
69, 70], and references therein. For recourse to chirped optical X-type waves to
obtain pulses capable of recovering their spatial shape both transversally and
longitudinally, see, for example, [1, 71] and references therein. Not less im-
portant, for the construction of general NDWs propagating in dispersive media,
see, besides the quoted [20–22], also [72–74]; while, for lossy media, see, for
example [1, 5, 69, 70] and references therein, and this chapter. Finally, for finite-
energy, or truncated, solutions see, for example, [57, 75–79] as well as this
chapter.

NDWs have now been produced experimentally [10, 80–83], and are being
applied in fields ranging from ultrasound scanning [30, 33, 77, 84] to optics
(for the production, e.g., of new type of tweezers [5, 8, 85–87]). All those works
have demonstrated that non-diffracting pulses can travel with any arbitrary peak-
velocities v, that is with speed v in the range 0 < v < ∞.



1.1 A General Introduction 5

Let us introduce at this point a first mathematical definition of NDWs.
Diffraction, as a spatial transverse spreading, cannot occur in the simple case of

one space dimension (1D). Actually, the 1D wave equation

(∂2
z − 1/c2∂2

t )ψ(z, t) = 0 (1.1)

admits the general solution ψ = f (z − ct) + g(z + ct), quantities f and g being
arbitrary (differentiable) functions; and, for instance, a solution of the type ψ(z − ct)
travels rigidly along the positive z-direction with speed c. Let us here recall, and
stress, that if a wave depends on t and z only through the quantity z − Vt, it will be
seen as moving without any distortion with the speed V : see, for example [13], and
references therein.

Moving on to the 3D case, when the wave equation reads

(∇2
⊥ + ∂2

z − 1/c2∂2
t )ψ(r⊥, z, t) = 0 (1.2)

quantity ∇2
⊥ being the transverse Laplacian, and r⊥ the transverse position vector

(so that r = r⊥ + zk), it is natural to look for possible solutions of the type

ψ(r⊥, z − Vt) (1.3)

which would correspond to waves rigidly propagating along z with speed V ,
whatever the value of V is (see [1, 13]). To check the mentioned possibility, let us
go back to Equation 1.2. It is simple to show, then, that an acceptable solution of
the type 3 has just to satisfy the equation

(∇2
⊥ + (1 − V2/c2)∂2

ζ )ψ(r⊥, ζ ) = 0 (1.4)

where ζ ≡ z − Vt. (Let us explicitly repeat and recall [50] that the shape of any
solutions that depend on z and on t only through the quantity z − Vt will always
appear the same to an observer traveling along z with the speed V , whatever be
(subluminal, luminal, or superluminal) the value of V ; that is, such a solution will
propagate rigidly with speed V .]

One can therefore realize the following:

1) When V = c, Equation 1.4 becomes elliptic; namely, it becomes a Laplace
equation in the transverse variables, which prevents the free-space solution
from being localizable transversally. In other words, these solutions are plane
waves, or plane wave pulses, with scarce practical interest.

2) When V < c, Equation 1.4 is still elliptic; more specifically, it is a Laplace
equation in the variables (x, y, ζ

√
1 − V2/c2), so that the free-space solutions

cannot admit any local maxima or minima. No solutions of physical interest
are obtainable.

3) When V > c, however, Equation 1.4 is hyperbolic, and it becomes possible to
obtain non-diffracting solutions of the type ψ(r⊥, z − Vt), both for beams and
for pulses.

The latter simple and interesting result shows that, when basing ourselves on
Equation 1.4, the solutions that can propagate rigidly (i.e., without any spatial
modifications) are those corresponding to V > c. In the case of beams, V is
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merely the phase velocity; but, in the case of pulses it is the peak velocity
(sometimes identified with the group-velocity). Incidentally, it is known that, when
one superposes waves whose phase-velocity does not depend on their frequency,
such a phase-velocity becomes2) the actual peak-velocity [50, 67, 88].

Many interesting solutions of this kind exist [1, 9, 10, 14, 57], and some of them
will be mentioned in this chapter, and in this very book. From a historical point of
view, let us repeat that such solutions to the wave equations (and, in particular, to
the Maxwell equations, under weak hypotheses) were predicted theoretically a long
time ago [17, 18, 89, 90], mathematically constructed in more recent times [9, 14,
91], and, soon after, produced experimentally [10, 80–83].

However, it is rather restrictive to define a NDW as a solution of the type 3, with
V > c. Actually, subluminal NDW solutions to the wave equations also exist [19],
and they, too, are rather interesting, as we shall discuss below.

1.1.3
Definition of Non-Diffracting Wave (NDW)

Therefore, it is convenient to formulate a more comprehensive definition, wherefrom
to derive a much ampler set of solutions (superluminal, luminal, or subluminal) ca-
pable of withstanding diffraction, both for infinite distances, in the ideal case (of infi-
nite energy), and for large, but finite distances, in the realistic case (of finite energy).

Let us start by formulating an adequate definition of an ideal NDW.
Let us consider a linear and homogeneous wave equation in free space. In

cylindrical coordinates (ρ, φ, z) and using a Fourier–Bessel expansion, its general
solution ψ(ρ, φ, z, t) can be expressed, when disregarding evanescent waves, as

�(ρ, φ, z, t) =
∞∑

n=−∞

[∫ ∞

0
dkρ

∫ ∞

−∞
dkz

∫ ∞

−∞
dω kρA′

n(kρ , kz, ω)Jn(kρρ)eikzze−iωteinφ

]

(1.5)

with

A′
n(kρ , kz, ω) = An(kz, ω) δ

[
k2
ρ −

(
ω2

c2
− k2

z

)]
(1.6)

the An(kz, ω) being arbitrary functions, and δ(•) the Dirac delta function. It is
important to emphasize that the Jn(kρρ) are n-order Bessel functions. For simplicity,
many authors often confine themselves to the zero-order Bessel functions J0(•).

An ideal NDW is a wave that must be capable of maintaining indefinitely its
spatial form (except for local variations) while propagating. This property may
be mathematically expressed, when assuming propagation in the z-direction, as
follows:

�(ρ, φ, z, t) = �

(
ρ, φ, z + 
z0, t + 
z0

V

)
(1.7)

2) Let us here recall that the group velocity can be written as vg = ∇kω = ∂ω/∂kz z only when kx
and ky remain (almost) constant in the considered superposition, as it happens, for example, in
the case of metallic guides.
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where 
z0 is a chosen length, and V is the pulse-peak velocity, with 0 ≤ V ≤ ∞.
Then, by using Equation 1.5 into Equation 1.7, and taking account of Equation 1.6,
one can show [1, 12, 63] that any non-diffracting solution can be written as

�(ρ, φ, z, t) =
∞∑

n=−∞

∞∑
m=−∞

[ ∫ ∞

−∞
dω

∫ ω/c

−ω/c
dkzAnm(kz, ω)

× Jn

(
ρ

√
ω2

c2
− k2

z

)
eikzze−iωteinφ

]
(1.8)

with

Anm(kz, ω) = Snm(ω)δ(ω − (Vkz + bm)) (1.9)

where bm = 2mπV/
z0 (with m an integer number too, of course), while quantity
Snm(ω) is an arbitrary frequency spectrum. Notice that, owing to Equation 1.9, each
term in the double sum (1.8), namely in its expression within square brackets, is
a truly NDW (beam or pulse); and their sum (1.8) is just the most general form
representing an ideal NDW according to definition 1.7.

One should also notice that (1.8) is nothing but a superposition of Bessel beams
with a specific ‘‘space–time coupling,’’ characterized by linear relationships between
their angular frequency ω and their longitudinal wave number kz.

Concerning such a superposition, the Bessel beams with ω/kz > 0 (ω/kz < 0)
propagate in the positive (negative) z-direction. As we wish to obtain NDWs
propagating in the positive z-direction, the presence of ‘‘backward’’ Bessel beams
is not desirable, that is, of ‘‘backward components’’ – often called non-causal,
as they should be entering the antenna or generator. The problems with the
backward-moving components, that so frequently plague the localized waves, can be
overcome, however, by appropriate choices of the spectrum (1.9), which can totally
eliminate those components, or minimize their contribution, in superposition
(1.8). Let us notice that often only positive values of ω are considered (0 ≤ ω ≤ ∞).

Another important point refers to the energy [12, 40, 52, 92] of the NDWs. It
is well known that any ideal NDW, that is, any field with the spectrum (1.9),
possesses infinite energy. However, finite-energy NDWs can be constructed by
concentrating the spectrum Anm(kz, ω) in the surrounding of a straight line of the
type ω = Vkz + bm instead of collapsing it exactly over that line [12, 63]. In such
a case, the NDWs get a finite energy, but, as we know, are endowed with finite
field depths, that is, they maintain their spatial forms for long (but not infinite)
distances.

Despite the fact that expression 1.8, with Anm(kz, ω) given by Equation 1.9, does
represent ideal NDWs, it is difficult to use it for obtaining analytical solutions,
especially when there is the task of eliminating the backward components. This
difficulty becomes even worse in the case of finite-energy NDWs. We shall come
back to this point in section 1.2.
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1.1.4
First Examples

Before going on, let us be more concrete. First of all, let us notice that Equation 1.5,
for n = 0 and on integrating over kz, reduces to the less general – but still quite
useful – solution

ψ(ρ, z, t) =
∫ ∞

−∞

∫ ω/ckρ

0
J0(kρ ρ) ei

√
ω2/c2−k2

ρ z e−iωt S(kρ, ω) dkρ dω (1.10)

where S(kρ, ω) is now the chosen spectral function, with only kz > 0 (and we still
disregard evenescent waves). We are using the standard relation

ω2

c2
= k2

ρ + k2
z (1.11)

From the integral solution (1.10) one can get in particular, for instance, the
(non-localized) Gaussian beams and pulses, to which we shall refer for illustrating
the differences of the NDWs w.r.t. them.

The Gaussian beam is a very common (non-localized) beam [93], corresponding
to the spectrum

S(kρ, ω) = 2a2 e−a2k2
ρ δ(ω − ω0) (1.12)

In Equation 1.12, a is a positive constant, which will be shown to depend on the
transverse aperture of the initial pulse.

The integral solution (1.10), with spectral function (1.12), can be regarded as
a superposition of plane waves: namely, of plane waves propagating in all directions
(always with kz ≥ 0), the most intense ones being those directed along (positive) z
(especially when 
kρ ≡ 1/a 
 ω0/c). This is depicted clearly in Figure 1.4 of [1].

On substituting Equation 1.12 into Equation 1.10 and adopting the paraxial
approximation (which is known to be just valid if 
kρ ≡ 1/a 
 ω0/c), one meets
the Gaussian beam

ψgauss(ρ, z, t) =
a2 exp

(
−ρ2

4(a2+i z/2k0)

)
(a2 + i z/2k0)

eik0(z−ct) (1.13)

where k0 = ω0/c. We can verify that the magniture |ψ | of such a beam, which suffers
transverse diffraction, doubles its initial width 
ρ0 = 2a after having traveled the
distance zdif = √

3 k0
ρ2
0/2, called the diffraction length. The more concentrated

a Gaussian beam happens to be, the more rapidly it gets spoiled.
The most common (non-localized) pulse is the Gaussian pulse, which is obtained

from Equation 1.10 by using the spectrum [71]

S(kρ, ω) = 2ba2

√
π

e−a2k2
ρ e−b2(ω−ω0)2

(1.14)

where a and b are positive constants. Indeed, such a pulse is a superposition of
Gaussian beams of different frequency.
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Now, on substituting Equation 1.14 into Equation 1.10, and adopting once more
the paraxial approximation, one gets the Gaussian pulse:

ψ(ρ, z, t) =
a2 exp

(
−ρ2

4(a2+iz/2k0)

)
exp

(−(z−ct)2

4c2b2

)
a2 + iz/2k0

(1.15)

endowed with speed c and temporal width 
t = 2b, and suffering a progressing
enlargement of its transverse width, so that its initial value gets doubled already
at position zdif = √

3 k0
ρ2
0/2 , with 
ρ0 = 2a. Let us remember that the paraxial

approximation is really valid in the pulse case only if there hold the two conditions

kρ ≡ 1/a 
 ω0/c and 
ω = 1/b 
 ω0, imposing a slow variation of the envelope.

1.1.5
Further Examples: The Non-Diffracting Solutions

Let us finally go on to the construction of the two most renowned localized waves
[48]: the Bessel beam and the ordinary X-shaped pulse. First of all, let us recall
that, when superposing (axially symmetric) solutions of the wave equation in the
vacuum, three spectral parameters, (ω, kρ, kz), come into the play, which have,
however, to satisfy the constraint (1.11), deriving from the wave equation itself.
Consequently, only two of them are independent, and we here choose ω and
kρ. Such a possibility of choosing ω and kρ was already apparent in the spectral
functions generating Gaussian beams and pulses, which consisted of the product
of two functions, one depending only on ω and the other on kρ.

We are going to see that further particular relations between ω and kρ (or,
analogously, between ω and kz) can be enforced in order to get interesting and
unexpected results, such as the NDWs.

Let us start by imposing a linear coupling between ω and kρ (it could, actually be
shown [46] that it is the unique coupling leading to NDW solutions).

Namely, let us consider the spectral function

S(kρ, ω) = δ
(
kρ − ω

c sin θ
)

kρ

δ(ω − ω0) (1.16)

which implies that kρ = (ω sin θ )/c, with 0 ≤ θ ≤ π/2: a relation that can be
regarded as a space–time coupling. Let us add that this linear constraint between
ω and kρ, together with relation 1.11, yields kz = (ω cos θ )/c. This is an important
fact, as an ideal NDW must contain [12, 48] a coupling of the type ω = Vkz + b,
where V and b are arbitrary constants. The integral function 1.10, this time with
spectrum (1.16), can be interpreted as a superposition of plane waves; however, this
time the axially-symmetric Bessel beam appears as the result of the superposition of
plane waves whose wave vectors lay on the surface of a cone having the propagation line
as its symmetry axis and an opening angle equal to θ ; such θ being called the axicon
angle. This is shown clearly in Figure 1.5 of [1].
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By inserting Equation 1.16 into Equation 1.10, one gets the mathematical
expression of the so-called Bessel beam:

ψ(ρ, z, t) = J0

(ω0

c
sin θ ρ

)
exp

[
i

ω0

c
cos θ

(
z − c

cos θ
t
)]

(1.17)

This beam possesses phase-velocity vph = c/ cos θ , and field transverse shape
represented by a Bessel function J0(•) so that its field is concentrated in the
surroundings of the propagation axis z. Moreover, Equation 1.17 tells us that
the Bessel beam keeps its transverse shape (which is therefore invariant) while
propagating, with central ‘‘spot’’ 
ρ = 2.405c/(ω sin θ ).

The ideal Bessel beam, however, is not square-integrable in the transverse
direction, and is therefore associated with an infinite power flux, that is, it cannot
be produced experimentally. One must have recourse to truncated Bessel (TB)
beams, generated by finite apertures: In this case the (truncated) Bessel beams are
still able to travel a long distance while maintaining their transfer shape, as well as
their speed, approximately unchanged [45, 46, 94, 95]. For instance, the field-depth
of a Bessel beam generated by a circular finite aperture with radius R is given (if
R � 
ρ0 = 2.4/kρ ) by

Zmax = R

tan θ
(1.18)

where θ is the beam axicon angle. In the finite aperture case, the Bessel beam can
no longer be represented by Equation 1.17, and one must calculate it by the scalar
diffraction theory by using, for example, Kirchhoff’s or Rayleigh–Sommerfeld’s
diffraction integrals. But until the distance Zmax one may still use Equation 1.17 for
approximately describing the beam, at least in the vicinity of the axis ρ = 0, that is,
for ρ 
 R. To realize how much a TB beam succeeds in resisting diffraction, one
can also consider a Gaussian beam, with the same frequency and central ‘‘spot,’’
and compare their field-depths. In particular, let both the beams have λ = 0.63 μm
and initial central ‘‘spot’’ size 
ρ0 = 60 μm. The Bessel beam will possess axicon
angle θ = arcsin[2.405c/(ω
ρ0)] = 0.004 rad. In the case, for example, of a circular
aperture with radius 3.5 mm, it is then easy to verify that the Gaussian beam
doubles its initial transverse width already after 3 cm, while after 6 cm its intensity
has become an order of magnitude smaller. By contrast, the TB beam keeps its
transverse shape until the distance Zmax = R/ tan θ = 85 cm. Afterward, the Bessel
beam decays rapidly as a consequence of the sharp cut performed on its aperture
(such a cut also being responsible for some intensity oscillations suffered by the
beam along its propagation axis), and for the fact that the feeding waves, coming
from the aperture, at a certain point eventually get faint. All this is depicted clearly
in Figure 1.6 of [1].

