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Introduction: Multiscale Analysis –Modeling, Data, Networks,
and Nonlinear Dynamics
Misha (Meyer) Z. Pesenson

“ . . . the twin difficulties of scale and complexity.”
P. Anderson [1]

“ . . . I spelled out a moral for the general structure of scientific knowledge:
that scale changes in a wide variety of instances can lead to qualitative change
in the nature of phenomenon.”

P. Anderson [2]

“ . . . to find a really appropriate name for that stratification or layering
of the structures involved which we are all tempted to describe as ‘hierar-
chies’. . . . We need a conception of tiers of networks with the highest tier as
complex as the lower ones.”

F. Hayek [3]

The human brain is the archetype of a natural complex adaptive system. It is
composed of impenetrable “jungles” of neurons, which interact both within and
acrossmultiple spatial and temporal scales (see, for example, recent books: [4–13]). In
SystemsBiology the situation is similarly complicated andbiological systems, besides
being characterized by a large number of components and their interactions,
demonstrate a very complex organization at multiple spatial scales [14,15]. As a
result, thefields of SystemsNeuroscience and SystemsBiology deal with phenomena
of intricate complexity that are governed by various mechanisms integrated across
many levels of detail. In addition, high-throughput experimental technologies and
powerful simulation/analysis tools generate new types of heterogeneous data with a
density and depth previously unimaginable. All this creates a critical need for
modeling sophisticated, natural/artificial systems and analyzing modern high-
dimensional data from multiple levels ranging from molecules! synapses!neu-
rons!networks (and ideally, all theway to behavior). The attempts tomodel/analyze
such complex phenomena/data are hindered by the fact that traditionalmathematical
approaches are often limited because of the multiscale nature of the problems.
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This book concentrates on the investigation of multiscale problems in Systems
Biology and Systems Neuroscience, and on mathematical approaches to multi-
resolution analysis (MRA). Systems Biology analyzes how hierarchical, multiscale
molecular structures control the dynamic linkages between different genes and their
products and give rise to the emergent properties and functions of a unified
organism [14,15]. Similarly, the goal of Systems Neuroscience is to unravel how
neurons and the intricate structure of neural networks shape information flow,
perceptual grouping, multiscale processing, the emergent functions of neural
circuits, and ultimately – cognition and behavior [13]. Despite these obvious parallels
between Systems Biology and Systems Neuroscience, there is, surprisingly little
interaction among the corresponding research communities [16]. It is unfortunate,
since these two fields can learn quite a bit from each other regarding the use of
physical, mathematical/computational modeling, data processing, and so on. In
addition, identifying methods common to both, Systems Biology and Systems
Neuroscience, may, in turn, drive the development of systematic mathematical
approaches to modeling complex phenomena/data. To promote stronger interaction
between these fields and to aid their “coming together,” as Kandel1) phrased it, the
editor of this book invited contributions from experts representing a highly inter-
disciplinary group of scientists in computer science, applied mathematics, bioen-
gineering, chemistry, cardiology, and neuroscience. The chapters in this book may
broadly be categorized as belonging to mathematical methods, Systems Biology, and
Systems Neuroscience. One of the goals of this book is to attract the attention of
scientists working in these supposedly distinct fields, by demonstrating that some of
the seemingly unrelated problems in Systems Biology and Systems Neuroscience
may be modeled using virtually identical powerful methods from the inclusive
paradigms articulated here. There are three main paradigms, which are the unifying
threads of this book – multiscale analysis, networks, and nonlinear dynamics.
Multiscale analysis is the major integrating theme of the book, as indicated by its
title. The subtitle does not call for bridging the scales all the way from genes to
behavior, but rather stresses the unifying perspective provided by the concepts
referred to in the title, and especially by multiscaling. Multiscaling, in essence the
consideration of problems on many spatial and temporal scales, is one of the major
recent developments in solid-state physics, fluid mechanics, and applied mathe-
matics (some examples are briefly discussed later in this introduction). This book
emphasizes the importance of taking into account the interplay between multiscale
structure and multiscale dynamics. It is network theory that provides a general
framework for the integration of multiscaling and collective dynamics.
In neuroscience, multiscale network interactions may account for much of the

brain’s complex behavior. The importance of multiple time/space scales and their
interaction was emphasized by Hebb, Hayek, and Luria [18–20], and has been
stressed by a number of authors over the past few years [5–12,21–25]. Nunez focuses
on the importance of nested modular hierarchy in brain tissue and quotes

