1 Non-Diffracting Waves: An Introduction

Erasmo Recami, Michel Zamboni-Rached, Hugo E. Hernández-Figueroa, and Leonardo A. Ambrosio

1.1 A General Introduction

1.1.1 A Prologue

1.1.2 Preliminary, and Historical, Remarks

1.1.3 Definition of Non-Diffracting Wave (NDW)

1.1.4 First Examples

1.1.5 Further Examples: The Non-Diffracting Solutions

1.2 Eliminating Any Backward Components: Totally Forward NDW Pulses

1.2.1 Totally Forward Ideal Superluminal NDW Pulses

1.3 Totally Forward, Finite-Energy NDW Pulses

1.3.1 A General Functional Expression for Whatever Totally-Forward NDW Pulses

1.4 Method for the Analytic Description of Truncated Beams

1.4.1 The Method

1.4.2 Application of the Method to a TB Beam

1.5 Subluminal NDWs (or Bullets)

1.5.1 A First Method for Constructing Physically Acceptable, Subluminal Non-Diffracting Pulses

1.5.2 Examples

1.5.3 A Second Method for Constructing Subluminal Non-Diffracting Pulses

1.6 “Stationary” Solutions with Zero-Speed Envelopes: Frozen Waves

1.6.1 A New Approach to the Frozen Waves

1.6.2 Frozen Waves in Absorbing Media

1.6.3 Experimental Production of the Frozen Waves

1.7 On the Role of Special Relativity and of Lorentz Transformations
1.8 Non-Axially Symmetric Solutions: The Case of Higher-Order Bessel Beams

1.9 An Application to Biomedical Optics: NDWs and the GLMT (Generalized Lorenz-Mie Theory)

1.10 Soliton-Like Solutions to the Ordinary Schroedinger Equation within Standard Quantum Mechanics (QM)

1.10.1 Bessel Beams as Non-Diffracting Solutions (NDS) to the Schroedinger Equation

1.10.2 Exact Non-Diffracting Solutions to the Schroedinger Equation

1.10.3 A General Exact Localized Solution

1.11 A Brief Mention of Further Topics

1.11.1 Airy and Airy-Type Waves

1.11.2 “Soliton-Like” Solutions to the Einstein Equations of General Relativity and Gravitational Waves