It may be useful to repeat that a Bessel beam is characterized by an ‘‘extended
focus’’ along its propagation axis, so that its energy cannot be concentrated inside
a small region in the transverse plane: It needs, indeed, to be reconstructed
continuously by the energy associated with the ‘‘lateral rings’’ (evolving along
closing conical surfaces), which constitute its transverse structure. This is quite
different from the case of a Gaussian beam, which possesses a point-like focus,
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that is, is constructed so as to concentrate its energy within a spot that becomes
very small at a certain point of its propagation axis, and afterward diffracts rapidly.

The zeroth-order (axially symmetric) Bessel beam is nothing but one example of
localized beam. Further examples are the higher order (not cylindrically symmetric)
Bessel beams, described by Equation 1.13 of [1], or the Mathieu beams [49], and so
on.

Following the same procedure adopted in the previous subsection, let us construct
ordinary X-shaped pulses by using spectral functions of the type

S(kρ, ω) = δ
(
kρ − ω

c sin θ
)

kρ

F(ω) (1.19)

where this time the Dirac delta function furnishes the spectral space–time coupling
kρ = (ω sin θ )/c. Function F(ω) is, of course, the frequency spectrum; it is left for
the moment undetermined. On using Equation 1.19 in Equation 1.10, one obtains

ψ(ρ, z, t) =
∫ ∞

−∞
F(ω) J0

(ω

c
sin θ ρ

)
exp

(ω

c
cos θ

(
z − c

cos θ
t
))

dω

(1.20)

It is easy to see that ψ will be a pulse of the type

ψ = ψ(ρ, z − Vt) (1.21)

with a speed V = c/ cos θ independent of the frequency spectrum F(ω).
Such solutions are known as X-shaped pulses, and are non-diffracting waves in

the sense that they obviously maintain their spatial shape during propagation (see
e.g., [9, 12, 14] and references therein, as well as the following). Their peak velocity
is well-known to be superluminal (see also [34, 35, 96] and references therein).
Some relevant, useful comments have been added, for instance, at pages 12–13 of
[1].

Now, let us for instance consider in Equation 1.20 the particular frequency
spectrum F(ω) given by

F(ω) = H(ω)
a

V
exp

(
− a

V
ω

)
(1.22)

where H(ω) is the Heaviside step-function and a a positive constant. Then,
Equation 1.20 yields

ψ(ρ, ζ ) ≡ X = a√
(a − iζ )2 +

(
V2

c2 − 1
)

ρ2

(1.23)

still with ζ ≡ z − Vt. This solution 1.23 is the well-known ordinary, or ‘‘classic,’’
X-wave, which constitutes a simple example of a superluminal (supersonic, in
the case of a Acoustics) X-shaped pulse [9, 14]. Notice that function 1.22 contains
mainly low frequencies, so that the classic X-wave is suitable for low frequencies
only.

Actually, Lu et al. first introduced them for acoustics [9, 10]. Soon after having
mathematically and experimentally constructed their ‘‘classic’’ (acoustic) X-wave,
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they started applying them to ultrasonic scanning, directly obtaining very high
quality 3D images. Subsequently, in 1996, there were mathematically constructed
(see, e.g., [14] and references therein) the analogous X-shaped solutions to the
Maxwell equations, by working out scalar superluminal non-diffracting solutions
for each component of the Hertz potential. In reality, Ziolkowski et al. [57] had
already found in electromagnetism similar solutions for the simple scalar case,
called by them slingshot pulses; but their pioneering solutions had gone almost
unnoticed at that time (1993). In 1997, Saari and Reivelt [80] announced the first
production of an X-shaped wave in the optical realm, thus proving experimentally
the existence of superluminal non-diffracting electromagnetic pulses. Let us add
that X-shaped waves have also been produced easily in nonlinear media [23].

Figure 1.1 depicts (the real part of) an ordinary X-wave with V = 1.1c and
a = 3 m.

Solutions (1.20) and, in particular, the pulse (1.23) have got an infinite field
depth, and an infinite energy as well. Therefore, as was mentioned in the Bessel
beam case, one should pass to truncated pulses, originating from a finite aperture.
Afterward, our truncated pulses will keep their spatial shape (and their speed)
along the depth of field

Z = R

tan θ
(1.24)
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Figure 1.1 Plot of the real part of the ordinary X-wave, evaluated for V = 1.1c with
a = 3 m.
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ρ

z

Figure 1.2 All the X-waves (truncated or
not) must have a leading cone in addition
to the rear cone, such a leading cone having
a role even for the peak stability [9]. Long
ago, this was also predicted, in a sense, by
(non-restricted [1, 13, 14]) special relativity:
one should not forget, in fact, that all wave
equations, and not only Maxwell’s, have an
intrinsic relativistic structure. By contrast,
the fact that X-waves have a conical shape
induced some authors to look for (unten-
able) links – let us now confine ourselves to

electromagnetism – between them and the
Cherenkov radiation, so as to to deny the
existence of the leading cone: But X-shaped
waves have nothing to do with Cherenkov,
as it has been demonstrated thoroughly in
Refs [34, 35, 96]. In practice, when wishing
to produce concretely a finite conic NDW,
truncated both in space and in time, one is
supposed to have recourse in the simplest
case to a dynamic antenna emitting a radi-
ation cylindrically symmetric in space and
symmetric in time [1].

where, as before, R is the aperture radius and θ the axicon angle (and R is assumed
to be much larger than the X-pulse spot).

At this point, it is worthwhile presenting Figure 1.2 and its caption.
For further X-type solutions, with less and less energy distributed along their

‘‘arms,’’ let us refer the reader to [12, 63] and references therein, as well as to [1]. For
example, it was therein addressed the explicit construction of infinite families of
generalizations of the classic X-shaped wave, with energy more and more concen-
trated around their vertex (see, e.g., Figure 1.9 in [1]). Elsewhere, techniques have
been found for building up new series of non-diffracting superluminal solutions to
the Maxwell equations suitable for arbitrary frequencies and bandwidths, and so on.

1.2
Eliminating Any Backward Components: Totally Forward NDW Pulses

As we mentioned, Equation 1.8, with its Anm(kz, ω) given by Equation 1.9, even if
representing ideal solutions, is difficult to be used for obtaining analytical solutions
with elimination of the ‘‘non-causal’’ components; a difficulty which becomes
worse in the case of finite-energy NDWs. As promised, let us come back to these
problems putting forth a method [63] for getting exact NDW solutions totally free of
backward components.

Let us start with Equation 1.5 and Equation 1.6, which describe a general free-
space solution (without evanescent waves) of the homogeneous wave equation, and
consider in Equation 1.6 a spectrum An(kz, ω) of the type

An(kz, ω) = δn 0H(ω)H(kz)A(kz, ω) (1.25)
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where δn 0 is the Kronecker delta function, H(•) the Heaviside function, and δ(•) the
Dirac delta function – quantity A(kz, ω) being an arbitrary function. Spectra of the
type (1.25) restrict the solutions for the axially symmetric case, with only positive
values to the angular frequencies and longitudinal wave numbers. With this, the
solutions proposed by us get the integral form

ψ(ρ, z, t) =
∫ ∞

0
dω

∫ ω/c

0
dkz A(kz, ω) J0(ρ

√
ω2/c2 − k2

z)eikz e−iωt (1.26)

that is, they result to be general superpositions of zero-order Bessel beams
propagating in the positive z-direction only. Therefore, any solution obtained from
Equation 1.26, be it non-diffracting or not, are completely free from backward
components.

At this point, we can introduce the unidirectional decomposition⎧⎪⎪⎨
⎪⎪⎩

ζ = z − Vt

η = z − ct

(1.27)

with V > c.
A decomposition of this type has been used until now in the context of paraxial

approximation only [97, 98]; however, we are going to show that it can be much
more effective, giving important results, in the context of exact solutions, and in
situations that cannot be analyzed in the paraxial approach.

With Equation 1.27, we can write the integral solution 1.26 as

ψ(ρ, ζ , η) = (V − c)
∫ ∞

0
dσ

∫ σ

−∞
dα A(α, σ )J0

(
ρ

√
γ −2σ 2 − 2(β − 1)σα

)
e−iαηeiσζ

(1.28)

where γ = (β2 − 1)−1/2, β = V/c, and where⎧⎪⎪⎨
⎪⎪⎩

α = 1
V−c (ω − Vkz)

σ = 1
V−c (ω − ckz)

(1.29)

are the new spectral parameters.
It should be stressed that superposition (1.28) is not restricted to NDWs: It is the

choice of the spectrum A(α, σ ) that will determine the resulting NDWs.

1.2.1
Totally Forward Ideal Superluminal NDW Pulses

The most trivial NDW solutions are the X-type waves. We have seen that they
are constructed by frequency superpositions of Bessel beams with the same phase
velocity V > c and until now constituted the only known ideal NDW pulses free of
backward components. It is not necessary, therefore, to use the present method
to obtain such X-type waves, as they can be obtained by using directly the integral
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representation in the parameters (kz, ω), that is, by using Equation 1.26. Even so,
let us use our new approach to construct the ordinary X-wave.

Consider the spectral function A(α, σ ) given by

A(α, σ ) = 1

V − c
δ(α)e−sσ (1.30)

One can notice that the delta function in Equation 1.30 implies that α = 0 →
ω = Vkz, which is just the spectral characteristic of the X-type waves. In this way,
the exponential function exp (−sσ ) represents a frequency spectrum starting at
ω = 0, with an exponential decay and frequency bandwidth 
ω = V/s.

Using Equation 1.30 in Equation 1.28, we get

ψ(ρ, ζ ) = 1√
(s − iζ )2 + γ −2ρ2

≡ X (1.31)

which is the well-known ordinary X wave.
Focus wave modes (FWMs) [12, 52, 54] are ideal non-diffracting pulses possessing

spectra with a constraint of the type ω = Vkz + b (with b = 0), which links the
angular frequency with the longitudinal wave number, and are known for their
strong field concentrations.

Until now, however, all the known FWM solutions possessed backward spectral
components, a fact that, as we know, forces one to consider large-frequency
bandwidths to minimize their contribution. However, we are going to obtain
solutions of this type free of backward components and able to possess also very
narrow frequency bandwidths.

Let us choose a spectral function A(α, σ ) like

A(α, σ ) = 1

V − c
δ(α + α0)e−sσ (1.32)

with α0 > 0 a constant. This choice confines the spectral parameters ω, kz of the
Bessel beams to the straight line ω = Vkz − (V − c)α0, as it is shown in Figure 1.3.

Substituting Equation 1.32 in Equation 1.28, we have

ψ(ρ, ζ , η) =
∫ ∞

0
dσ

∫ σ

−∞
dα δ(α + α0)e−sσ J0

(
ρ

√
γ −2σ 2 − 2(β − 1)σα

)
e−iαηeiσζ

(1.33)

Kz

ω

ω = Vkz − (V − c) α0

ω = ckz

Figure 1.3 The Dirac delta function in
Equation 1.32 confines the spectral parameters
ω, kz of the Bessel beams to the straight line
ω = Vkz − (V − c)α0, with α0 > 0.
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which, on using identity 6.616 in [99], results in

ψ(ρ, ζ , η) = X eiα0η exp
[

α0

β + 1

(
s − iζ − X−1)] (1.34)

where X is the ordinary X-wave given by Equation 1.31.
Equation 1.34 represents an ideal superluminal NDW of the type FWM, but free

from backward components.
As we already said, the Bessel beams constituting this solution have their

spectral parameters linked by the relation ω = Vkz − (V − c)α0; thus, by using
Equation 1.32 and Equation 1.29, it is easy to see that the frequency spectrum of
those Bessel beams starts at ωmin = cα0 with an exponential decay exp (−sω/V),
and so possesses the bandwidth 
ω = V/s. It is clear that ωmin and 
ω can
assume any values, so that the resulting FWM, Equation 1.34, can range from a
quasi-monochromatic to an ultrashort pulse. This is a great advantage w.r.t. the old
FWM solutions.

As an example, we plot in Figure 1.4 one case related with the NDW pulse given
by Equation 1.34.

In Figure 1.4 we have a quasi-monochromatic optical FWM pulse, with
V = 1.5c, α0 = 1.256 × 107 m−1, and s = 1.194 × 10−4 m, which correspond to
ωmin = 3.77 × 1015 Hz and 
ω = 3.77 × 1012 Hz, that is to a picosecond pulse
with λ0 = 0.5 μm. Figure 1.4a shows the intensity of the complex NDW field, while
Figure 1.4b shows the intensity of its real part. Moreover, in Figure 1.4b, in the
right upper corner, is shown a zoom of this NDW, on the z-axis and around the
pulse’s peak, where the carrier wave of this quasi-monochromatic pulse shows up.

Now, we apply our method to obtain totally forward finite-energy NDW pulses.
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Figure 1.4 The intensity of the (a) complex and (b) real part of a quasi-monochromatic,
totally ‘‘forward,’’ superluminal optical focus wave mode pulse, with V = 1.5c, α0 = 1.256 ×
107 m−1 and s = 1.194 × 10−4 m, which correspond to ωmin = 3.77 × 1015 Hz, and 
ω =
3.77 × 1012 Hz, that is to a picosecond pulse with λ0 = 0.5 μm.
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1.3
Totally Forward, Finite-Energy NDW Pulses

Finite-energy NDW pulses are almost non-diffracting in the sense that they can
retain their spatial forms, resisting to the diffraction effects, for long (but not
infinite) distances.

There exist many analytical solutions representing finite-energy NDWs [12, 52,
54], but, once more, all the known solutions suffer from the presence of backward
components. We can overcome this limitation.

We are missing out here the subluminal NDWs, which will be addressed in
section 1.5, where also the particularly interesting case of the NDWs ‘‘at rest’’
(Frozen Waves) will be briefly considered.

Superluminal finite-energy NDW pulses, with peak velocity V > c, can be
obtained by choosing spectral functions in Equation 1.26, which are concentrated
in the vicinity of the straight line ω = Vkz + b instead of lying on it. Similarly, in the
case of luminal finite-energy NDW pulses the spectral functions in Equation 1.26
have to be concentrated in the vicinity of the straight line ω = ckz + b (note that, in
the luminal case, one must have b ≥ 0).

Indeed, from Equation 1.29 it is easy to see that, by our approach, finite-energy
superluminal NDWs can actually be obtained by concentrating the spectral function
A(α, σ ) entering in Equation 1.28, in the vicinity of α = −α0, with α0 a positive
constant. And, analogously, the finite-energy luminal case can be obtained with a
spectrum A(α, σ ) concentrated in the vicinity of σ = σ0, with σ0 ≥ 0.

To see this, let us consider the spectrum

A(α, σ ) = 1

V − c
H(−α − α0)eaαe−sσ (1.35)

where α0 > 0, a > 0 and s > 0 are constants, and H(•) is the Heaviside function.
Owing to the presence of the Heaviside function, the spectrum (1.35), when

written in terms of the spectral parameters ω and kz, has its domain in the region
shown in Figure 1.5.

We can see that the spectrum A(α, σ ) given by Equation 1.35 is more concentrated
on the line α = α0, that is, around ω = Vkz − (V − c)α0, or on σ = 0 (i.e. around
ω = ckz), depending on the values of a and s; more specifically, the resulting
solution will be a superluminal finite-energy NDW pulse, with peak velocity V > c,
if a � s, or a luminal finite-energy NDW pulse if s � a.