1) I think that the history of science is the history of unification of knowledge, disciplines
coming together [17].
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V. Mountcastle: “the brain is a complex of widely and reciprocally interconnected
systems and the dynamic interplay of neural activity within and between these
systems is the very essence of brain function.” [8]. Mountcastle also explicitly
referred to the emergent behavior of the brain: “The properties of microcircuit
operations are emergent, for they cannot be predicted from what is known of the
action of single neurons.” [26]. The hierarchy of neural networks figures in the
global neuronal workspace model of consciousness that is based on dynamic links
between specialized processing modules (dynamically formed networks) [27–31].
This model includes long-range cortico-cortical axons (densely distributed in pre-
frontal, parieto-temporal, and cingulate cortices) that integrate sub networks into a
single large system, and suggests that highly distributed synchronized activity
provides neural correlates of conscious states of the brain. Anothermodel of memory
and consciousness, the multiregional retroactivation framework, also rejects a single
anatomical site for the integration ofmemory andmotor processes, and involves time-
locked neuronal ensembles located inmultiple and separate regions [32,33]. Based on
simultaneous electrophysiological and fMRImeasurements in non-human primates,
Logothetis [34] states that “the concurrent study of components and networks” is
needed and “simultaneous studies of microcircuits, of local and long-range inter-
connectivity between small assemblies, and of the synergistic activity of larger
neuronal populations are essential.” Another experimental illustration of the signifi-
cance of dynamics andmultiple scales comes fromawork of Salazar et al. [35], who, by
using simultaneous recordings of neural activity from various areas, demonstrated
that short-term memories are represented by patterns of synchronization, widely
distributed throughout the frontoparietal network (I’d like to thank Lester Ingber for
bringing this work tomy attention). Overall, there ismounting experimental evidence
that sensory neurons change their responses, as well as the structure of neuronal
correlations, adaptively. In Systems Biology it is also being increasingly recognized
that various bionetworks are interrelated and influence each other dynamically. To
sumup,modeling inSystemsNeuroscience andSystems/SyntheticBiologymust take
into account a largenumberof components, theirnonlinear dynamic interactions, and
multiscale, dynamically changing hierarchical interconnections.
These factors may lead to an emergent, self-organized (in contrast to centrally

controlled), adaptive behavior that is often encountered in Systems Neuroscience
and Systems Biology. Indeed, in the context of neural networks, it was shown some
30 years ago that new properties may emerge as a result of the collective dynamic
interaction of a large number of components [36]. Hopfield’s network consisted of
simple equivalent components, and the network had little structure. Nonetheless, new
collective properties spontaneously emerged. This had been anticipated by Anderson:
“We expect to encounter fascinating and, I believe, very fundamental questions at each
stage in fitting together less complicated pieces into the more complicated system and
understanding the basically new types of behavior which can result” [1]. As Aristotle put
it, “In the case of all things which have several parts and in which the whole is not, as it
were, a mere heap, but the totality is something besides the parts, there is a cause of
unity.” [37]. Interactions among multiple scales also may give rise to new phenomena.
Let us consider just a few classical examples. The first one dates back to 1869, when
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Maxwell solved the problem of anomalous dispersion of a monochromatic electro-
magnetic wave of the frequency v interacting with the transmitting media whose
electrons have the intrinsic frequency v0 [38–40]. In essence, this theory links the
macroscopically observed refraction and absorption to themicroscopic oscillations of
electrons. Another example concerns spatial scales and comes from nonlinear waves
in elastic media with microstructure [41]. Microstructure induces the spatial disper-
sion that, together with nonlinearity, gives rise to a striking new type of nonlinear
waves – solitons, described by the macroscopic Korteweg–de Vries (KdV) equation.
These examples indicate that both collective behavior and the effect ofmultiple scales
may separately lead to changes in the nature of a system. Therefore, the integration of
multiscaling and collective dynamics (iMCD), the paradigm advocated here, takes
into account the convoluted interplay between these two factors, thus providing a
broad, inclusive way of describing emergence and adaptivity of complex systems.
Besides furnishing a theoretical perspective, modeling based on iMCD will also