1.11.3 Super-Resolution

Acknowledgments

References

2 Localized Waves: Historical and Personal Perspectives

Richard W. Ziolkowski

2.1 The Beginnings: Focused Wave Modes

2.2 The Initial Surge and Nomenclature

2.3 Strategic Defense Initiative (SDI) Interest

2.4 Reflective Moments

2.5 Controversy and Scrutiny

2.6 Experiments

2.7 What’s in a Name: Localized Waves

2.8 Arizona Era

2.9 Retrospective

Acknowledgments

References

3 Applications of Propagation Invariant Light Fields

Michael Mazilu and Kishan Dholakia

3.1 Introduction

3.2 What Is a “Non-Diffracting” Light Mode?

3.2.1 Linearly Propagating “Non-Diffracting” Beams

3.2.2 Accelerating “Non-Diffracting” Beams

3.2.3 Self-Healing Properties and Infinite Energy

3.2.4 Vectorial “Non-Diffracting” Beams

3.3 Generating “Non-Diffracting” Light Fields

3.3.1 Bessel and Mathieu Beam Generation

3.3.2 Airy Beam Generation

3.4 Experimental Applications of Propagation Invariant Light Modes
<table>
<thead>
<tr>
<th>5.3.1</th>
<th>Pulse-Echo Signals and Relationship with Imaging</th>
<th>142</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.2</td>
<td>Limited-Diffraction Array Beam Aperture Weighting and Spatial Fourier Transform of Echo Signals</td>
<td>143</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Special Case for 2D Imaging</td>
<td>144</td>
</tr>
<tr>
<td>5.4</td>
<td>Imaging with Limited-Diffraction Beams</td>
<td>144</td>
</tr>
<tr>
<td>5.4.1</td>
<td>High-Frame-Rate Imaging Methods</td>
<td>145</td>
</tr>
<tr>
<td>5.4.1.1</td>
<td>Plane-Wave HFR Imaging without Steering</td>
<td>145</td>
</tr>
<tr>
<td>5.4.1.2</td>
<td>Steered Plane-Wave Imaging</td>
<td>145</td>
</tr>
<tr>
<td>5.4.1.3</td>
<td>Limited-Diffraction Array Beam Imaging</td>
<td>146</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Other Imaging Methods</td>
<td>147</td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>Two-Way Dynamic Focusing</td>
<td>147</td>
</tr>
<tr>
<td>5.4.2.2</td>
<td>Multiple Steered Plane Wave Imaging</td>
<td>148</td>
</tr>
<tr>
<td>5.5</td>
<td>Mapping between Fourier Domains</td>
<td>148</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Mapping for Steer Plane Wave Imaging</td>
<td>149</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Mapping for Limited-Diffraction-Beam Imaging</td>
<td>150</td>
</tr>
<tr>
<td>5.5.2.1</td>
<td>General Case</td>
<td>150</td>
</tr>
<tr>
<td>5.5.2.2</td>
<td>Special Case</td>
<td>151</td>
</tr>
<tr>
<td>5.6</td>
<td>High-Frame-Rate Imaging Techniques—Their Improvements and Applications</td>
<td>151</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Aperture Weighting with Square Functions to Simplify Imaging System</td>
<td>151</td>
</tr>
<tr>
<td>5.6.1.1</td>
<td>Applied to Transmission</td>
<td>151</td>
</tr>
<tr>
<td>5.6.1.2</td>
<td>Applied to Reception</td>
<td>152</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Diverging Beams with a Planar Array Transducer to Increase Image Frame Rate</td>
<td>153</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Diverging Beams with a Curved Array Transducer to Increase Image Field of View</td>
<td>153</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Other Studies on Increasing Image Field of View</td>
<td>153</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Coherent and Incoherent Superposition to Enhance Images and Increase Image Field of View</td>
<td>153</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Nonlinear Image Processing for Speckle Reduction</td>
<td>154</td>
</tr>
<tr>
<td>5.6.7</td>
<td>Coordinate Rotation for Reduction of Computation</td>
<td>154</td>
</tr>
<tr>
<td>5.6.8</td>
<td>Reducing Number of Elements of Array Transducer</td>
<td>154</td>
</tr>
<tr>
<td>5.6.9</td>
<td>A Study of Trade-Off between Image Quality and Data Densification</td>
<td>154</td>
</tr>
<tr>
<td>5.6.10</td>
<td>Masking Method for Improving Image Quality</td>
<td>155</td>
</tr>
<tr>
<td>5.6.11</td>
<td>Reducing Clutter Noise by High-Pass Filtering</td>
<td>155</td>
</tr>
<tr>
<td>5.6.12</td>
<td>Obtaining Flow or Tissue Velocity Vectors for Functional Imaging</td>
<td>155</td>
</tr>
<tr>
<td>5.6.13</td>
<td>Strain and Strain Rate Imaging to Obtain Tissue Parameters or Organ Functions</td>
<td>156</td>
</tr>
<tr>
<td>5.6.14</td>
<td>High-Frame-Rate Imaging Systems</td>
<td>156</td>
</tr>
<tr>
<td>5.7</td>
<td>Conclusion</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td>156</td>
<td></td>
</tr>
</tbody>
</table>
# Contents