Kz

ω

ω = Vkz − (V − c) α0

ω = ckz

Figure 1.5 The spectrum (1.35), when written
in terms of the spectral parameters ω and kz,
has its domain indicated by the shaded region.
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Inserting the spectrum 1.35 into 1.28, we have

ψ(ρ, ζ , η) =
∫ ∞

0
dσ

∫ −α0

−∞
dα eaαe−sσ J0(ρ

√
γ −2σ 2 − 2(β − 1)σα )e−iαηeiσζ

(1.36)

and, by using identity 6.616 in [99], we get an expression [63] that can be directly
integrated to furnish

ψ(ρ, ζ , η) =
X exp

{
−α0

[
(a − iη) − 1

β+1

(
s − iζ − X−1

)]}
(a − iη) − 1

β+1 (s − iζ − X−1)
(1.37)

As far as we know, the new solution (1.37) is the first one to represent finite-energy
NDWs completely free of backward components [63].

Totally Forward, Finite-energy Superluminal NDW Pulses. The finite-energy
NDW (1.37) can be superluminal (peak-velocity V > c) or luminal (peak-velocity c)
depending on the relative values of the constants a and s. To see this in a rigorous
way, in connection with solution (1.37), in [63] it was calculated how its global
maximum of intensity (i.e. its peak), which is located on ρ = 0, develops in time.
The peak’s motion was then obtained by considering the field intensity of (1.37)
on the z-axis, that is, |ψ(0, ζ , η)|2, at a given time t, and finding out the value of
z at which the pulse presents a global maximum. It was called zp(t) (the peak’s
position) this value of z; and the peak velocity was evaluated as dzp(t)/dt.

As shown in [63], superluminal finite-energy NDW pulses may be obtained from
(1.37) by putting a � s. In this case, the spectrum A(α, σ ) is well concentrated
around the line α = α0, and therefore in the plane (kz, ω) this spectrum starts at
ωmin ≈ cα0 with an exponential decay and bandwidth 
ω ≈ V/s.

Defining the field depth Z as the distance over which the pulse’s peak intensity
retains at least 25% of its initial value3), one obtains [63] the depth of field

Z =
√

3 a

1 − β−1

which depends on a and β = V/c. Thus, the pulse can get large field depths by
suitably adjusting the value of parameter a.

Figure 1.6 shows the space–time evolution, from the pulse’s peak at zp = 0 to
zp = Z, of a finite-energy superluminal NDW pulse represented by Equation 1.37
with the following parameter values: a = 20 m, s = 3.99 × 10−6 m (note that a � s),
V = 1.005 c, and α0 = 1.26 × 107 m−1. For such a pulse, we have a frequency
spectrum starting at ωmin ≈ 3.77 × 1015 Hz (with an exponential decay) and the
bandwidth 
ω ≈ 7.54 × 1013 Hz. From these values and since 
ω/ωmin = 0.02, it
is an optical pulse with λ0 = 0.5 μm and time width of 13 fs. At the distance given by
the field depth Z = √

3 a/(1 − β−1) = 6.96 km the peak intensity is a fourth of its

3) We can expect that, while the pulse peak intensity is maintained, the same happens for its
spatial form.
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Finite-energy superluminal LW pulse
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Figure 1.6 The space–time evolution, from the pulse’s peak at zp = 0 to zp = Z, of a
totally ‘‘forward,’’ finite-energy, superluminal non-diffracting wave optical pulse represented
by Equation 1.37, with the following parameter values: a = 20 m, s = 3.99 × 10−6 m (note
that a � s), V = 1.005c and α0 = 1.26 × 107 m−1.

initial value. Moreover, it is interesting to note that, in spite of the intensity decrease,
the pulse’s spot size 
ρ0 = 7.5 μm remains constant during the propagation.

Totally ‘‘Forward’’, Finite-energy Luminal NDW Pulses. Luminal finite-energy
NDW pulses can be obtained from Equation 1.37 by making s � a (more rigorously,
for s2c � a2V). In this case, the spectrum A(α, σ ) is well concentrated around the
line σ = 0 and therefore in the plane (kz, ω) it starts at ωmin ≈ cα0 with an
exponential decay and the bandwidth 
ω ≈ c/a.

On defining the field depth Z as the distance over which the pulse’s peak intensity
remains at least 25% of its initial value, one obtains [63] the depth of field

Z =
√

3 s

β − 1
(1.38)

which depends on s and β = V/c.
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Finite-energy luminal LW pulse

10
−100.1

0.1

0.5

1

0
0

0

10
−100.1

0.1

0.5

1

00

0

10
−100.1

0.1

0.5

1

00

0

10
−100.1

0.1

0.5

1

00

0

10
−100.1

0.1

0.5

1

00

0

10
−100.1

0.1

0.5

1

00

0

Re(Ψ )2 Re(Ψ )2

Re(Ψ )2Re(Ψ )2

Re(Ψ )2 Re(Ψ )2

ρ (m) η (μm) η (μm)

η (μm)

η (μm)η (μm)

η (μm)ρ (m)

ρ (m) ρ (m)

ρ (m)

ρ (m)

zρ = 0 m

zρ = 9238 m

zρ = 18475 m zρ = 23094 m

zρ = 13856 m

zρ = 4619 m

Figure 1.7 The space–time evolution, from the pulse’s peak at zp = 0 to zp = Z, of a
totally ‘‘forward,’’ finite-energy, luminal non-diffracting wave optical pulse represented by
Equation 1.37, with a = 1.59 × 10−6 m, s = 1 × 104 m (note that s � a), V = 1.5c, α0 =
1.26 × 107 m−1.

Here, we confine ourselves to depict in Figure 1.7 the space–time evolution
of such a pulse, from zp = 0 to zp = Z. At the distance given by the field depth

Z = √
3 s/(β − 1) = 23.1 km the peak intensity is just a fourth of its initial value.

We can see from the two examples above, and it can also be shown in a rigorous
way, that the superluminal NDW pulses obtained from solution (1.37) are superior
to the luminal ones obtained from the same solution, in the sense that the former
can possess large field depths and, at the same time, be endowed with strong trans-
verse field concentrations. To obtain more interesting and efficient luminal NDW
pulses we should use [12, 63] spectra concentrated around the line σ = σ0 > 0.

1.3.1
A General Functional Expression for Whatever Totally-Forward NDW Pulses

In the literature concerning NDWs [62] some interesting approaches appear,
yielding functional expressions which describe NDWs in closed form. Although
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interesting, even the NDWs obtained from those approaches possess backward
components in their spectral structure.

A general functional expression, capable of furnishing whatever totally-forward
NDW pulses, is, however [63]:

ψ(ρ, φ, ζ , η) = eiνφ

(
γ −1ρ

s − iζ + X−1

)ν

X F(S) (1.39)

with F(•) an arbitrary function, and X the ordinary X-wave (1.31), while S is

S = −iη − 1

β + 1
(s − iζ − X−1)

Equation 1.39 is, indeed, an exact solution to the wave equation that can yield both
ideal and finite-energy NDW pulses, with superluminal or luminal peak velocities.
And the NDW solutions obtained from Equation 1.39 are totally free of backward
components under the only condition that the chosen function F(S) be regular and
free of singularities at all space–time points (ρ, φ, z, t).

1.4
Method for the Analytic Description of Truncated Beams

If we are allowed to set forth some more formal material, we now present an
analytic method for describing important beams, truncated by finite apertures, in
the Fresnel regime. The method works in electromagnetism (optics, microwaves,
etc.), as well as in acoustics, etc. But we shall here confine ourselves to optics, for
conciseness’ sake.

Our method [75], rigorous and effective, but rather simple, is based on appropriate
superpositions of Bessel–Gauss beams, and in the Fresnel regime is able to
describe in analytic form the 3D evolution of important waves, like Bessel beams,
plane waves, Gaussian beams and Bessel–Gauss beams, when truncated by finite
apertures. One of the advantages of our mathematical method is that one can obtain
in a few seconds, or minutes, high-precision results that normally require quite
long periods of numerical simulation. Indeed, the coefficients of the Bessel–Gauss
beam superpositions are also obtainable in a direct way, without any need for
numerical evaluations or optimizations.

1.4.1
The Method

We shall leave understood in all solutions the harmonic time-dependence term
exp (−iωt). In the paraxial approximation, an axially symmetric monochromatic
wave field can be evaluated, knowing its shape on the z = 0 plane, through the
Fresnel diffraction integral in cylindrical coordinates:

�(ρ, z) = −ik

z
e

i

(
kz+ kρ2

2z

) ∫ ∞

0
�(ρ ′, 0) eik ρ′2

2z J0

(
k
ρρ ′

z

)
ρ ′dρ ′ (1.40)
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where, as usual, k = 2π/λ is the wavenumber and λ the wavelength. In this
equation, ρ ′ reminds us that the integration is being performed on the plane z = 0;
thus, �(ρ ′, 0) simply indicates the field value on z = 0. An important solution is
obtained by considering on the z = 0 plane the ‘‘excitation’’ given by

�(ρ ′, 0) = �BG(ρ ′, 0) = AJ0(kρρ ′) exp (−qρ ′2) (1.41)

which [100] produces the so-called Bessel–Gauss beam [101]:

�BG(ρ, z) = − ikA

2zQ
eik(z+ ρ2

2z ) J0

(
ikkρρ

2zQ

)
e− 1

4Q (k2
ρ+ k2ρ2

z2 ) (1.42)

which is a Bessel beam modulated transversally by the Gaussian function. Quantity
Q = q − ik/2z, and kρ is a constant (namely, the transverse wavenumber associated
with the modulated Bessel beam). When q = 0, the Bessel–Gauss beam results
in the well-known Gaussian beam. The Gaussian beam, and Bessel–Gauss’, in
Equation 1.42, are among the few solutions to the Fresnel diffraction integral that
can be obtained analytically. The situation gets much more complicated, however,
when facing beams truncated in space by finite circular apertures; for instance,
a Gaussian beam, or a Bessel beam, or a Bessel-Gauss beam truncated via an
aperture with radius R. In this case, the upper limit of the integral in Equation 1.40
becomes the aperture radius, and the analytic integration becomes very difficult,
requiring recourse to lengthy numerical calculations.

Let us now go on to our method for the description of truncated beams,
characterized by simplicity and, in most cases, total analyticity. Let us start with
the Bessel–Gauss beam, Equation 1.42, and consider the solution given by the
following superposition of such beams:

�(ρ, z) = − ik

2 z
e

ik

(
z+ ρ2

2 z

)
N∑

n=−N

An

Qn

J0

(
i k kρ ρ

2 z Qn

)
e
− 1

4Qn

(
k2
ρ+ k2ρ2

z2

)
(1.43)

quantities An being constants, and Qn given by

Qn = qn − ik

2z
(1.44)

where the qn are constants that can assume complex values. Notice that in this
superposition all beams possess the same value of kρ . We want the solution (1.43)
to be able to represent beams truncated by circular apertures, in the case, as we
know, of Bessel beams, Gaussian beams, Bessel–Gauss beams, and plane waves.

Given one such beam, truncated at z = 0 by an aperture with radius R, we have
to determine the coefficients An and qn in such a way that Equation 1.43 represents
with fidelity the resulting beam: If the truncated beam on the z = 0 plane is given
by V(ρ), we have to obtain �(ρ, 0) = V(ρ), that is to say

V(ρ) = J0(kρρ)
N∑

n=−N

Ane−qnρ2
(1.45)

The right-hand side of this equation is, indeed, nothing but a superposition of
Bessel–Gauss beams, all with the same value of kρ , at z = 0 (namely, each one of
such beams is written at z = 0 according to Equation 1.41).
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One has to get the values of the An and qn, as well as of N, from Equation 1.45.
Once these values have been obtained, the field emanated by the finite circular
aperture located at z = 0 will be given by Equation 1.43. Remembering that the qn

can be complex, let us make the following choices:

qn = qR + iqIn , with qIn = −2π

L
n (1.46)

where qR > 0 is the real part of qn, having the same value for every n; qIn is the
imaginary part of qn; and L is a constant with the dimensions of a square length.

With such choices, and assuming N → ∞, Equation 1.45 gets written as

V(ρ) = J0(kρρ) exp (−qRρ2)
∞∑

n=−∞
An exp

(
i
2πn

L
ρ2

)
(1.47)

which has then to be exploited for obtaining the values of An, kρ , qR, and L.
In the cases of a TB beam or of a truncated Bessel–Gauss (TBG) beam, it it

natural to choose quantity kρ in Equation 1.47 equal to the corresponding beam
transverse wavenumber. In the case of a truncated Gaussian (TG) beam or of a
truncated plane (TP) wave, by contrast, in Equation 1.47 it is natural to choose
kρ = 0. In all cases, the product

exp (−qRρ2)
∞∑

n=−∞
An exp

(
i
2πn

L
ρ2

)
(1.48)

in Equation 1.47 has to represent:

(i) a function circ(ρ/R), in the TB or TP cases;
(ii) a function exp (−q ρ2) circ(ρ/R), that is, a circ function multiplied by a

Gaussian function, in the TBG or TG cases.

Of course (i) is a particular case of (ii) with q = 0. It may be useful to recall that
the circ-function is the step-function in the cylindrically symmetric case. Quantity
R is still the aperture radius, and circ(ρ/R) = 1 when 0 ≤ ρ ≤ R, and equals 0
elsewhere.

Let us now show how expression (1.48) can approximately represent the above
functions, given in (i) and (ii). To such an aim, let us consider a function G(r)
defined on an interval |r| ≤ L/2 and endowed with the Fourier expansion

G(r) =
∞∑

n=−∞
An exp (

i2πnr

L
) for |r| ≤ L

2
(1.49)

where r and L, having the dimensions of a square length, are expressed in square
meters (m2). Suppose now the function G(r) to be given by

G(r) =
{

exp
(
qR r

)
exp (−q r) for |r| ≤ R2

0 for R2 < |r| < L
2

(1.50)

where q is a given constant. Then, the coefficients An in the Fourier expansion of
G(r) will be given by

An = 1

L (qR − q) − i2πn

(
e(qR−q−i 2π

L n)R2 − e−(qR−q−i 2π
L n)R2

)
(1.51)
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Writing now

r = ρ2 (1.52)

we get that quantity (1.48) in Equation 1.49, and Equation 1.50, can be written as

e−qRρ2
∞∑

n=−∞
Anei2πnρ2/L =

⎧⎪⎪⎨
⎪⎪⎩

e−q ρ2
for 0 ≤ ρ ≤ R

0 for R < ρ ≤ √
L/2

e−qRρ2
f (ρ) ≈ 0 for ρ >

√
L/2

(1.53)

where the coefficients An are still given by Equation 1.51, and f (ρ) is a function
existing on shorter and shorter space intervals, assuming as it maximum value
exp [(qR − q)R2], when qR > q, or 1, when qR ≤ q. As

√
L/2 > R, for suitable choices

of qR and L, we shall have that exp (−qRρ2) f (ρ) ≈ 0 for ρ ≥ √
L/2.

Therefore, we obtain

e−qRρ2
∞∑

n=−∞
Anei2πnρ2/L ≈ e−q ρ2

circ(ρ/R) (1.54)

which corresponds to case (i), when q = 0, and to case (ii). Let us recall once more
that the An are given by Equation 1.51.

On the basis of what was shown before, we have now in our hands a rather
efficient method for describing important beams, truncated by finite apertures,
namely the TB, TG, TBG, and TP beams. Indeed, it is enough to choose the desired
field, truncated by a circular aperture with radius R, and describe it at z = 0 by
Equation 1.47.

Precisely:

• In the TBG case the value of kρ in Equation 1.47 is the transverse wavenumber of
the Bessel beam modulated by the Gaussian function; An is given in Equation 1.51;
q is related to the Gaussian-function width at z = 0. The values L and qR, and
the number N of terms in the series (1.47), are chosen so as to guarantee a
faithful description of the beam at z = 0 when truncated by a circular aperture
with radius R.

• The TB, TG, and TP are special cases of TBG: in TB q = 0; in TG kρ = 0; and in
TP kρ = 0 and q = 0

In conclusion, once we know the chosen beam on the truncation plane (z = 0), the
beam emanated by the finite aperture will then be given by solution (1.43). Further
details can be found in Ref. [75].

Let us go on to an important example.

1.4.2
Application of the Method to a TB Beam

For the sake of brevity, we apply our method only to the analytic description of the
TB beam.