be important for how Systems Biology and Systems Neuroscience collect exper-
imental data. In neuroscience, for example, it will soon be possible to record from
thousands of neurons, but for studies of a particular phenomenon, it is important
to know from which (and from how many) neurons the spikes should be recorded
(see, for example, Refs [35,42,43]).
Moreover, the iMCD paradigm, being comprehensive, will help to grasp and

interpret this flood of experimental/ simulated data. Indeed, one primarily detects
what he/she is looking for (“The decisive point is not observation but expectation” as
Popper put it [44]), and evenwhen there is somethingunforeseenandamodelproves to
be inadequate, it is the comprehensiveness of the modeling that helps one to spot the
unanticipated.2) In addition to providing useful technical tools, multiscaling is in fact a
way of thinking. For example, let us take a look at the so-called model equations.
The KdV equation mentioned above is just one example of such equations which
describe a large number of physical, chemical, technical, and biological phenomena.
These equations include the nonlinear Schr€odinger equation, the sine–Gordon
equation, the Ginzburg–Landau equation, and so on [39,45,46]. Their derivation,
which utilizes multiple space/time scales essential to a phenomenon, has led to
advances in the understanding of diverse phenomena and also to the establishment of
new, rich branches of research in physics and applied mathematics. In other words,
multiscaling is not only a mathematical language common to various disciplines, but,
more importantly, a way of thinking.
Even thoughmultiscale analysis is probably the oldest among the above-mentioned

unifying concepts of the book, it is less universally recognized as a powerful,
indispensable framework for describing complex natural phenomena (“ . . . linking
models at different scales . . . is as old as modern science itself” – see examples in
Ref. [40]). The main manifestations of multiscaling pertinent to this book are multi-
scale modeling (physical, chemical, biological, etc.), multiresolution analysis of high-
dimensional information/data, and multiscale nonlinear dynamics on networks.

2) “In preparing for a battle, I have always found that plans are useless, but planning is
indispensable.” D. D. Eisenhower.
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Inwhat follows, I briefly discuss themandhow they are exemplified in this book. Since
these embodiments ofmultiscaling are interconnected, the discussion inevitably goes
back and forth between them. Each section starts with a short account of the section’s
main topic and ends with a description of pertinent chapters of the book.

1.1
Multiscale Modeling

Multiscale modeling/analysis has become a large part of modern applied mathe-
matics. But what is multiscale analysis to begin with? It is, in fact, an overarching
concept of treating problems on multiple scales. It has developed into a large
spectrum of techniques that have different meanings and flavors depending on
whether they belong to physical modeling, asymptotic methods, numerical simula-
tions, information theory, or applied harmonic analysis. Under various disguises,
multiscale analysis enters virtually every scientific/engineering endeavor. Indeed, in
analyzing a phenomenon, practically all fields rely on mathematical modeling in
order to characterize the mechanisms involved, to make predictions, to guide new
experiments, and to aid the design in technology. The iterative model building
process consists of the following three major stages, each of which depends greatly
on a particular incarnation of multiscale analysis:

1) Domain(s)-specific modeling (physical, chemical, biological, and so on, or a
combination of these)
- data collecting and analyzing,
- mathematical formulation, equations (not always possible).

2) Analysis
- asymptotic study, computational simulations,
- quantifying uncertainty.

3) Model verification
- data generating and analyzing.

These stages are not completely independent of each other. Moreover, they are not
strictly sequential and the pursuit of the comprehensive model may require their
simultaneous combined efforts. It is interesting to note that such a non-sequential
modeling procedure, in fact, provides a paradigmatic account of knowledge genera-
tion in general and parallels the cognition process where the knowledge-dependent
brain does not follow the traditional information processing input–output scheme,
but rather continuously generates internal variations, anticipating and testing the
outside world with reference to its own representation of the world [19,29,31–33].
The first thing one notices from the stages 1–3 above is that modeling starts and

ends with data analysis. In fact, the intermediate stages also implicitly depend on
data processing. Nowadays, there is usually more data available than can be
processed by using traditional data analysis tools (this situation is briefly discussed in
Section 1.2), and even fields with well-established data archives, such as genomics,
are facing new and mounting challenges in data management and exploration.
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Let us start by considering in a nutshell howmultiscale analysis manifests itself in
the various stages of modeling.