## 6 Spatiotemporally Localized Null Electromagnetic Waves

*Ioannis M. Besieris and Amr M. Shaarawi*

6.1 Introduction  161
6.2 Three Classes of Progressive Solutions to the 3D Scalar Wave Equation  162
6.2.1 Luminal Localized Waves  163
6.2.1.2 Modified Luminal  165
6.2.2 Superluminal Localized Waves  165
6.2.2.1 Superluminal  165
6.2.2.2 Hybrid Superluminal  166
6.2.2.3 Modified Hybrid Superluminal  167
6.2.3 Subluminal Localized Waves  168
6.3 Construction of Null Electromagnetic Localized Waves  169
6.3.1 Riemann–Silberstein Vector  169
6.3.2 Null Riemann–Silberstein Vector  170
6.3.3 The Whittaker–Bateman Method  171
6.4 Illustrative Examples of Spatiotemporally Localized Null Electromagnetic Waves  173
6.4.1 Luminal Null Electromagnetic Localized Waves  173
6.4.2 Modified Luminal Null Electromagnetic Localized Waves  175
6.4.3 Superluminal Null Electromagnetic Localized Waves  176
6.4.4 Hybrid Superluminal Null Electromagnetic Localized Waves  179
6.4.5 Modified Hybrid Superluminal Null Electromagnetic Localized Waves  181
6.4.6 A Note on Subluminal Null Electromagnetic Localized Waves  182
6.5 Concluding Remarks  183
References  185

## 7 Linearly Traveling and Accelerating Localized Wave Solutions to the Schrödinger and Schrödinger-Like Equations

*Ioannis M. Besieris, Amr M. Shaarawi, and Richard W. Ziolkowski*

7.1 Introduction  189
7.2 Linearly Traveling Localized Wave Solutions to the 3D Schrödinger Equation  191
7.2.1 MacKinnon-Type, Infinite-Energy, Localized, Traveling Wave Solutions  192
7.2.2 Extensions to MacKinnon-Type, Infinite-Energy, Localized, Traveling Wave Solutions  193
7.2.3 Finite-Energy, Localized, Traveling Wave Solutions  196
7.3 Accelerating Localized Wave Solutions to the 3D Schrödinger Equation  198
7.4 Linearly Traveling and Accelerating Localized Wave Solutions to Schrödinger-Like Equations 199
7.4.1 Anomalous Dispersion 200
7.4.1.1 Linearly Traveling Localized Wave Solutions 200
7.4.1.2 Accelerating Localized Wave Solutions 201
7.4.2 Normal Dispersion 202
7.4.2.1 Linearly Traveling X-Shaped Localized Waves 202
7.4.2.2 Accelerating Localized Waves 204
7.5 Concluding Remarks 206
References 206

8 Rogue X-Waves 211
Audrius Dubietis, Daniele Faccio, and Gintaras Valiulis
8.1 Introduction 211
8.2 Ultrashort Laser Pulse Filamentation 212
8.3 The X-Wave Model 215
8.4 Rogue X-Waves 219
8.5 Conclusions 226
Acknowledgments 227
References 227

9 Quantum X-Waves and Applications in Nonlinear Optics 231
Claudio Conti
9.1 Introduction 231
9.2 Derivation of the Paraxial Equations 232
9.3 The X-Wave Transform and X-Wave Expansion 234
9.4 Quantization 235
9.5 Optical Parametric Amplification 237
9.6 Kerr Media 239
9.7 Conclusions 242
Acknowledgments 243
References 243

10 TE and TM Optical Localized Beams 247
Pierre Hillion
10.1 Introduction 247
10.2 TE Optical Beams 248
10.2.1 We First Suppose \( k_r \leq 1 \) 248
10.2.2 We Now Suppose \( k_r > 1 \) 249
10.2.3 Approximations 250
10.3 Energetics of the TE Optical Beam 251
10.4 Discussion 253
10.5 Appendix 254
References 255
13.4.2 Droplet-Shaped Waves as Causal Counterparts of the X-Shaped Waves 302
13.5 Conclusive Remarks 302
References 304