Let us consider a Bessel beam, with wavelength of 632.8 nm, truncated at
z = 0 by a circular aperture with radius R, that is to say let us start from
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Figure 1.8 (a) Field given by Equation 1.47,
representing a Bessel beam at z = 0, with
kρ = 4.07 • 104 m−1 and truncated by a
finite circular aperture with radius R =
3.5 mm. The coefficients An are given by

Equation 1.51, with q = 0, L = 3R2, qR =
6/L, and N = 23. (b) Intensity of a Bessel
beam truncated by a finite aperture, as given
by solution (1.43).

�TB(ρ, 0) = J0(kρρ) circ(ρ/R). Let us choose R = 3.5 mm, and the transverse
wavenumber kρ = 4.07•104 m−1, which corresponds to a beam spot with radius
approximatively equal to 
ρ = 59 μm.

At z = 0 the field is described by Equation 1.47, where the An are given by
Equation 1.51 and where q = 0. In this case, a resonable result can be obtained by
the choice L = 3R2, qR = 6/L and N = 23. Let us stress that, as such a choice is not
unique, many alternative sets of values L and qR exist, which also yield excellent
results.

Figure 1.8a depicts the field given by Equation 1.47: it represents, with high
fidelity, the Bessel beam truncated at z = 0. The resulting field, emanated by the
aperture, is given by solution (1.43), and its intensity is shown in Figure 1.8b. One
can see that the result really corresponds to a Bessel beam truncated by a finite
aperture.

1.5
Subluminal NDWs (or Bullets)

Let us now obtain in a simple way non-diffracting subluminal pulses, always
as exact analytic solutions to the wave equations [19]. We shall adopt in this
section a less formal language (perhaps more intuitive or more physical), and
we shall confine it to ideal solutions, but such solutions will be constructed for
arbitrarily chosen frequencies and bandwidths, once more avoiding any recourse
to the non-causal (backward-moving) components. Also, the new solutions can be
suitable superpositions of – zeroth-order, in general – Bessel beams, which can
be performed by integrating either w.r.t. the angular frequency ω, or w.r.t. the
longitudinal wavenumber kz: Both approaches are treated below. The first one is
powerful enough; we sketch the second approach as well, however, as it allows also
dealing – from a new starting point – with the limiting case of zero-speed solutions.
Namely it furnishes a new way, in terms of continuous spectra, for obtaining such
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(‘‘frozen’’) waves [4–7], so promising also from the point of view of the applications.
Some attention is successively paid to the known role of special relativity, and to the
fact that the NDWs are expected to be transformed one into the other by suitable
Lorentz transformations. We are, moreover, going to mention the case of non-
axially symmetric solutions in terms of higher-order Bessel beams. We keep fixing
our attention particularly on electromagnetism and optics; however, let us repeat
that results of the same kind are valid whenever an essential role is played by a wave
equation [like in acoustics, seismology, geophysics, elementary particle physics (as
we shall see explicitly in the slightly different case of the Schroedinger equation), and
also gravitation (for which we have recently got stimulating new results), and so on].

Subluminal NDWs can also be obtained by suitable superpositions of Bessel
beams [19], as in the other cases, but have been rather neglected for the mathe-
matical difficulties in getting analytic expressions for them, as the superposition
integral runs over a finite interval. Therefore, almost all the few papers devoted to
the subluminal NDWs had recourse to the paraxial [93] approximation [97] or to
numerical simulations [29]. Only one analytic solution was known [31–33, 56, 63],
biased by the inconveniences that its frequency spectrum is very large, that it does
not possess a well-defined central frequency, and that backward-travelling [52, 54]
components were needed for constructing it. In this section we construct, however,
non-diffracting exact solutions with any spectra, in any frequency bands, and for
any bandwidths, and without employing [12, 50] backward-traveling components.
One can arrive at such (analytic) solutions, both in the case of integration over
the Bessel beams’ angular frequency ω and of integration over their longitudinal
wavenumber kz.

1.5.1
A First Method for Constructing Physically Acceptable, Subluminal Non-Diffracting
Pulses

Axially-symmetric solutions to the scalar wave equation are known to be superposi-
tions of zero-order Bessel beams over the angular frequency ω and the longitudinal
wavenumber kz, that is in cylindrical co-ordinates,

�(ρ, z, t) =
∫ ∞

0
dω

∫ ω/c

−ω/c
dkz S(ω, kz)J0

(
ρ

√
ω2

c2
− k2

z

)
eikzze−iωt (1.55)

where, as usual, k2
ρ ≡ ω2/c2 − k2

z is the transverse wavenumber, and quantity k2
ρ

has to be positive as evanescent waves are here excluded. We already know that
the condition characterizing a NDW is the existence [52, 102] of a linear relation
between longitudinal wavenumber kz and frequency ω for all the Bessel beams
entering the superposition. That is to say, in the chosen spectrum for each Bessel
beam it has to be [12, 48]

ω = v kz + b (1.56)

with b ≥ 0. (More generally, as shown in [12], in the plane ω, kz the chosen spectrum
has to call into play, if not exactly such a line, at least a region in the proximity of
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a straight-line of that type. In the latter case one obtains solutions endowed with
finite energy, and therefore a finite ‘‘depth of field’’).

The requirement (1.56) is a specific space–time coupling, implied by the chosen
spectrum S. Let us recall that Equation 1.56 has to be obeyed by the spectra of
any one of the three possible types (subluminal, luminal, or superluminal) of
non-diffracting pulses: Indeed, with the choice (1.56), the pulse regains its initial
shape after the space-interval 
z1 = 2πv/b. (But the more general case can be also
considered [12, 51] when b assumes any values bm = m b (with m an integer), and
the periodicity space-interval becomes 
zm = 
z1/m . We are referring ourselves,
now, to the real (or imaginary) part of the pulse, as its magnitude is endowed with
rigid motion).

Let us first derive in the subluminal case the only exact solution known until
recently, the Mackinnon’s [31] one, represented by Equation 1.63 below. As the
transverse wavenumber kρ of each Bessel beam entering Equation 1.55 has to be
real, it can be shown easily (as first noticed in Ref. [29]) that in the subluminal case
b cannot vanish, but it must be b > 0. Then, on using conditions (1.56) and b > 0,
the subluminal localized pulses can be expressed as integrals over the frequency
only:

�(ρ, z, t) = exp
[
−ib

z

v

] ∫ ω+

ω−
dω S(ω) J0(ρkρ ) exp

[
iω

ζ

v

]
(1.57)

where now

kρ = 1

v

√
2bω − b2 − (1 − v2/c2)ω2 (1.58)

with

ζ ≡ z − vt (1.59)

and with⎧⎪⎪⎨
⎪⎪⎩

ω− = b
1+v/c

ω+ = b
1−v/c

(1.60)

As anticipated, the Bessel beam superposition in the subluminal case is an
integration over a finite interval of ω, which also shows that the backward-
travelling components correspond to the interval ω− < ω < b. (It could be noticed
that Equation 1.57 does not represent the most general exact solution, which,
on the contrary, is a sum [51] of such solutions for the various possible values
of b mentioned above, that is for the values bm = m b with spatial periodicity

zm = 
z1/m . But we can confine ourselves to solution (1.57 ) without any real
loss of generality, as the actual problem is evaluating in analytic form the integral
entering Equation 1.57. For any mathematical and physical details, see [51]).

Now, if one adopts the change of variable

ω ≡ b

1 − v2/c2

(
1 + v

c
s
)

(1.61)
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Equation 1.57 becomes [29]

�(ρ, z, t) = b

c

v

1 − v2/c2
exp

[
−i

b

v
z

]
exp

[
i
b

v

1

1 − v2/c2
ζ

]

×
∫ 1

−1
ds S(s) J0

(
b

c

ρ√
1 − v2/c2

√
1 − s2

)
exp

[
i
b

c

1

1 − v2/c2
ζ s

]
(1.62)

In the following we shall adhere – as it is an old habit of ours – to some
symbols standard in special relativity, as the whole topic of subluminal, luminal,
and superluminal NDWs is strictly connected [13, 14, 91] with the principles and
structure of special relativity (see [89, 103] and references therein), as we shall
mention also in the specific remarks which follow below. Namely, we put β ≡ v/c
and γ ≡ 1/

√
1 − β2 .

Equation 1.62 has until now yielded one analytic solution, for S(s) = constant: the
Mackinnon solution [31, 33, 56, 76]

�(ρ, ζ , η) = 2
b

c
v γ 2 exp

[
i
b

c
βγ 2 η

]

× sin c

√
b2

c2
γ 2(ρ2 + γ 2 ζ 2) (1.63)

which, however, for its above-mentioned drawbacks, is endowed with little physical
and practical interest. In Equation 1.63 the sin c function has the ordinary definition
sin x ≡ (sin x)/x , and

η ≡ z − Vt, with V ≡ c2

v
(1.64)

where V and v are related by the de Broglie relation. Notice that � in Equation 1.63,
and in the following ones, is eventually a function (besides of ρ) of z, t only via
quantities ζ and η.

However, we can construct further subluminal pulses, corresponding to any
spectrum and devoid of backward-moving components, just by exploiting the fact
that in our Equation 1.62 the integration interval is finite, that is, by transforming
it into good instead of harm. Let us first observe that Equation 1.62 will also yield
exact, analytic solutions for any exponential spectra of the type

S(ω) = exp
[

i2nπω

�

]
(1.65)

with n any integer number: Which means that for any spectra of this type it holds
S(s) = exp [inπ/β] exp [inπ s], as can be checked easily. In Equation 1.65 we have
set � ≡ ω+ − ω− . In this more general case, the solution writes

�(ρ, ζ , η) = 2bβ γ 2 exp
[

i
b

c
β γ 2 η

]

× exp
[

in
π

β

]
sin c

√
b2

c2
γ 2 ρ2 +

(
b

c
γ 2 ζ + nπ

)2

(1.66)
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Notice also that in Equation 1.66 quantity η is defined as in Equations 1.64 above,
where V and v obey the de Broglie relation vV = c2, the subluminal quantity v
being the velocity of the pulse envelope, and V playing the role (in the envelope’s
interior) of a superluminal phase velocity.

We now take advantage of the finiteness of the integration limits for expanding
any arbitrary spectra S(ω) in a Fourier series in the interval ω− ≤ ω ≤ ω+, that is:

S(ω) =
∞∑

n=−∞
An exp

[
+in

2π

�
ω

]
(1.67)

where (we went back, now, from the s to the ω variable):

An = 1

�

∫ ω+

ω−
dω S(ω) exp

[
−in

2π

�
ω

]
(1.68)

quantity � being defined above.
Then, on remembering the special, ‘‘Mackinnon-type’’ solution (1.66), we can in-

fer from expansion (1.65) that, for any arbitrary spectral function S(ω), one can work
out a rather general axially-symmetric analytic solution for the subluminal case:

�(ρ, ζ , η) = 2bβ γ 2 exp
[

i
b

c
β γ 2 η

]

×
∞∑

n=−∞
An exp

[
in

π

β

]
sin c

√
b2

c2
γ 2ρ2 +

(
b

c
γ 2 ζ + nπ

)2

(1.69)

coefficients An being still given by Equation 1.68.
The present approach presents several advantages. We can easily choose spectra

localized within the prefixed frequency interval (optical waves, microwaves, etc.)
and endowed with the desired bandwidth. Moreover, we have seen that spectra can
now be chosen such that they have zero value in the region ω− ≤ ω ≤ b, which
is responsible for the backward-traveling components of the subluminal pulse.
Even when the adopted spectrum S(ω) does not possess a known Fourier series
(so that the coefficients An cannot be exactly evaluated via Equation 1.68), one
can calculate approximately such coefficients without meeting any problem, as our
general solutions (1.69) will still be exact solutions.

Let us set forth some examples.

1.5.2
Examples

In general, optical pulses generated in the laboratory possess a spectrum centered
at some frequency value, ω0, called the carrier frequency. The pulses can be, for
instance, ultra-short, when 
ω/ω0 ≥ 1, or quasi-monochromatic, when 
ω/ω0 

1, where 
ω is the spectrum bandwidth.
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These kinds of spectra can be represented mathematically by a Gaussian function
or by functions with similar behavior. One can find various examples in [11, 19].

First example – Let us consider, for example, a Gaussian spectrum

S(ω) = a√
π

exp
[−a2(ω − ω0)2] (1.70)

whose values are negligible outside the frequency interval ω− < ω < ω+ over which
the Bessel beams superposition in Equation 1.57 is made, it being ω− = b/(1 + β)
and ω+ = b/(1 − β). (Let us stress that, once v and b have been fixed, the values
of a and ω0 can afterward be selected in order to kill the backward-travelling
components, that correspond, as we know, to ω < b.) The Fourier expansion in
Equation 1.67, which yields, with the above spectral function (1.70), the coefficients

An ≈ 1

W
exp

[
−in

2π

�
ω0

]
exp

[−n2π2

a2W2

]
, (1.71)

constitute an excellent representation of the Gaussian spectrum (1.70) in the
interval ω− < ω < ω+ (provided that, as we requested, our Gaussian spectrum
does get negligible values outside the frequency interval ω− < ω < ω+). In other
words, a subluminal pulse with frequency spectrum (1.70) can be written as
Equation 1.69, with the coefficients An given by Equation 1.71: the evaluation of
such coefficients An being rather simple. Let us repeat that even if the values of the
An are obtained via a (rather good, by the way) approximation, we based ourselves
on the exact solution in Equation 1.69.

One can, for instance, obtain exact solutions representing subluminal pulses
for optical frequencies (see Figure 1.9). The construction of the considered pulse
results are already satisfactory when considering about 51 terms (−25 ≤ n ≤ 25)
in the series entering Equation 1.69.

Figure 1.9 shows that pulse, evaluated just by summing the mentioned 51 terms:
Figure 1.9a depicts the orthogonal projection of the pulse intensity; Figure 1.9b
shows the 3D intensity pattern of the real part of the pulse, which reveals the carrier
wave oscillations.

Let us stress that the ball-like shape for the field intensity is typically associated
with the subluminal NDWs, while the typical superluminal ones are known to
be X-shaped [9, 14, 91], as predicted a long time ago by special relativity in its
‘‘non-restricted’’ version (see [13, 14, 35, 89, 103] and references therein). Indeed
it can be noted that each term of the series in Equation 1.69 corresponds to an
ellipsoid or, more specifically, to a spheroid, for each velocity v.
A second example – Let us consider now the very simple case when, within the
integration limits ω−, ω+, the complex exponential spectrum (1.65) is replaced by
the real function (still linear in ω)

S(ω) = a

1 − exp [−a(ω+ − ω−)]
exp [a(ω − ω+] (1.72)

with a a positive number (for a = 0 one goes back to the Mackinnon case).
Spectrum (1.72) is exponentially concentrated in the proximity of ω+, where it
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Figure 1.9 (a) The intensity orthogonal
projection for a pulse corresponding to
Equations 1.70 and 1.71 in the case of
an optical frequency, namely for a sublu-
minal pulse with velocity v = 0.99 c, car-
rier angular frequency ω0 = 2.4 × 1015 Hz
(i.e., λ0 = 0.785 μm) and FWHM band-
width (that is, full width at half maximum)

ω = ω0/20 = 1.2 × 1014 Hz, which results
in an optical pulse of 24 fs. One has also

to specify a value for the the frequency: let
it be b = 3 × 1013 Hz; as a consequence,
one has ω− = 1.507 × 1013 Hz and ω+ =
3 × 1015 Hz. (This is exactly a case in which
the pulse has no backward-traveling com-
ponents, as the chosen spectrum possesses
totally negligible values for ω < b.) (b) The
three-dimensional intensity pattern of the
real part of the same pulse, which reveals
the carrier wave oscillations.

reaches its maximum value, and (on the left of ω+) becomes more and more
concentrated as the arbitrarily chosen value of a increases; its frequency bandwidth
being 
ω = 1/a.