1.1.1
Domain-Specific Modeling

Any model is an idealization of a phenomenon, and as such, it inevitably neglects
some details and generates an abstraction that captures what is most important for a
particular analysis. How does one know what is essential? This crucial process of
prioritizing begins by building a hierarchy of scales that underlie the phenomenon.
Indeed, it is obvious that any parameter whose magnitude depends on measure-
ment units could hardly be useful for modeling. At the same time, the significance
of various parameters is determined by theirmagnitudes. Thus, one of the first steps
should be to find scales that are intrinsic to the problem and to normalize the
parameters accordingly. In addition, this process of prioritizing scales is instru-
mental in quantifying the uncertainty of the chosen representation. It is important to
note, however, that basic dimensional analysis is not always sufficient for obtaining
the so-called scaling laws [47,48].
To consider some effects of multiple scales, let us start with a simple example of a

harmonic oscillator. In this case, there is only one intrinsic time scale – the inverse
frequency of the pendulum. As we move to a more realistic model with damping, an
additional time scale – the characteristic damping scale – appears [49,50]. The appear-
ance of just one additional scale makes the phenomenon and its computatio-
nal/mathematical treatment much more complicated. A straightforward solution is
not uniformly valid (in time) anymore, and a singularity near t¼ 0 complicates the
analysis. In fact, singular behavior can often be inferred by analyzing dimensionless
characteristic magnitudes. If one considers, for example, a limiting case when a
parameter of a problem is small, a general rule states: “A perturbation solution is
uniformly valid in the space and time coordinates unless the perturbation quantity is the
ratio of two lengths or two times” [50]. This is, in general, a very formidable complication
that was caused by having just two scales instead of one. The theory of singular
perturbations was developed in fluid mechanics (the boundary layer theory), but a
similar situation occurs in modeling biochemical reactions, where the Michaelis–
Menten kinetics results from a reduction of a singularly perturbed model. As the
simple example of an oscillator with damping demonstrates, the initial choice of the
intrinsic scales is of theutmost importance tomodeling. Sucha selection requires adeep
physical, chemical, and biological understanding of the collected data and the phe-
nomena being investigated.
The contributions to this book by Elisa Franco et al., Rapha€el Plasson et al., and

Zhilin Qu et al. belong to this category of modeling complex, multiscale phenomena
with applications to transcriptional networks, biochemical oscillators, and nonlinear
dynamics of the heart. Elisa Franco, Jongmin Kim, and Friedrich Simmel, in their
chapter “Transcriptional Oscillators,” study a class of cell-free synthetic biological
systems – “genelet circuits” – that are entirely based on in vitro gene transcription. In
these systems a reduced number of biological components –DNA and RNA strands
and a few enzymes – are used to construct artificial gene regulatory circuits that are
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roughly analogous to biologically occurring counterparts, for example, bistable
molecular switches or oscillators. Among the most attractive features of in vitro
transcription circuits is that, in principle, all of their molecular components are
known. This not only makes these systems amenable to a thorough quantitative
treatment, but also enables one to comparatively easily feedback to the experimental
realization of the systems insights gained from computational modeling.
Rapha€el Plasson and Yannick Rondelez, in their contribution, trace the historical

developments of the concept of out-of-equilibrium networks of chemical reactions,
from small molecules systems to biology, to generalized experimental chemistries.
They focus on the building of out-of-equilibrium chemical systems and review the
discoveries and theoretical advances that eventually allowed the dynamical descrip-
tion of molecular assemblies. They also describe the world of biological reaction
networks and provide examples of natural implementation of such chemical
circuits. Their survey highlights some of the most recent schemes for the rational
molecular programming of complex out-of-equilibrium behaviors, and also gives a
further incentive for the study of complex chemical systems as models of their
biological counterparts. Some examples of realizations based on these experimental
schemes are described.
Zhilin Qu and Michael Nivala, in their chapter “Multiscale Nonlinear Dynamics