14 **Propagation-Invariant Optical Beams and Pulses** 307
Kimmo Saastamoinen, Ari T. Friberg, and Jari Turunen
14.1 Introduction 307
14.2 Theoretical Background 308
14.3 General Propagation-Invariant Solutions 309
14.3.1 Conditions for Propagation Invariance 310
14.3.2 Plane-Wave Representation of Nonstationary Fields 311
14.3.3 Solutions in the Space-Frequency Domain 312
14.3.4 Solutions in the Space-Time Domain 313
14.4 Classification in Terms of Spectral and Angular Coherence 314
14.5 Stationary Propagation-Invariant Fields 315
14.5.1 Coherent Fields 316
14.5.2 Partially Coherent Fields 318
14.6 Nonstationary Propagation-Invariant Fields 319
14.6.1 Coherent Fields 320
14.6.2 Partially Coherent Fields 321
14.7 Conclusions 324
References 325

15 **Diffractionless Nanobeams Produced by Multiple-Waveguide Metallic Nanostructures** 327
Matyas Mechler and Sergei V. Kukhlevsky
15.1 Introduction 327
15.2 Concept of Diffractionless Subwavelength-Beam Optics on Nanometer Scale 328
15.3 Diffractionless Nanobeams Produced by Multiple-Waveguide Metallic Nanostructures 331
15.4 Summary and Conclusions 335
Acknowledgments 335
References 336

16 **Low-Cost 2D Collimation of Real-Time Pulsed Ultrasonic Beams by X-Wave-Based High-Voltage Driving of Annular Arrays** 339
Antonio Ramos, Luis Castellanos, and Héctor Calás
16.1 Introduction 339
16.2 Classic Electronic Procedures to Improve Lateral Resolutions in Emitted Beams for Ultrasonic Detection: Main Limitations 341
16.3 An X-Wave-Based Option for Beam Collimation with Bessel Arrays 343
16.3.1 Design of Bessel Arrays 344
16.3.1.1 Bases for Designing the Bessel Transducers 344
16.3.1.2 A Design Example: Bessel Transducer with 10 Annuli and 50 mm in Diameter 345
16.3.2 Modeling and Characterization of the Bessel Annular Arrays 345
16.3.2.1 Transducers' Complex Electric Impedance around the Resonance Frequency 346
16.3.2.2 Characterization of Emission Transfer Functions and Impulsive Responses 347
16.3.3 Some Characterization Results 348
16.3.4 Broadband X-Wave Pulses for Deriving the Bessel Array Excitations 353
16.4 Low-Cost Circuits for Efficient Rectangular Driving of Annular Piezoelectric Transducers 356
16.5 Comparative Excitation and Field Results Calculated for X-Beams 357
16.6 Conclusions 360
Acknowledgments 361
References 361

17 Localized Beams and Localized Pulses: Generation Using the Angular Spectrum 363
Colin Sheppard
17.1 Bessel Beams 363
17.2 The Bessel–Gauss Beam 365
17.3 Pulsed Bessel Beams 367
17.4 Applications in Biomedical Imaging 375
References 376