On performing the integration as in the case of spectrum (1.65), instead of
solution (1.66) in the present case one eventually gets the solution

�(ρ, ζ , η) = 2abβγ 2 exp [abγ 2] exp [−aω+]

1 − exp [−a(ω+ − ω−)]

× exp
[

i
b

c
β γ 2 η

]
sin c

[
b

c
γ 2

√
γ −2 ρ2 − (av + iζ )2

]
(1.73)

This Equation 1.73 appears to be the simplest closed-form solution, after Mack-
innon’s, as both of them do not need any recourse to series expansions. In a
sense, our solution (1.73) may be regarded as the subluminal analogue of the
(superluminal) X-wave solution; a difference being that the standard X-shaped
solution has a spectrum starting with 0, where it assumes its maximum value,
while in the present case the spectrum starts at ω− and gets increasing afterward
until ω+. It is more important to observe that the Gaussian spectrum has, a priori,
two advantages w.r.t. Equation 1.72: It may be more easily centered around any
value ω0 of ω, and, when increasing its concentration in the surroundings of ω0,
the spot transverse width does not increase indefinitely, but tends to the spot-width
of a Bessel beam with ω = ω0 and kz = (ω0 − b)/V , at variance with what happens
for spectrum (1.72). Anyway, solution (1.73) is noticeable, as it is really the simplest
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one. An example is consituted by Figure 1.37 in Refs [11], referring to an optical
pulse of 0.2 ps.

1.5.3
A Second Method for Constructing Subluminal Non-Diffracting Pulses

The previous method appears to be very efficient for finding out analytic subluminal
NDWs, but it loses its validity in the limiting case v → 0, as for v = 0 it is ω− ≡ ω+
and the integral in Equation 1.57 degenerates, furnishing a null value. By contrast,
we are also interested in the v = 0 case, as it corresponds, as we said, to some
of the most interesting, and potentially useful, NDWs, that is to the ‘‘stationary’’
solutions to the wave equations endowed with a static envelope, and that we call
Frozen Waves. Before going on, let us recall that the theory of frozen waves
was developed initially in [4, 6], by having recourse to discrete superpositions in
order to bypass the need of numerical simulations. (In the case of continuous
superpositions, some numerical simulations were performed in [104]. However,
the method presented in this subsection does allow finding out exact analytic
solutions, without any need of numerical simulations, also for FW consisting of
continuous superpositions).

Actually, we are going to see that the present method works regardless of
the chosen field-intensity shape, and in regions with size of the order of the
wavelength. It is possible to get such results by starting again from Equation 1.55,
with constraint (1.56), but going on – this time – to integrals over kz, instead
of over ω. It is enough to write relation (1.56) in the form kz = (ω − b)/v, for
expressing the exact solutions (1.55) as

�(ρ, z, t) = exp [−ibt]
∫ kz max

kz min
dkz S(kz) J0(ρkρ ) exp [iζkz] (1.74)

with

kz min = −b

c

1

1 + β
; kz max = b

c

1

1 − β
(1.75)

and with

kρ
2 = − k2

z

γ 2
+ 2

b

c
βkz + b2

c2
(1.76)

where quantity ζ is still defined according to Equation 1.59, always with v < c.
One can show that the unique exact solution known previously [31] may be

rewritten in form (1.75) with S(kz) = constant. Then, on following the same
procedure exploited in our first method, one can again observe [11] that any spectra
S(kz) can be expanded, on the interval kz min < kz < kz max, into the Fourier
series:

S(kz) =
∞∑

n=−∞
An exp

[
+in

2π

K
kz

]
(1.77)
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with coefficients given now by

An = 1

K

∫ kz max

kz min
dkz S(kz) exp

[
−in

2π

K
kz

]
(1.78)

where K ≡ kz max − kz min.
At the end of the whole procedure [11], the general exact solution representing a

subluminal NDW, for any spectra S(kz), can be written eventually:

�(ρ, ζ , η) = 2
b

c
γ 2 exp

[
i
b

c
β γ 2 η

]

×
∞∑

n=−∞
An exp [inπβ] sin c

√
b2

c2
γ 2 ρ2 +

(
b

c
γ 2 ζ + nπ

)2

(1.79)

whose coefficients are expressed in Equation 1.78, and where quantity η is defined
as above, in Equation 1.64.

Interesting examples could be easily worked out.

1.6
‘‘Stationary’’ Solutions with Zero-Speed Envelopes: Frozen Waves

Here, we shall refer ourselves to the (second) method, expounded above. Our
solution (1.79), for the case of envelopes at rest, that is in the case v = 0 (which
implies ζ = z), becomes

�(ρ, z, t) = 2
b

c
exp [−ibt]

∞∑
n=−∞

An sin c

√
b2

c2
ρ2 +

(
b

c
z + nπ

)2

(1.80)

with coefficients An given by Equation 1.78 with v = 0, so that its integration limits
simplify into −b/c and b/c, respectively. Thus, one gets

An = c

2b

∫ b/c

−b/c
dkz S(kz) exp

[
−in

cπ

b
kz

]
(1.81)

Equation (1.80) is a new exact solution, corresponding to ‘‘stationary’’ beams
with a static intensity envelope. Let us observe, however, that even in this case
one has an energy propagation, as it can be verified easily from the power
flux Ss = − ∇ �R∂�R/∂t (scalar case) or from the Poynting vector Sv = (E ∧ H)
(vectorial case: the condition being that �R be a single component, Az, of the
vector potential A ) [14]. We have indicated by �R the real part of �. For v = 0,
Equation 1.56 becomes ω = b ≡ ω0, so that the particular subluminal waves
endowed with null velocity are actually monochromatic beams.

Let us size the present opportunity for presenting here two simple figures
(Figures 1.10 and 1.11), which recall, in an intuitive way, some of the geometrical
characteristics of our Frozen Waves (FWs).
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Straightforward generation

of a beam

Straightforward generation of

a directional beam Technology based on our frozen waves

Figure 1.10 See the explications contained in the figures themselves, which apparently
refer to ordinary (electromagnetic or acoustical) transmission, to standard directional trans-
mission, and to well-localized transmission allowed by our frozen wave techniques. (Cour-
tesy of Andrei Utkin.)

(b)(a) (c)

L L L

Figure 1.11 Areas covered by the electromagnetic (or acoustic) signals in the case, once
more, of (a) omnidirectional trasnsmission, (b) standard directional transmission, and
(c) spot-to-spot signal transmission permitted by our frozen wave tecniques. (Courtesy of
Andrei Utkin.)

It may be stressed that the present (second) method, without any need of the
paraxial approximation, does yield exact expressions for (well-localized) beams
with sizes of the order of their wavelength. It may be noticed, moreover, that the
already-known exact solutions – for instance, the Bessel beams – are nothing but
particular cases of solution (1.80).
An example – On choosing (with 0 ≤ q− < q+ ≤ 1) the spectral double-step func-
tion

S(kz) =

⎧⎪⎪⎨
⎪⎪⎩

c
ω0(q+−q−) for q−ω0/c ≤ kz ≤ q+ω0/c

0 elsewhere,

(1.82)

the coefficients of Equation 1.80 become

An = ic

2πnω0(q+ − q−)
[e−iq+πn − e−iq−πn] (1.83)
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The double-step spectrum (1.82) corresponds, with regard to the longitudinal
wave number, to the mean value kz = ω0(q+ + q−)/2c and to the width 
kz =
ω0(q+ − q−)/c. From such relations, it follows that 
kz/kz = 2(q+ − q−)/(q+ + q−).

For values of q− and q+ that do not satisfy the inequality 
kz/kz 
 1, the
resulting solution will be a non-paraxial beam.

An exact solution can be found in Figure 1.38 of [11], which describes a beam
with a spot diameter of 0.6 μm (for λ0 = 1 μm) and, moreover, with a rather good
longitudinal localization. In the case considered therein, about 21 terms in the sum
entering Equation 1.81 resulted in being enough for a good evaluation of the series.
Such a beam was highly non-paraxial (having 
kz/kz = 1) and therefore could not
have been obtained by ordinary Gaussian beam solutions, which are valid in the
paraxial regime only. Notice that, for simplicity, we are referring ourselves to scalar
wave fields only; but, in the case of non-paraxial optical beams, the vector character
of the field has to be taken into account.

1.6.1
A New Approach to the Frozen Waves

A noticeable property of our present method is that it allows spatial modeling, even
of monochromatic fields (that correspond to envelopes at rest, so that, in the elec-
tromagnetic cases, one can speak, e.g., of the modeling of ‘‘light-fields at rest’’). Let
us repeat that such a modeling – rather interesting, especially for applications [8] –
was already performed in [4–6] in terms of discrete superpositions of Bessel beams.

But the method presented in the last section allows us to make use of continuous
superpositions in order to get a predetermined longitudinal (on-axis) intensity
pattern, inside a desired space interval 0 < z < L. Such continuous superposition
writes [4, 11]

�(ρ, z, t) = e−iω0t
∫ ω0/c

−ω0/c
dkzS(kz)J0(ρkρ ) eizkz (1.84)

which is nothing but the previous Equation 1.72 with v = 0 (and therefore ζ = z).
In other words, Equation 1.84 does just represent a null-speed subluminal wave. The
FWs were expressed in the past as discrete superpositions because it was not known
at that time how to treat analytically a continuous superposition like Equation 1.84.
We are now, however, able to also deal with the relevant integrals: without numerical
simulations, as we said, but in terms once more of analytic solutions.

Indeed, the exact solution of Equation 1.84 is given by Equation 1.80, with
coefficients (1.81), and one can choose the spectral function S(kz) in such a way
that � assumes the on-axis pre-chosen static intensity pattern |F(z)|2. Namely, the
equation to be satisfied by S(kz), to such an aim, is derived by associating Equation
1.84 with the requirement |�(ρ = 0, z, t)|2 = |F(z)|2, which entails the integral
relation∫ ω0/c

−ω0/c
dkz S(kz) eizkz = F(z) (1.85)
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Equation 1.85 would be trivially solvable in the case of an integration between
−∞ and +∞, as it would merely be a Fourier transformation; but, obviously, this
is not the case because its integration limits are finite. Actually, there are functions
F(z) for which Equation 1.85 is not solvable at all in the sense that no spectra S(kz)
exist obeying the last equation. For instance, if we consider the Fourier expansion

F(z) =
∫ ∞

−∞
dkz S̃(kz) eizkz

when S̃(kz) does assume non-negligible values outside the interval −ω0/c < kz <

ω0/c, then in Equation 1.85 no S(kz) can forward that particular F(z) as a result.
However, some procedures can be devised, such that one can nevertheless find out

a function S(kz) that approximately (but satisfactorily) complies with Equation 1.85.
The first procedure consists of writing S(kz) in the form

S(kz) = 1

K

∞∑
n=−∞

F

(
2nπ

K

)
e−i2nπkz/K (1.86)

where, as before, K = 2ω0/c. Then, Equation 86 can be verified easily as guaran-
teeing that the integral in Equation 1.85 yields the values of the desired F(z) at
the discrete points z = 2nπ/K. Indeed, the Fourier expansion (1.86) is already of the
same type as Equation 1.82, so that in this case the coefficients An of our solution
(1.80), appearing in Equation 1.81, do simply become

An = 1

K
F

(
−2nπ

K

)
(1.87)

This is a powerful way for obtaining a desired longitudinal (on-axis) intensity
pattern, especially for tiny spatial regions because it is not necessary to solve any
integral to find out the coefficients An, which, by contrast, are given directly by
Equation 1.87.

Figure 1.12 depicts some interesting applications of this method. A few desired
longitudinal intensity patterns |F(z)|2 have been chosen, and the corresponding
FWs calculated by using Equation 1.80 with the coefficients An given in Equation
1.87. The desired patterns are enforced to exist within very small spatial intervals
only in order to show the capability of the method to model [19] the field intensity
shape also under such strict requirements.

In the following four examples below we considered a wavelength λ = 0.6 μm,
which corresponds to ω0 = b = 3.14 × 1015 Hz. Details can be found in [11].

The first longitudinal (on-axis) pattern considered by us is F(z) = exp [a(z − Z)]
for 0 ≤ z ≤ Z, and zero elsewhere; that is a pattern with an exponential increase,
starting from z = 0 until Z = 10 μm and with a = 3/Z. The intensity of the
corresponding FW is shown in Figure 1.12a.

The second longitudinal pattern (on-axis) taken into consideration is the Gaussian
one, given by F(z) = exp [−q(z/Z)2] for −Z ≤ z ≤ Z, and zero elsewhere, with q =
2 and Z = 1.6 μm. The intensity of the corresponding FW is shown in Figure 1.12b.

In the third example, the desired longitudinal pattern is supposed to be a super-
Gaussian, F(z) = exp [−q(z/Z)2m] for −Z ≤ z ≤ Z, and zero elsewhere, where m
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Figure 1.12 Frozen waves with the on-axis longitudinal field pattern chosen as (a) expo-
nential, (b) Gaussian, (c) super-Gaussian, and (d) zero-order Bessel function.

controls the edge sharpness. We choose q = 2, m = 4 and Z = 2 μm. The intensity
of the FW obtained in this case is shown in Figure 1.12c.

Finally, in the fourth example, let us choose the longitudinal pattern as being
the zero-order Bessel function F(z) = J0(q z) for −Z ≤ z ≤ Z, and zero elsewhere,
with q = 1.6 × 106 m−1 and Z = 15 μm. The intensity of the corresponding FW is
shown in Figure 1.12d.

Any static envelopes of this type can be transformed easily into propagating
pulses by the mere application of Lorentz Transformations (LT).

Another procedure exists for evaluating S(kz), based on the assumption that
S(kz) ≈ S̃(kz), which constitutes a good approximation whenever S̃(kz) assumes
negligible values outside the interval [−ω0/c, ω0/c]. In such a case, one can have
recourse to the method associated with Equation 1.77 and expand S̃(kz) itself in a
Fourier series, eventually getting the relevant coefficients An by Equation 1.78. Let
us recall that it is still K ≡ kz max − kz min = 2ω0/c.

It is worthwhile to call attention to the circumstance that, when constructing
FWs in terms of a sum of discrete superpositions of Bessel beams (as it has been
done in [4–6, 8, 12]), it is easy to obtain extended envelopes like, for example,
‘‘cigars’’: Where ‘‘easy’’ means using only a few terms of the sum. By contrast,
when we construct FWs – following this section – as continuous superpositions,
then it is easy to get highly localized (concentrated) envelopes. Let us explicitly
mention, moreover, that the method presented in this section furnishes FWs that
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are no longer periodic along the z-axis (a situation that, with our old method [4–6,
12], was obtainable only when the periodicity interval tended to infinity).

1.6.2
Frozen Waves in Absorbing Media

Let us mention that it is possible to obtain even in absorbing media non-diffracting
‘‘stationary’’ wave fields capable to assume, approximately, any desired longitudinal
intensity pattern within a chosen interval 0 ≤ z ≤ L of the propagation axis z. These
new solutions are more easily realizable in practice, to the extent that they are more
indicated for the various applications already mentioned.

We know that, when propagating in a non-absorbing medium, the NDWs [4,
6] maintain their spatial shape for long distances. The situation is not the same
when dealing with absorbing media. In such cases, both the ordinary and the
non-diffracting beams (and pulses) will be attenuated exponentially along the
propagation axis.

It can, however be shown that, through suitable superpositions of equal-frequency
Bessel beams, it is possible to obtain non-diffracting beams in absorbing media,
whose longitudinal intensity pattern can assume any desired shape within a
chosen interval 0 ≤ z ≤ L of the propagation axis z. For example, one can obtain
non-diffracting beams capable of resisting the loss effects, and maintaining the
amplitude and spot size of their central core for long distances.

The corresponding method, with some interesting examples, is expounded in [5]
and in Chapter 2 of [1].

1.6.3
Experimental Production of the Frozen Waves

Frozen Waves have been produced recently [105] in optics, as reported also in
another chapter of this volume; we also expect their production in acoustics, even
if at present only simulated experiments have been performed [7].

1.7
On the Role of Special Relativity and of Lorentz Transformations

Strict connections exist between, on one hand, the principles and structure of
special relativity and, on the other hand, the whole subject of subluminal, luminal,
superluminal localized waves, and it has been expected long time that a priori they
are transformable one into the other via suitable Lorentz transformations (see [89,
103, 106–111]).

Let us first confine ourselves to the cases faced in the previous section. Our
subluminal localized pulses, which may be called ‘‘wave bullets,’’ behave as
particles; indeed, our subluminal pulses (as well as the luminal and superluminal
(X-shaped) ones, that have been so amply investigated in the past literature) do exist
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as solutions of any wave equations, ranging from electromagnetism and acoustics
or geophysics, to elementary particle physics (and even, as we discovered recently,
to gravitation physics). From the kinematical point of view, the velocity composition
relativistic law holds also for them. The same is true, in general, for any localized
waves (pulses or beams).