in Cardiac Electrophysiology: From Sparks to Sudden Death,” analyze the nonlinear
dynamics of the heart, which are regulated by nonlinear dynamics occurring on
multiple scales, ranging from random molecular motions to more regular cellular
and tissue-level behaviors. They review experimental observations and mechanistic
insights gained from the mathematical modeling of biological functions across
subcellular, tissue, and organ scales in the heart. They also discuss the role of
nonlinear dynamics in the genesis of lethal cardiac events.
In the next subsection, we briefly discuss motivations for and approaches to

linking various scales.

1.1.2
Analysis

Bridging various scales is a very challenging problem of applied mathematics.
To get a better feel for the issues analyzed in this book, let us take a quick look at the
spectrum of characteristic spatial/time values in Systems Neuroscience. The brain is
a complex system with a huge range of structural and functional scales [4–13,51,52].
In order to understand the function of the brain, modeling and simulation tech-
niques are applied at many different levels from subcellular to systems: cell! circuit
!network! cognition.3) Some spatial characteristic magnitudes are as follows:

molecules �1A
�
, synaptic cleft in chemical synapse (width) �20–40nm, neurons

3) For “directly” interacting with a brain, as
opposed to modeling, the interested reader
is referred to Musil’s amusing, surrealistic
visit to his brain in 1913: “This writer’s
brain: I hastily slid down the fifth turn in
the vicinity of the third mound. . . . The
mass of the cerebral cortex arched over

me . . . unfathomable, like strange
mountains at dusk. Night was already
falling over the region of the
medulla; . . . hummingbird colors [like the
colors of modern neuroimages (MP)], . . . ,
disconnected sounds [neuron spikes
(MP)] . . . ” [53].
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�4–100mm, axon (diameter) �0.5–20mm, axon length �1mm–1m, neural circuits
�1mm, and from here to the whole brain and cognition. The characteristic time
scales in neuroscience correspond to frequencies spanning four orders ofmagnitude,
from the so-called slow-four �0.025–0.066Hz to slow-one, and then to delta¼
1.5–4Hz! theta¼ 4–10Hz! beta¼ 10–30Hz! gamma¼ 30–80Hz!high fre-
quency¼ 80–200Hz! the ultrahigh frequency¼ 200–600Hz [7]. Moreover, realistic
models of a single neuron contain two distinct time scales – slow and fast. These
ranges of the spatial and temporal scales are bewildering.However, since the scales are
so disparate, why not analyze eachof them independently? Indeed, traditionally, this is
exactly how problems with multiple scales are approached – different scales are
separated and their interaction with each other only takes place through some
“passive,” phenomenological parameters. For highly informative, inspiring discus-
sions ofmodeling andbridgingmultiple scales see Phillips [40], especially Chapter 12;
it is the subtitle of the book –Modeling Across Scales – not the title that articulates its
relevance to our discussion. For an extensive, far-reaching account of the physical
perspective on biological modeling, see Phillips et al. [15]. The traditional way of
separating scales has been successful in dealing with many problems. However, as
we have discussed, there are numerous important situations where different
scales cannot be considered independently, and it is precisely the interactions
between disparate scales that give rise to phenomena otherwise absent. In
Neuroscience, for example, the interactions between theta and gamma oscilla-
tions may represent a cellular basis of long-term memory formation in humans
(see review [54] and references therein). When dealing with a complex system that
is characterized by multiple scales (“ . . . the twin difficulties of scale and
complexity.”), it is often desirable to reduce the complexity by constructing an
effective model that is a coarsened version of the original one. Homogenization is
one possible principled way to perform multiscale analysis and to “bridge the
scales” (for other powerful multiscale methods, see Ref. [55] and references
there). Homogenization is used to properly average out, or homogenize, the fast
scales in systems of ordinary or partial differential equations (these fast scales
reflect high-frequency variations, in time or space, of some characteristic physical
parameters). Doing so leads to effective equations that do not contain a small
parameter and are hence more amenable to numerical solution or analysis. In
neuroscience homogenization was applied, for example, to the propagation of
traveling wave fronts in an inhomogeneous, excitable neural medium [56].
Homogenization (or multiscale analysis) in the presence of a large number of