18 Lossy Light Bullets 379
Miguel A. Porras
18.1 Introduction 379
18.2 Lossy Light Bullets in Self-Focusing Media with Nonlinear Losses 380
18.3 The Structured Profile of Lossy Light Bullets and their Energy Reservoir 381
18.3.1 The Most Lossy Light Bullet in a Nonlinear Dissipative Medium 384
18.4 Propagation Properties of Physically Realizable Lossy Light Bullets 384
18.5 Self-Reconstruction Property 386
18.6 Stability Properties 387
18.6.1 The Most Lossy Light Bullet as an Attractor of the Self-Focusing Dynamics with Nonlinear Losses 388
18.6.2 Stability Under Small Perturbations 392
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.7</td>
<td>Conclusions</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>396</td>
</tr>
<tr>
<td>19</td>
<td><strong>Beyond the Diffraction Limit: Composed Pupils</strong></td>
<td>399</td>
</tr>
<tr>
<td></td>
<td><em>Anedio Ranfagni and Daniela Mugnai</em></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>399</td>
</tr>
<tr>
<td>19.2</td>
<td>Theoretical Description</td>
<td>401</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Analytical Details</td>
<td>402</td>
</tr>
<tr>
<td>19.3</td>
<td>Super Resolving Pupils</td>
<td>405</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Amplitude Measurements: Transversal Dependence</td>
<td>405</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Amplitude Measurements: Axial Dependence</td>
<td>409</td>
</tr>
<tr>
<td>19.3.2.1</td>
<td>The Shadow’s Theorem</td>
<td>411</td>
</tr>
<tr>
<td>19.4</td>
<td>Conclusions</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>415</td>
</tr>
<tr>
<td>20</td>
<td><strong>Experimental Generation of Frozen Waves in Optics: Control of</strong></td>
<td>417</td>
</tr>
<tr>
<td></td>
<td><strong>Longitudinal and Transverse Shape of Optical Non-diffracting</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Waves</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Târcio A. Vieira, Marcos R.R. Gesualdi, and Michel Zamboni-Rached</em></td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>417</td>
</tr>
<tr>
<td>20.2</td>
<td>Frozen Waves: Theoretical Description</td>
<td>417</td>
</tr>
<tr>
<td>20.3</td>
<td>Frozen Waves: Experimental Generation</td>
<td>418</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Holographic Experimental Setup</td>
<td>420</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Results</td>
<td>421</td>
</tr>
<tr>
<td>20.3.2.1</td>
<td>Example One</td>
<td>422</td>
</tr>
<tr>
<td>20.3.2.2</td>
<td>Example Two</td>
<td>424</td>
</tr>
<tr>
<td>20.3.2.3</td>
<td>Examples Three and Four</td>
<td>425</td>
</tr>
<tr>
<td>20.3.2.4</td>
<td>Example Five</td>
<td>426</td>
</tr>
<tr>
<td>20.3.2.5</td>
<td>Example Six</td>
<td>426</td>
</tr>
<tr>
<td>20.3.2.6</td>
<td>Example Seven</td>
<td>427</td>
</tr>
<tr>
<td>20.4</td>
<td>Conclusions</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>430</td>
</tr>
<tr>
<td>21</td>
<td><strong>Airy Shaped Waves</strong></td>
<td>433</td>
</tr>
<tr>
<td></td>
<td><em>Kleber Zuza Nóbrega, Cesar Augusto Dartora, and Michel Zamboni-Rached</em></td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Introduction</td>
<td>433</td>
</tr>
<tr>
<td>21.2</td>
<td>Airy Beams</td>
<td>435</td>
</tr>
<tr>
<td>21.2.1</td>
<td>Ideal Airy Beam</td>
<td>436</td>
</tr>
<tr>
<td>21.3</td>
<td>Maximum Invariance Depth, $Z_{\text{max}}$</td>
<td>438</td>
</tr>
<tr>
<td>21.4</td>
<td>Analytical Description of Truncated Airy-Type Beams</td>
<td>441</td>
</tr>
<tr>
<td>21.4.1</td>
<td>Theoretical Framework</td>
<td>442</td>
</tr>
</tbody>
</table>
22 Solitons and Ultra-Short Optical Waves: The Short-Pulse Equation
Versus the Nonlinear Schrödinger Equation

Jose Nathan Kutz and Edward Farnum

22.1 Introduction 451
22.2 Maxwell’s Equations 453
22.3 Linear Propagation 454
22.3.1 Center-Frequency Asymptotics 455
22.3.2 Short-Pulse Asymptotics 457
22.4 Nonlinear Propagation: Instantaneous Nonlinear Response 458
22.4.1 Center-Frequency Asymptotics 459
22.4.2 Short-Pulse Asymptotics 459
22.4.3 Soliton Solutions 460
22.5 Nonlinear Propagation: Time-dependent Nonlinear Response 461
22.5.1 Center-Frequency Asymptotics 462
22.5.2 Short-Pulse Asymptotics 462
22.6 Application: Mode-Locked Lasers 463
22.6.1 Haus Master Mode-locking Equation 463
22.6.2 SPE Master Equation 465
22.7 Conclusions 468
References 469

Index 473