Let us start for simplicity by considering, in an initial reference-frame O, just a
(ν-order) Bessel beam �(ρ, φ, z, t) = Jν (ρkρ ) eiνφ eizkz e−iωt. In a second reference-
frame O′, moving w.r.t. O with speed u – along the positive z-axis and in the
positive direction, for simplicity’s sake –, the new Bessel beam it will be observed
[111]

�(ρ ′, φ′, z′, t′) = Jν (ρ ′k′
ρ′ ) eiνφ′

eiz′k′
z′ e−iω′t′ (1.88)

obtained by applying the appropriate Lorentz transformation (a Lorentz ‘‘boost’’)
with γ = [

√
1 − u2/c2]−1, and k′

ρ′ = kρ; k′
z′ = γ (kz − uω/c2); ω′ = γ (ω − ukz); this

can be easily seen, for example, by putting ρ = ρ ′; z = γ (z′ + ut′); t = γ (t′ + uz′/c2)
directly into Equation 1.88.

Let us now pass to subluminal pulses. We can investigate the action of a LT, by
expressing them either via the first method, or via the second one, of section 1.5.
Let us consider for instance, in the frame O, a v-speed (subluminal) pulse [11] given
in section 1.5. When we go on to a second observer O′ moving with the same speed
v w.r.t. frame O, and, still for the sake of simplicity, passing through the origin O
of the initial frame at time t = 0, the new observer O′ will see the pulse [111]

�(ρ ′, z′, t′) = e−it′ω′
0

∫ ω+

ω−
dω S(ω) J0(ρ ′k′

ρ′ ) eiz′k′
z′ (1.89)

with k′
z′ = γ −1ω/v − γ b/v ; ω′ = γ b = ω′

0; k′
ρ′ = ω′

0/c2 − k′
z′

2, as one gets from
the mentioned Lorentz boost [11], with u = v (and γ defined as usual [11]). Notice
that k′

z′ is a function of ω and that here ω′ is a constant.
If we explicitly insert into Equation 1.89 the relation ω = γ (v k′

z′ + γ b), which
is nothing but a re-writing of the first one of the relations following Equation 1.89
above, then Equation 1.89 becomes [111]

�(ρ ′, z′, t′) = γ v e−it′ω0

∫ ω0/c

−ω0/c
dk′

z′ S(k′
z′ ) J0(ρ ′k′

ρ′ ) eiz′k′
z′ (1.90)

where S is expressed in terms of the previous function S(ω), entering Equation 1.89,
as follows: S(k′

z′ ) = S(γ v k′
z′ + γ 2b). Equation 1.90 describes monochromatic

beams with axial symmetry (and also coincides with what was derived from
our second method, in section 1.5, when posing v = 0).

The conclusion is that a subluminal pulse, given by Equation 1.57, which appears
as a v-speed pulse in a frame O, will appear [111] in another frame O′ (traveling w.r.t.
observer O with the same speed v in the same direction z) just as the monochromatic
beam in Equation 1.90 endowed with angular frequency ω′

0 = γ b, whatever be the
pulse spectral function in the initial frame O: Even if the kind of monochromatic
beam one arrives to does, of course, depend on the chosen S(ω). The opposite is
also true, in general. (Notice, incidentally, that one gets, in particular, a Bessel-type
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beam when S is a Dirac’s delta-function: S(ω) = δ(ω − ω0); moreover, let us notice
that, on applying a LT to a Bessel beam, one obtains another Bessel beam, with
a different axicon-angle). Let us set forth explicitly an observation that up to now
has been noticed only in [19]. Namely, let us mention that, when not starting from
Equation 1.57 but from the most general solutions, which – as we have already
seen – are sums of solutions (1.57) over the various values bm of b, then a LT will
lead us to a sum of monochromatic beams – actually, of harmonics (rather than
to a single monochromatic beam). In particular, if one wants to obtain a sum of
harmonic beams, one has to apply a LT to more general subluminal pulses.

Let us also add that the various superluminal localized pulses get transformed
[111] one into the other by the mere application of ordinary Lorentz transformations;
while it may be expected that the subluminal and the superluminal NDWs are to
be linked (apart from some known technical difficulties, which require a particular
caution [35]) by the superluminal Lorentz ‘‘transformations’’ expounded long ago,
for example, in [89, 103, 106, 110] and references therein.

Let us recall at this point that, in 1980–1982, special relativity, in its non-restricted
version, predicted that, while the simplest subluminal object is obviously a sphere
(or, in the limit, a space point), the simplest superluminal object is, on the contrary,
an X-shaped pulse (or, in the limit, a double cone); this is shown in Figure 1.13. The
circumstance that the localized solutions to the wave equations indeed follow the
same pattern is rather interesting, and might be of help – in the case, for example,

(a) (b) (c) (d)

x ′x

y ′y

x ′′

y ′′

Figure 1.13 From non-restricted special rela-
tivity, also called ‘‘extended special relativity’’
[35, 103] one can recall the following. An
intrinsically spherical (or point-like, at the
limit) object appears in the vacuum as an el-
lipsoid contracted along the motion direction
when endowed with a speed v < c. By con-
trast, if endowed with a speed V > c (even
if the c-speed barrier cannot be crossed,
neither from the left nor from the right),
it would appear [35, 89, 103] no longer as
a particle, but as occupying the region de-
limited by a double cone and a two-sheeted
hyperboloid – or as a double cone, at the

limit –, and moving with superluminal speed
V (the cotangent square of the cone semi-
angle, with c = 1, being V2 − 1). For sim-
plicity, a space axis is skipped. This figure
is taken from [89, 103]. It is remarkable that
the shape of the localized (subluminal and
superluminal) pulses, solutions to the wave
equations, appears to follow the same behav-
ior; this can have a role for a better compre-
hension even of the corpuscle/wave duality,
that is of de Broglie and Schroedinger wave
mechanics. See also Figure 1.14. (Reprinted
with kind permission of Società Italiana di
Fisica.)
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Figure 1.14 In Figure 1.13 we have seen
how special relativity (SR), in its non-
restricted version, predicted [89, 103] that,
while the simplest subluminal object is ob-
viously a sphere (or, in the limit, a space
point), the simplest superluminal object
is, on the contrary, an X-shaped pulse (or,
in the limit, a double cone). The circum-
stance that the localized solutions to the
wave equations do follow the same pattern
is rather interesting, and is expected to be
useful – in the case, for example, of ele-
mentary particles and quantum physics –

for a deeper comprehension of de Broglie’s
and Schroedinger’s wave mechanics. With
regard to the fact that the simplest sublumi-
nal NDWs, solutions to the wave equations,
are ‘‘ball-like,’’ let us depict, by these figures,
in the ordinary three-dimentional space, the
general shape of the Mackinnon’s solutions
as expressed by Equation 1.63, numerically
evaluated for v 
 c. In (a) and (b) we rep-
resent graphically the field iso-intensity sur-
faces, which, in the considered case, result
in being (as expected) just spherical.

of elementary particles and quantum physics – in a deeper comprehension of de
Broglie’s and Schroedinger’s wave mechanics, and of the corpuscle/wave duality.
With regard to the fact that the simplest subluminal NDWs, solutions to the wave
equation, are ‘‘ball-like,’’ let us present in Figure 1.14, in ordinary 3D space, the
general shape of the simple Mackinnon’s solutions, as expressed by Equation 1.63
for v 
 c. In such figures we depict graphically the field iso-intensity surfaces,
which (as expected) result in being just spherical in the considered case.

We have also seen, among the others, that, even if our first method (Section 1.5.1)
cannot directly yield zero-speed envelopes, such envelopes ‘‘at rest,’’ Equation 1.80,
can, however, be obtained by applying a v-speed LT to Equation 1.69. In this way,
one starts from many frequencies (Equation 1.69) and ends up with one frequency
only (Equation 1.80), as b gets transformed into the frequency of the monochromatic
beam. Let us add a warning: the topic of superluminal LTs is a delicate one [89,
103, 106, 110], to the extent that the majority of the recent attempts to re-address
this question and its applications (see, e.g., [35] and references therein) risk being
defective; in some cases, they did not even respect the necessary covariance of the
wave equation itself.

Further details on these topics can be found in [1, 11, 13, 14], where, in connection
with the fact that the X-shaped pulses are endowed with superluminal peak
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velocities, an overview was presented of the various experimental sectors of physics
in which superluminal motions do seem to appear. Namely, a bird’s-eye view was
also given therein of the experiments performed until now with evanescent waves
(and/or tunneling photons), and with the NDW solutions to the wave equations.

1.8
Non-Axially Symmetric Solutions: The Case of Higher-Order Bessel Beams

Let us stress that until now we paid here attention to exact solutions representing
axially-symmetric (subluminal) pulses only, that is to say, to pulses obtained by
suitable superpositions of zero-order Bessel beams.

It is, however, interesting to look also for analytic solutions representing non-
axially symmetric subluminal pulses, which can be constructed in terms of
superpositions of ν-order Bessel beams, with ν a positive integer (ν > 0). This
can be attempted both in the case of Section 1.5.1 (first method), and in the case of
Section 1.5.3 (second method). For brevity’s sake, let us take only the first method
(Section 1.5.1) into consideration.

One is immediately confronted with the difficulty that no exact solutions are
known for the integral in Equation 1.62 when J0(•) is replaced with Jν (•). One can
overcome this difficulty by following a simple method, which allows obtaining
‘‘higher-order’’ subluminal waves in terms of the axially-symmetric ones. Indeed, it
is well-known that, if �(x, y, z, t) is an exact solution to the ordinary wave equation,
then ∂�/∂x and ∂�/∂y are also exact solutions (incidentally, even ∂n�/∂zn

and ∂n�/∂tn will be exact solutions). By contrast, when working in cylindrical
coordinates, if �(ρ, φ, z, t) is a solution to the wave equation, quantities ∂�/∂ρ and
∂�/∂φ are not solutions, in general. Nevertheless, it is not difficult at all to reach
the noticeable conclusion that, once �(ρ, φ, z, t) is a solution, then

�(ρ, φ, z, t) = eiφ

(
∂�

∂ρ
+ i

ρ

∂�

∂φ

)
(1.91)

is also an exact solution! For instance, for an axially-symmetric solu-
tion of the type � = J0(kρρ) exp [ikz] exp [−iωt], Equation 1.91 yields
� = −kρ J1(kρρ) exp [iφ] exp [ikz] exp [−iωt], which is actually one more
analytic solution. In other words, it is enough to start for simplicity from a
zero-order Bessel beam and to apply Equation 1.91, successively, ν times, in order
to get as a new solution � = (−kρ )ν Jν (kρρ) exp [iνφ] exp [ikz] exp [−iωt], which
is a ν-order Bessel beam.

In such a way, when applying ν times Equation 1.91 to the (axially-symmetric)
subluminal solution �(ρ, z, t) in Equations 1.67–1.69 (obtained from Equation 1.57
with spectral function S(ω)), we get the subluminal non-axially symmetric pulses
�ν (ρ, φ, z, t) as new analytic solutions; consisting, as expected, of superpositions of
ν-order Bessel beams:

�n(ρ, φ, z, t) =
∫ ω+

ω−
dω S′(ω) Jν (kρρ) eiνφ eikzz e−iωt (1.92)
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where kρ (ω) is given by Equation 1.58, and quantities S′(ω) = (−kρ (ω))νS(ω) are
the spectra of the new pulses. If S(ω) is centered at a certain carrier frequency (it is
a Gaussian spectrum, for instance), then S′(ω) too will approximately result to be
of the same type.

Now, if we wish the new solution �ν (ρ, φ, z, t) to possess a pre-defined spectrum
S′(ω) = F(ω), we can first take Equation 1.57 and put S(ω) = F(ω)/(−kρ (ω))ν in its
solution (1.69), and afterward apply to it, ν times, the operator U ≡ exp [iφ] [∂/∂ρ +
(i/ρ)∂/∂φ)]. As a result, we will obtain the desired pulse, �ν (ρ, φ, z, t), endowed
with S′(ω) = F(ω).
An example – On starting from the subluminal axially-symmetric pulse �(ρ, z, t),
given by Equation 1.69 with the Gaussian spectrum (1.70), we can get the sublumi-
nal, non-axially symmetric, exact solution �1(ρ, φ, z, t) by simply calculating

�1(ρ, φ, z, t) = ∂�

∂ρ
eiφ (1.93)

which actually yields the ‘‘first-order’’ pulse �1(ρ, φ, z, t), which can be more
compactly written in the form:

�1(ρ, φ, η, ζ ) = 2
b

c
v γ 2 exp

[
i
b

c
β γ 2 η

] ∞∑
n=−∞

An exp
[

in
π

β

]
ψ1n

(1.94)

with

ψ1n(ρ, φ, η, ζ ) ≡ b2

c2
γ 2ρ Z−3[Z cos Z − sin Z] eiφ (1.95)

where

Z ≡
√

b2

c2
γ 2ρ2 +

(
b

c
γ 2ζ + nπ

)2

(1.96)

This exact solution, let us repeat, corresponds to superposition (1.92), with
S′(ω) = kρ (ω)S(ω), quantity S(ω) being given by Equation 1.70. It is represented in
Figure 1.15. The pulse intensity has a ‘‘donut-like’’ shape.

Let us take the liberty of recalling that in Chapter 2 of [1], in connection with
the frozen waves, we argued about the possibility of increasing even more our
control on their transverse shape also by using higher-order Bessel beams in the
FW fundamental superposition Equation 2.74 in [1]. That new approach can be
understood and accepted on the basis of simple and intuitive arguments, which
can be found in [12].

In Chapter 2 of [1] we showed for example how to obtain a cylindrical surface
of ‘‘static’’ light, in correspondence with a chosen space interval 0 ≤ z ≤ L (for
instance, with L = 238 μm).

Figure 1.16 depicts the longitudinal intensity pattern as it was approximately
obtained, shifted from ρ = 0 to a different value of ρ (in this case, ρ = 7.75 μm).
Indeed, the resulting field resembles a cylindrical surface of ‘‘static’’ light with a
radius of 7.75 μm and length of 238 μm.
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Figure 1.15 Orthogonal projection of the
field intensity corresponding to the higher
order subluminal pulse represented by the ex-
act solution Equation 1.93, quantity � being

given by Equation 1.69 with the Gaussian
spectrum (1.70). This time, the pulse inten-
sity happens to have a ‘‘donut’’-like shape.

1.9
An Application to Biomedical Optics: NDWs and the GLMT (Generalized Lorenz-Mie
Theory)

Earlier, we mentioned, in several places, the possible applications of NDWs, quoting
even a patent of ours [8] regarding FWs. Let us exploit here at least the theoretical
aspects of an application in biomedical optics.

As we know, NDWs have become a hot topic in a variety of fields. Let us recall,
in particular, that their use, replacing laser beams for achieving multiple traps, has
found many potential applications in medicine and biomedicine [112–116]. Even
though their multi-ringed structure is not suitable for an effective 3D trap when
single beam set-ups are employed, nevertheless, with today techniques for their
generation and real-time control, non-diffracting beams have become (better then
focused Gaussian beams or others) indispensable ‘‘laser-type’’ beams for biological
studies by means of optical tweezing and micromanipulation techniques.

The theory involved in optical trapping and micromanipulation (for a review
see, e.g., [117]) is strongly dependent on the relative size and electromagnetic
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Figure 1.16 (a) Transverse section at
z = L/2 of the considered higher-order FW.
(b) Orthogonal projection of the three-
dimensional intensity pattern of the same

higher-order FW. Indeed, the resulting field
resembles a cylindrical surface of ‘‘static’’
light with the chosen radius of 7.75 μm (and
the chosen length of 238 μm).

parameters of the scatterer, which is, in general, assumed to have some symmetric
shape (sphere, cylinder, ellipsis, etc.). If we take the electromagnetic properties of
the particle and of the surrounding medium to be of the same order (as usually
happens for biological particles immersed in water or oil), two situations are of
particular theoretical interest: the possibility of avoiding, or just eliminating, too
large an amount of algebra or numerical calculations.