nonseparated (spatial or temporal) scales has been recognized as very important for
applications and is far from being well understood mathematically. This book opens
with a chapter by Mathieu Desbrun, Roger Donaldson, and Houman Owhadi
“Modeling Across Scales: Discrete Geometric Structures in Homogenization and
Inverse Homogenization” that addresses a situation with nonseparated spatial scales.
Imaging and simulation methods are typically constrained to resolutions much
coarser than the scale of physical microstructures present in body tissues. Both
mathematical homogenization and numerical homogenization address this practi-
cal issue by identifying and computing appropriate spatial averages that result in
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accuracy and consistency between the macroscales observed and the underlying
microscale models assumed. Among the various applications benefiting from
homogenization, electric impedance tomography (EIT) images the electrical con-
ductivity of a body by measuring electrical potentials consequential to electric
currents applied to the exterior of the body. EIT is routinely used in breast cancer
detection and cardiopulmonary imaging, where current flow in fine-scale tissues
underlies the resulting coarse-scale images. The authors introduce a geometric
procedure for the homogenization (simulation) and inverse homogenization (imag-
ing) of divergence-form elliptic operators with coefficients in dimension two. They
also consider inverse homogenization, which is known to be both nonlinear and
severely ill-posed. The method enables them to decompose this problem into a
linear ill-posed one and a well-posed nonlinear problem. The chapter ends by
demonstrating an application of this novel geometric technique to EIT. This
approach is closely related to the so-called geometric multiscale analysis, an active
area of research, with applications in a wide variety of fields, including high-
dimensional signal processing, data analysis/visualization, fluid mechanics, and
so on (see, for example, http://www.geometry.caltech.edu/).

1.1.3
Model Interpretation and Verification: Experimental/Simulation Data

The third stage of modeling is model verification. The results from experiments or
simulations often require the analysis of nonstationary time series with multiscale
variations of frequency and amplitude. The locations of these variations in time
cannot be grasped by the Fourier transform. To comprehend the multiscale nature
of such time series, the so-called wavelet-based multiresolution approach to signal
processing was developed ([57], and references there). To fully appreciate how
surprisingly strong the connection between multiscale analysis of signals/images
and neuroscience is, one needs only to recollect that it was the attempt to
understand the ability of the mammalian visual system to perform encoding
at various scales that stimulated the early development of mathematical MRA
based on wavelets [58]. Wavelets eventually evolved into a highly interdisciplinary
field of research with a variety of methods and applications providing a general
unifying framework for dealing with various aspects of information processing
(see also Section 1.2).
In this book, Conor Houghton and Thomas Kreuz, in their chapter called

“Measures of Spike Train Synchrony: From Single Neurons to Populations,” address
the subtle issues of analyzing and comparing time-series recordings from multiple
neurons. This chapter gives an overview of different approaches designed to
quantify multiple neuron synchrony. It addresses measures of synchrony within
a group of neurons as well as measures that estimate the degree of synchronization
between populations of neurons. The authors show that the various existing
measures have different advantages and disadvantages that depend on the propert-
ies of the spike trains. This analysis deals only with two different scales: that of
individual neurons and of small populations. However, the types of measures the
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authors discuss are likely to be goodmodels for a broader quantification of similarity
and synchrony and should be useful across multiple scales.
Besides time-frequency analysis of the one-dimensional time series discussed

above, more complicated multiresolution analysis of high-dimensional information
is required for data-intensive sciences such as Systems Biology and Systems
Neuroscience. This is the subject of the next section.