The first one is met when the size parameter s of the scatterer is much larger
than the wavelength λ of the wave (s � λ), so that geometrical optics considerations
become the fastest and most convenient way to find out the physical properties of
interest [116, 118–120].

The second one, however, concerns very small particles, that is scatterers whose
overall dimension may be considered a small fraction of the wavelength (s 
 λ), so
that the Rayleigh theory becomes the most suitable theoretical approach for solving
the associated scattering problem [121]. Indeed, both the ray optics method and the
Rayleigh theory are extremely accurate within their range of validity, and remain
valid for any incident wave (as long as it is adequately modeled).

However, for s close to 1, it results to be difficult to formulate analytic closed-form
expressions for the physical properties of interest. In this particular situation none
of the two aforementioned approaches is of any help, and one is forced to adopt
alternative approaches or techniques, such as the so-called Lorenz–Mie theory (for
plane waves and spherical particles) or its generalized version, the GLMT [122–125]
for arbitrary wave fields. We adopt the GLMT in this section mainly because it
seems to be the most established numerical/theoretical formalism for arbitrary-
sized particles in scattering problems (for further methods see, for instance, [126]
and references therein).
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In the framework of the GLMT and for spherical scatterers, a v-th order paraxial
Bessel beam

ψ = Jv(kρρ) exp (iωt) exp (ivφ) (1.97)

must be described in terms of the beam-shape coefficients (BSCs) gm
n,TM and gm

n,TE

(n, m being integers), because of the mathematical structure commonly used for
the incident electromagnetic field (which is based on power series expansions in
terms of vector spherical harmonics [126]). The BSCs are, thus, the coefficients
of such expansion and are responsible for an adequate description of the spatial
intensity profile of the wave.

Much effort has been made during the last few years to get reliable and
useful descriptions of scalar Bessel beams, envisioning optical trapping and
micromanipulation, particle sizing applications and so on. In fact, if the radial
component of the electric field, ER, is given, or known, then the BSCs gm

n,TM will
read [126], in a spherical coordinate system whose origin coincides with the center
of the particle, as:

gm
n,TM = (2n + 1)2

2π2n(n + 1)cpw
n

(n − |m|)!
(n + |m|)!

∫ 2π

0

∫ π

0

∫ ∞

0

ER(r, θ , φ)

E0
r� (1)

n (kr)

×P|m|
n (cos θ ) exp (−imφ) sin θ d(kr) dθ dφ (1.98)

or

gm
n,TM = 2n + 1

4πn(n + 1)cpw
n

(n − |m|)!
(n + |m|)!

a

�
(1)
n (ka)

∫ 2π

0

∫ π

0

ER(r = a, θ , φ)

E0

×P|m|
n (cos θ ) exp (−imφ) sin θ dθ dφ (1.99)

where Equation (1.99) follows from a suitable choice of the spatial parameter a.
In the above expressions, cpw

n = (−i)n+1(2n + 1)/(kn(n + 1)), while k is the wave
number in the external medium, and the �

(1)
n are spherical Bessel functions; finally,

quantities P|m|
n (cos θ ) are the associated Legendre polynomials and E0 the electric

field strength. The coefficients gm
n,TE follow from similar considerations.

Unless Equation (1.98) or Equation (1.99) are numerically evaluated, they a priori
give us no direct insight into the behavior of the BSCs gm

n,TM and gm
n,TE, which may or

may not be written in terms of any of the following parameters or values: n, m, the
size-parameter s, the spot 
ρ of the impinging Bessel beam, and the perpendicular
distance ρ0 between the optical axis of the beam and the center of the particle.
Several researchers have devoted time to the derivation of numerically efficient
and fast computing techniques and formulae, instead of simply implementing
recursive algorithms for computing triple and double integrations as given by
(1.98) and (1.99), respectively [127–131].

We have recently shown that, in spherical coordinates, a scalar ordinary Bessel
beam can be accurately described by means of what has been called [132] integral
localized approximation (ILA), a method that considerably revolutionized the
numerical aspects of the GLMT by making it possible to obtain, in a numerically-
efficient way, closed-form expressions [127–133] for the BSCs. For example, a
zero-order Bessel beam propagating along axiz z and polarized along x, when
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displaced along the x-direction of a distance ρ0 = x0, has its BSCs, gm
n,TM and gm

n,TE

given by the simple expressions [132]:

g0
n,TM = i

2n(n + 1)

2n + 1
J1(ω)J1(ξ ) exp (ikzz0) (1.100)

gm =0
n,TM = 1

2

( −2i

2n + 1

)|m|−1

×[J|m|−1(ω)J|m|−1(ξ ) + J|m|+1(ω)J|m|+1(ξ )] exp (ikzz0) (1.101)

g0
n,TE = 0 (1.102)

g±|m|=0
n,TE = ∓i

2

( −2i

2n + 1

)|m|−1

×[J|m|−1(ω)J|m|−1(ξ ) − J|m|+1(ω)J|m|+1(ξ )] exp (ikzz0) (1.103)

quantity kz being the longitudinal wave number, z0 a constant that accounts for
the correct phase of the wave at some observation point, ω = (n + 1/2) sin θa, and
ξ = x0k sin θa (θa being the axicon angle). Once the BSCs have been found, all
the electromagnetic field components can be readily obtained by using double
summation expressions [126]. For instance, ER reads

Er(r, θ , φ) = −iE0

∞∑
n=1

(−i)n(2n + 1)
�

(1)
n (kr)

kr

n∑
m=−n

gm
n,TMπ |m|

n (θ ) sin θ exp (imφ)

(1.104)

whose original value Ex is given by (1.104) when imposing Ex = Er(r = |x0|, θ =
π/2, φ = 0) for x > 0 and Ex = ER(r = |x0|, θ = π/2, φ = π ) for x < 0, as we have
depicted in Figure 1.17. Unfortunately, the higher the radial displacement ρ0 of
the beam relative to the particle, the higher the number of BSCs that come into
play in Equtions 1.100–1.104, or, more generally, in the evaluation of all the
physical properties of interest (radiation pressure cross-sections, torques, spatial
intensity distribution, and so on). Nevertheless, Equations 1.100–1.103 can speed
up numerical calculations by a factor of 100, or even 1000, w.r.t. that expected
from a direct use of (1.98) and (1.99) [132]. With such a fast computing technique,
together with equivalent expressions for some other specific polarizations, some
of the most fundamental trapping properties of (absorbent or lossless) arbitrary
size spheres, simple or stratified, with positive or negative refractive indexes have
been investigated: The results being more or less in accordance with what should
be expected in a real experiment [126, 132, 134, 135]. By ‘‘more or less’’ we mean
that the ILA does not predict the changes in the intensity profile of the beam, after
its passage through the lens system and the objective of the microscope, and so
on (a good theoretical approach to this case has recently been demonstrated for a
focused Gaussian beam [136, 137]).
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Figure 1.17 The Ex component generated by the generalized Lorenz–Mie theory for an or-
dinary Bessel beam with λ = 532 μm. The axicon angle θa was chosen to be 5◦, a limiting
number for which the paraxial approximation may still be considered valid.

The same approach was more recently applied for the BSCs of higher order
Bessel beams, under the paraxial approximation, for studying the optical forces
exerted over biological cells [135]. Even though the paraxial restriction may not
be adequate in some cases, it allows one to rapidly evaluate the angular and
linear momentum transfer characteristics for a wide range of spherical-like, simple
or stratified structures and biological particles. Incidentally, if the beam is an
authentic ‘‘Maxwellian wave’’ (which is not the case for a Gaussian beam), the
ILA provides a fast and reliable alternative for investigating scattering problems
within the GLMT. It should be emphasized that the formulation in [136, 137]
leads to analytical BSC expressions similar to those given by Equations 1.100 and
1.101, thus demonstrating how close the ILA outputs are to the exact quadrature
expressions, (1.98) and (1.99) or, equivalently, to what is provided in [136].

One of the particularities of the GLMT is that, when the incident beam is replaced
by another one with different parameter s, all subsequent formulae and numerical
code remain unchanged, avoiding redefinition or inclusion of additional lines in the
numerical algorithm, which contains the expressions for the physical parameters
to be calculated. Further, once the BSCs for a given Bessel beam are given, any
impinging wave constructed by means of a suitable superposition of them can
also be easily described and investigated. This is of great interest in the case of
static (zero speed) longitudinal intensity patterns, generated by superposing N
equal-frequency zero-order Bessel beams with different longitudinal wave number
– which is the interesting case [4] of the FWs (whose experimental production has
been recently realized, let us repeat, for the case of longitudinal intervals of the
order [105] of 1 m). Notice that the BSCs of paraxial FWs would simply involve a
summation of N individual BSCs, each one adequately weighted in order to model
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in [87] through a superposition of Bessel
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some pre-chosen longitudinal intensity pattern. This simple and direct technique
enables the description of FWs for a large number of potential applications, as
already mentioned elsewhere. Figure 1.18 reveals, for example, the equivalent of
the longitudinal exponential intensity pattern first introduced in [4] for mid-range
purposes. It is clearly seen that, indeed, the GLMT is capable of handling this
new class of ‘‘laser beams’’ and provides pretty good results for its associated
optical properties, such as the longitudinal radiation pressure cross-section profile
of Figure 1.18, as shown in Figure 1.19.

The transverse intensity control provided by the superposition of higher order
Bessel beams could also be taken into account by using the analytic expressions for
the BSCs, provided, for example, in [135] for single Bessel beams. Finally, future
theoretical work may allow one to deal with both scalar and vector FWs, as it is
understandable that, once an accurate description of arbitrary order scalar Bessel
beams is given, their equivalent vector fields are somehow functions of those
same Bessel functions that enter into their expressions, and that can therefore be
described by the GLMT in terms of their field components [116, 138].

Bessel beams have also been theoretically introduced as one of the first ‘‘laser
beam’’ for studying the mechanical properties of simple negative refractive-index
(NRI) scatterers [86, 134]. For such particles, the matching condition (i.e., the
identity of the impedance of the external medium with that of the particle) is known
to produce non-zero radial and scattering optical forces, even if the wave suffers no
reflection at the surface of the sphere, in contrast with the ordinary case of positive
refractive index particles [139–141]. Using Bessel beams (both in the ray optics and
in the GLMT) it has been possible to show, for example, that a given NRI spherical
particle can radially be either attracted by or repelled from the bright or dark
annular intensity disks. This behavior being strongly affected by how the incident
wave distributes itself in space, that is, by its spot and relative transverse distance.
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Figure 1.19 Radiation pressure cross-section exerted on a spherical dielectric particle of ra-
dius a = 3.75 μm as a function of its relative refractive index and of the distance z0 from
z = 0. The external medium is assumed to be water. Points of longitudinal stable equilib-
rium are denoted by P0 and Q0.

If the medium inside which the particle is embedded is lossy (or if the scatterer
itself is absorbent), it is also possible to conceive the incorporation of diffraction-
attenuation resistant beams (DARBs) into some optical tweezers set-up [5, 87],
so that any pre-fixed longitudinal intensity provides the experimentalist with
the expected optical properties. However, the generation and implementation of
DARBs for arbitrary-range applications are still open problems.

1.10
Soliton-Like Solutions to the Ordinary Schroedinger Equation within Standard
Quantum Mechanics (QM)

As we know, not only non-linear, but also a large class of linear equations
(including the wave equations) admit ‘‘soliton-like’’ solutions, which propagate
without distortion in one direction. In the case of the (linear) wave equations, for
such soliton-like solutions we have used the name of NDWs. It was soon thought
that, as these solutions to the wave equations are non-diffracting and particle-like,
they are a priori suitable, more than Gaussian’s, for describing elementary particle
motion, and may well be related with their wave nature [28, 37]. In fact, localized
solutions were soon found also for Klein–Gordon and for Dirac equations [28,
37]. In this section we show [3] that, mutatis mutandis, non-diffracting solutions
exist even for the ordinary (linear) Schroedinger equation within standard quantum
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mechanics; where we may obtain both approximate and exact solutions. In the ideal
case such solutions (even if localized, and ‘‘decaying’’) are not square-integrable,
analogously to plane or spherical waves: one has to show therefore how to obtain
finite-energy solutions. The approach can, of course, be extended to a particle
moving in the presence of a potential [3].

Little work [38] was done in the past for the case of the ordinary Schroedinger
equation; see, for example [29, 37]. Indeed, the Schroedinger case is different, as
the relation between the energy E and the impulse magnitude p ≡ |p| is quadratic
[E = p2/(2m)] in non-relativistic cases, like in Schroedinger’s, at variance with
the relativistic ones. We might mention that many non-diffracting (especially
X-shaped) solutions have been constructed for the linear [41] or nonlinear [42]
equations that in optics bear the name of ‘‘Schroedinger equation’’, even if they
are mathematically very different from the ordinary Schroedinger’s. Moreover, a
special kind of non-diffracting packet solutions, in terms of Airy functions, were
found in the 1970s for the case of the actual 1D Schroedinger equation and
later extended to the 3D case. All that has been recently applied to the case of
optics, originating from the discovery of Airy-type waves, now well-known for their
remarkable properties [142–146]: Such Airy waves are solutions, once more, to
the so-called (linear) Schroedinger equation of optics. But, as we were saying, the
non-diffracting solutions to the ordinary Schroedinger equation, within standard
quantam machines, are quite apt at describing elementary particles. They will
result to be very different from the ones found in optics, both for the mentioned
fact that the optical Schroedinger equation is mathematically different from the
ordinary Schroedinger equation, and for the fact that our approach and methods
are quite different from the ones adopted in optics.

Before going on, let us first recall that in the time-independent realm – or,
rather, when the dependence on time is only harmonic, that is, for monochro-
matic solutions – the (quantum, non-relativistic) Schroedinger equation happens
to be mathematically identical to the (classical, relativistic) Helmholtz equation
[147–150]. And many trains of localized X-shaped pulses have been found as
superpositions of solutions to the Helmholtz equation, which propagate, for in-
stance, along cylindrical or co-axial waveguides [66]; however, we shall skip all
the cases [67, 68] of this type, as we are concerned here with propagation in
free space, even when in the presence of an ordinary potential. Let us also
mention that, in the general time-dependent case, that is, in the case of pulses,
the Schroedinger and the ordinary wave equation are no longer mathematically
identical, as the time derivative results are to be of the first order in the former
and of the second order in the latter. (It has been shown, nevertheless, that
at least in some cases they still share various classes of analogous solutions,
differing only in their spreading properties [148]). Moreover, the Schroedinger
equation implies the existence of an intrinsic dispersion relation, even for free
particles; this is another difference to pay attention to: the solutions to the wave
equation suffer only diffraction (and no dispersion) in the vacuum, while those
of the Schroedinger equation suffer also (an intrinsic) dispersion even in the
vacuum.
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1.10.1
Bessel Beams as Non-Diffracting Solutions (NDS) to the Schroedinger Equation

Let us consider the Schroedinger equation for a free particle (an electron, for
example)

2∇ψ + 2im

h̄

∂ψ

∂t
= 0 (1.105)

If we confine ourselves to solutions of the type

ψ(ρ, z, ϕ; t) = F(ρ, z, ϕ) e−iEt/h̄

their spatial part F is known to obey the reduced equation ∇2F + k2F = 0, with
k2 ≡ p2/h̄2 and p2 = 2mE (quantity p ≡ |p| being the particle momentum and
therefore k ≡ |k | the total wavenumber). Such a reduced equation is nothing
but the Helmholtz equation, for which various simple localized-beam solutions
are already known: In particular, the so-called Bessel beams, which have been
experimentally produced since long time. Actually, let us look – as usual –
for factorized solutions (in the simple case of cylindrical symmetry w.r.t. the
z-axis), by supposing the constant longitudinal wavenumber kz ≡ pz/h̄. (As the
present formalism is used both in quantum mechanics and in electromagnetism,
with a difference in the customary nomenclature, for clarity’s sake let us here
stress that k ≡ p/h̄; kρ ≡ k⊥ ≡ p⊥/h̄; ω ≡ E/h̄; while kz ≡ k|| = p||/h̄ ≡ pz/h̄ is often
represented by the (for us) ambiguous symbol β). As a consequence, the (transverse)
wavefunction obeys a Bessel differential equation, in which it enters the constant
transverse wavenumber kρ ≡ pρ/h̄ with the condition k2

ρ = k2 − k2
z ≡ 2mE/h̄2 − k2

z.
To avoid any divergencies, it must be k2

ρ ≥ 0, that is k2 ≥ k2
z; namely, it must hold

(see Figure 1.1 in [3]) the constraint

E ≥ p2
z

2m

A simple solution is therefore [p ≡ h̄k]:

ψ(ρ, z; t) = J0(ρpρ/h̄) exp [i(zpz − Et)/h̄] (1.106)

together with the above condition. Equation 1.106 can be regarded as a Bessel beam
solution to the Schroedinger equation (the other Bessel functions are not acceptable
here because of their divergence at ρ = 0 or for ρ → ∞), with forward propagation
(i.e., positive z-direction) for kz > 0. This result is not surprising as – once we
suppose the whole time variation to be expressed by the function exp [iωt] –
both the ordinary wave equation and the Schroedinger equation transform into
the Helmholtz equation. Actually, the only difference between the Bessel beam
solutions to the wave equation and to the Schroedinger equation consists of the
different relationships among frequency, longitudinal, and transverse wavenumber.
In other words (with E ≡ ωh̄):

p2
ρ = E2/c2 − p2

z, for the wave equation (1.107)

p2
ρ = 2mE − p2

z, for the Schroedinger equation (1.108)
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Table 1.1 Comparison of some quantities relevant in the case of a Bessel beam of photons
and a Bessel beam of particles (say, electrons), respectively.

Wave equation Schroedinger equation

k = ω
c p = √

2mE

kρ � r
f k pρ � r

f p

k2
ρ = ω2

c2 − k2
z p2

ρ = 2mE − p2
z

k2
z = ω2

c2 (1 − r2

f 2 ) p2
z = 2mE(1 − r2

f 2 )

In the case of beams, the experimental production of NDSs to the Schroedinger
equation can be similar to the one exploited for the NDSs to the wave equations (e.g.
in optics or acoustics); see, for example, Figure 1.2 in [50] and references therein,
where the simple case of a source consisting in an array of circular slits, or rings,
was considered.4) In Table 1.1 we refer to a Bessel beam of photons and a Bessel
beam of for example electrons, respectively. We list therein the relevant quantities
having a role, for example in electromagnetism, and the corresponding ones for
the Schroedinger equation’s spatial part h̄2∇2F + 2mE F = 0, with F = R(ρ) Z(z) .
The second and the fourth lines have been written down for the so-called simple
Durnin et al. case, when the Bessel beam is produced by an annular slit (illuminated
by a plane wave) located at the focus of a lens [43–46].

In Table 1.1, quantity f is the focal distance of the lens (for instance, an
ordinary lens in optics and a magnetic lens in the case of Schroedinger charged
wavepackets), and r is the radius of the considered ring. [In connection with the last
line of Table 1.1, let us recall that in the wave equation case the phase-velocity ω/kz

is almost independent of the frequency (at least for limited frequency intervals,
like in optics), and one gets a constant group-velocity and an easy way to build
up X-shaped waves. By contrast, in the Schroedinger case, the phase-velocity of
each (monochromatic) Bessel beam depends on the frequency, which makes it
difficult to generate an ‘‘X-wave’’ (i.e. a wave depending on z and t only via
the quantity z − Vt) by using simple methods, as per Durnin et al., based on
the Bessel beams’ superposition. In the case of charged particles, one should
compensate such a velocity variation by suitably modifying the focal distance f of
the Durnin’s lens, for example on having recourse to an additional magnetic, or
electric, lens].

Before going on, let us stress that one could easily eliminate the restriction of
axial symmetry. In such a case, in fact, solution (1.106) would become

ψ(ρ, z, ϕ; t) = Jn(ρpρ/h̄)eizpz/h̄ e−iEt/h̄ einϕ

4) For pulses, however, the generation technique must deviate from optics, as in the Schroedinger
equation case the phase velocity of the Bessel beams produced through an annular slit would
depend on the energy.
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with n an integer. The investigation of not cylindrically-symmetric solutions is
interesting, especially in the case of localized pulses; and we shall deal with them in
the following.

1.10.2
Exact Non-Diffracting Solutions to the Schroedinger Equation

Coming to the problem of finding out ‘‘soliton-like’’ solutions to the ordinary
Schroedinger equation, let us switch to a more comprehensive formalism. Namely,
in cylindrical coordinates and neglecting evanescent waves, a quite general function
ψ of ρ, φ, z and t, expressed in terms of Fourier and Hankel transformations, can
be written as:

�(ρ, φ, z, t) =
∞∑

n=−∞

[∫ ∞

0
dkρ

∫ ∞

−∞
dkz

∫ ∞

−∞
dω kρA′

n(kρ , kz, ω)Jn(kρρ)eikzze−iωteinφ

]

(1.109)

Notice that the last equation is nothing but Equation 1.5 in Section 1.1.3 when
having in mind a rather general, ideal solution to linear, homogeneous wave
equations in free space (still disregarding the evanecsent sector). The essential
point, for Equation 1.109 to represent a (general) solution to the Scroedinger
equation, is imposing now that the An(kz, ω) be given by

A′
n(kρ , kz, ω) = An(kz, ω) δ

[
k2
ρ −

(
2mω

h̄
− k2

z

)]
(1.110)

We request moreover that

An(kz, ω) =
∞∑

n=−∞
Smn δ[ω − (Vkz + b′

m)] (1.111)

with

b′
m = 2mπV


z0
(1.112)

The last two equations guarantee that the general solution (1.109) to Equation
1.105 is a NDW, that is a wave capable of indefinitely keeping its spatial shape while
propagating. Let us recall that such a property, when assuming propagation in the
z-direction, may be mathematically expressed as in Equation 1.7 where 
z0 is a
chosen length, and V is the pulse peak-velocity, with 0 ≤ V ≤ ∞. For the moment,
the meaning of the spectral parameters kz, kρ , ω appearing above is not important,
as they are dumb integration variables.

Notice that in the general solution (1.109), together with Equations 110–112, all
Bessel functions Jn(kρρ), with any n, appear. Just for simplicity, however, we can
choose

Smn = S′(ω) δ0n δlm (1.113)
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where the δ s are now Kronecker’s symbols and l is a positive integer, so as to
reduce ourselves to the mere case of zeroth-order Bessel functions. As we are now
dealing with quantum mechanics, let us go on to the new notations

k ≡ p/h̄; kρ ≡ pρ/h̄; kz ≡ pz/h̄;ω ≡ E/h̄

and put b′
l = 2lπV/
z0 ≡ b/h̄.

As the present formalism is used both in quantum mechanics and in elec-
tromagnetism, with a difference in the customary nomenclature, for clarity’s
sake let us repeat once more that k ≡ p/h̄; kρ ≡ k⊥ ≡ pρ/h̄; ω ≡ E/h̄; while
kz ≡ k|| = p||/h̄ ≡ pz/h̄.

We can now integrate Equation 1.109 in kρ and in kz, obtaining non-diffracting
solutions to the Schroedinger equation as the following superpositions (integrations
over the frequency, or the energy) of Bessel-beam solutions [with b ≥ 0]:

�(ρ, z, ζ ) = e
−ib
h̄V z

∫ E+

E−
dE J0(ρpρ/h̄) S(E) ei E

h̄V ζ (1.114)

where it is still

ζ ≡ z − Vt (1.115)

while

pρ = 1

V

√
−E2 + (2mV2 + 2b)E − b2 (1.116)

and

E± = mV2

(
1 ±

√
1 + 2b

mV2

)
+ b (1.117)

Notice that Equation 1.114 (as well as in subsequent equations), the solution �

depends on z, besides via ζ only via a phase factor; the modulus |�| of � goes
on depending on z (and on t) only through the variable ζ ≡ z − Vt. This means,
as we already know, that the magnitude of each solution does not change during
propagation, that is the solutions are NDWs and keep their shape while traveling.

The simple integral solution (1.114), which yields non-diffracting solutions
with azimutal symmetry, admits of a simple physical interpretation: it implies
integrating the Bessel beams J0(ρpρ/h̄) exp [i pz

h̄ ζ ] exp [i E
h̄ t], with pρ = √

2mE − p2
z,

in the interval E− ≤ E ≤ E+ along the straight line E = Vpz + b: This is known to
eliminate evanescent waves (Figure 1.20).

Examples. An interesting solution to Equation 1.114 is, for instance, obtained when
assuming the real exponential spectrum

S(E) = s0 exp [a(E − E+)] (1.118)

a being a positive number, as well as s0. On integrating [3], we get [N being a
constant]:

�(ρ, η, ζ ) = Ns02V
√

P exp [i
mV

h̄
η] exp [−aV

√
P]

sin Y

Y
(1.119)
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E

pz

Figure 1.20 The allowed region is the one
internal to the parabola, since (to avoid
divergencies) it must be E ≥ p2

z/(2m). In
this case, the parabola and the chosen
straight-line have equations E = p2

z/(2m) and

E = Vpz + b, respectively. The two values of
the intersections of this straight-line with the
parabola are given in Equation 1.117. Inside
the parabola p2

ρ ≥ 0.

where

Y ≡
√

P

h̄

√
ρ2 − (h̄aV + iζ )2 (1.120)

and P ≡ m2V2 + 2mb, while η ≡ z − vt is a function of b. Notice that for a = 0, one
ends up with a solution similar to Mackinnon’s [31]. Equations 1.119, 1.120 are
the simplest closed-form non-diffracting solution to the Schroedinger equation. In
Figure 1.3 of [3] we depicted its square magnitude when choosing, for simplicity,
b = 0 (namely, Figure 3a therein corresponds to a = E+/5, while Figure 3b therein
corresponds to a = 5E+).

Some physical (interesting) comments on such results will appear elsewhere.
Here, let us only add a few brief comments, illustrated by some more figures.
Let us first recall that the non-diffracting solutions to the ordinary wave equations
resulted in being roughly ball-like when their peak-velocity was subluminal [19, 89],
and X-shaped [9, 14, 89] when superluminal. Now, let us see what happens in the
different case of the Schroedinger equation. Normalizing ρ and ζ , we can write
Equation 1.120 as

Y =
√

ρ ′2 − (A + iζ ′)2

with ρ ′ ≡ √
Pρ/h̄ and ζ ′ ≡ √

Pζ/h̄, while A ≡ aA = √
PaV . For simplicity, let us

stick to the case b = 0; therefore, the simple relation will hold: A = maV2. For the
Schroedinger equation, we can observe the following

1) If we choose A = 0, which can be associated with V = 0, we get the solutions
in Figure 1.21b, that is a mainly ball-like structure (even if, differently from
the ordinary wave equation cases, an X-shaped structure does timidly start to
appear).
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Figure 1.21 Here, and in Figure 1.22, we
depict the square magnitude of elementary
solutions of the type (1.119), correspond-
ing to the real spectrum S(u) = s0 exp [(E −
E+)a], as a function of ρ ′ ≡ ρ

√
P/h̄ and of

ζ ′ ≡ ζ
√

P/h̄. Quantity a is a positive number
(when a = 0 one ends up with a solutions
similar to Mackinnon’s [31]), while b for sim-
plicity has be chosen equal to zero. (a) Cor-
responds to a = E+/5. For (b), normalized

w.r.t. ρ and ζ , we have still assumed for
simplicity b = 0, so that A = maV2. More
precisely, it refers to A = 0 and does clearly
show the ‘‘ball-like’’ structure one expects in
such a case. It should, however, be noted
that, for the Schroedinger equation, also an
X-shaped structure always appears – more
evident here in (a) – even in the most ball-
like solutions.

|Ψ|2

ρ ′ 300

200

100

0

100

200

ζ′

Figure 1.22 The solution, under all the previous conditions, with an increased value of A,
namely with A = 20. An X-shaped structure more evidently appears, contributing in a more
clear way to the general form of the solution (see the text).
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Figure 1.23 The (square of the) real part of � shows, in three-dimension, also some ‘‘in-
ternal oscillations’’. This Figure corresponds, for example, to the value A = 5.

2) If we by contrast increase the value of A by choosing, for example, A = 20
(which can be associated with larger speeds), one notices that an X-shaped
structure does evidently contribute. See, for example, Figure 1.22.

3) To have a preliminary idea of the ‘‘internal structure’’ of our soliton-like
solutions to the (ordinary) Schroedinger equation, we have to plot, instead of
the square magnitude of �, its real or imaginary part. In Figure 1.6 of [3] we
chose the square of its real part. Then, even in the A = 0 case, one can start to
see in those figures the appearance of the X shape, which becomes more and
more evident as the value of A increases. We confine ourselves here to stress
that the (square of the) real part of � does also show, in 3D, some ‘‘internal
oscillations’’; see, for example, Figure 1.23 corresponding to the value A = 5.
We shall face elsewhere topics like their possible connections with the de
Broglie picture of quantum particles.

1.10.3
A General Exact Localized Solution

Let us go back to the choice of spectrum S(E). As in our Equation 1.114 the
integration interval is limited [E− < E < E+]: In such an interval any spectral
function S(E) can be expanded into the Fourier series

S(E) =
∞∑

n=−∞
an ei 2π

D nE (1.121)
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with

an = 1

D

∫ E+

E−
dE S(E) e−i 2π

D nE (1.122)

quantity S(E) being an arbitrary function, and D being still defined as D ≡ E+ − E−.
Inserting Equation 1.121 into Equation 1.122, and following [3] the same procedure
exploited in the previous subsection, we get the general exact non-diffracting solution
to the Schroedinger equation in the form

�(ρ, η, ζ ) = N 2A ei mV
h̄ η

∞∑
n=−∞

an exp
[

i
2π

D
nB

]
sin Z

Z
(1.123)

where

Z ≡
√(

A

h̄V
ζ + nπ

)2

+ P

h̄2 ρ2 (1.124)

and A = V
√

P; B = mV2 + b, and N a suitable normalization constant. Notice
that solution (1.123) yields non-diffracting solutions with azimuthal symmetry for
whatever spectrum S(E) in Equation 1.114. Moreover, it is worthwhile to note that,
even when truncating the series in Equation 1.20 at a certain value n = N, the
solutions obtained is still an exact non-diffracting solution to the Schroedinger
equation.

We have already mentioned the problem of producing Bessel beams of electrons,
instead of optical Bessel beams. As to the possible generating set-ups, an interesting
problem from the experimental point of view is that in optics one starts usually
from a laser source; in the case of quantum mechanics, one might have recourse to
‘‘laser beams of particles,’’ as the ones under investigation for more than a decade.

1.11
A Brief Mention of Further Topics

1.11.1
Airy and Airy-Type Waves

Many non-diffracting (especially X-shaped) solutions have been constructed for
the linear [41] or nonlinear [42] equations that in optics bear the name of
‘‘Schroedinger equation,’’ even if they are mathematically very different from
the ordinary Schroedinger’s. Moreover, a special kind of non-diffracting packet
solutions, in terms of Airy functions, were found in the 1970s for the case of the
actual 1D Schroedinger equation, and extended later to the 3D case. All that has
been recently applied to the case of optics, originating the discovery of Airy-type
waves, now well-known for their remarkable properties [142–146]. Such Airy waves
are solutions, once more, to the so-called (linear) Schroedinger equation of optics.

We wish to repeat here this information, for its intrinsic interest and its relevance,
and for the fact that one of the following chapters of this book will be mainly devoted
to the Airy waves.



60 1 Non-Diffracting Waves: An Introduction

The results presented in Section 1.10 are rather different, however, from the ones
found in optics, both for the mentioned fact that the optical Schroedinger equation
is mathematically different from the ordinary Schroedinger equation, and for the
fact that our approach and methods are quite different from the ones adopted in
optics.

1.11.2
‘‘Soliton-Like’’ Solutions to the Einstein Equations of General Relativity and
Gravitational Waves

Some interesting progress has been made by one of us (MZR) in the sector of the
Einstein (nonlinearized) equations of general relativity, finding out, therefore, new
possible solutions for gravitational waves. But there is no room here for presenting
details.

1.11.3
Super-Resolution

Strong super-resolution effects can be attained by suitable superpositions of
evanescent Bessel beams. But this topic will be reviewed elsewhere, for the tyranny
of space.
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