1.2
Multiresolution Analysis and Processing of High-Dimensional Information/Data

Modern scientific instruments generate large amounts of new data types, such as
data defined on graphs and manifolds, vector and tensor data. In fact, the problem
of multiscale representation/analysis of data defined onmanifolds is ubiquitous in
neuroscience, biology, medical diagnostics, etc. One important example comes
from fMRI data, where the functional time series can be described as sampled
vector-valued functions on the sphere S2 inR3, while various statistics derived from
the data can be described as functionals on the sphere. In general, brain activity is
highly dimensional and this, combined with the coming era of recording from
multiple neurons will lead to extremely complex, large data sets (for multineuronal
recordings of visual signaling in populations of ganglion cells, see Refs [42,59]; for
simultaneous recordings of neural activity frommultiple areas in lateral prefrontal
and posterior parietal cortical regions, see Ref. [35]; for applying multivariate
pattern analysis to fMRI, see Ref. [60]). A Neuroscience information framework
(NIF) that would encompass all of neuroscience and facilitate the integration of
existing knowledge and databases of many types is advocated by Akil et al. [61].
These complex data sets cannot be adequately understood without detecting
various scales that might be present in the data. However, traditional MRA tools
based on wavelets are restricted mostly to one-dimensional or two-dimensional
signals. Thus, the development of multiscale analysis applicable to functions
defined on graphs or manifolds is of great importance to Systems Biology and
Systems Neuroscience. This will enable bio- and neuro-informatics to deal with the
processing and visualization of complex information, pattern analysis, statistical
modeling, etc.
Extendingmultiresolution analysis from Euclidean to curved spaces and networks

presents a significant challenge to applied mathematics. Spectral methods and
diffusion maps have recently emerged as effective approaches to capturing the
degrees of freedom, scales, and structures (clusters, patterns) within high-
dimensional data [62,63]. Diffusion maps applied to complex neural data allowed
Coifman et al. [64] to integrate essential features at all scales in a coherent multiscale
structure. Diffusion maps have also been applied to stochastic chemical reaction
network simulations to recover the dynamically meaningful slowly varying coor-
dinates [65]. Such a procedure is important for modeling multiscale chemical
reactions, and in this sense, diffusion maps are relevant to the problems discussed
in Section 1.1.
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Compressed sensing and sparse representations offer promising new approaches
tomodern data processing. Traditionally it has been considered unavoidable that any
signal must be sampled at a rate of at least twice its highest frequency in order to be
represented without errors. However, compressed sensing permits sampling at a
lower rate, and it has been the subject of much recent research [66]. Many
fundamental problems of applied mathematics and engineering, including statisti-
cal data analysis, can be formulated as sparse approximation problems, making
algorithms for solving such problems versatile and relevant to multiple applications
[67]. In Neuroscience, the multidimensional nature of odors and sparse represen-
tations in the olfactory networks were discussed by Laurent [68]; sparse coding in
neural circuits was also addressed in Ref. [69].
Wavelets or frames consisting of nearly exponentially localized band-limited

functions are imperative for computational harmonic analysis and its applications
in statistics, approximation theory, and so on. Wavelet-type bases and frames
encapsulate smoothness of functions and provide sparse representation of natural
function spaces. In this book, Isaac Pesenson, in his chapter called “Multiresolution
Analysis on Compact Riemannian Manifolds,” describes multiscale analysis, sam-
pling, and approximation of functions defined on general compact Riemannian
manifolds. The author constructs band-limited and space-localized frames, and
variational splines on manifolds. These frames have Parseval property and, together
with the constructed splines, enable multiscale analysis on arbitrary compact
manifolds. For such manifolds as the two-dimensional sphere and group of its
rotations, these approaches have already found a number of important applications
in statistics, analysis of the cosmic microwave background, and crystallography. The
results of this chapter may also be useful in the neurophysics of electroencephalog-
raphy (EEG) (see Chapter 8 of Ref. [70]).
Overall, MRA is a powerful tool for efficient representation/analysis of complex

information (signals, images, etc.) at multiple levels of detail with many inherent
advantages, including compression, visualization, and denoising. In Systems/
Synthetic Biology and Systems Neuroscience, large integrated data are often
connected with complex nonlinear dynamical processes on hierarchical networks.
This is the subject of the section that follows.

1.3
Multiscale Analysis, Networks, and Nonlinear Dynamics

The human brain and gene circuits/networks, which are the main topics of this
book, demonstrate nontrivial organization and nonlinear dynamics across multiple
spatial and temporal scales, which ultimately result in complex, adaptive behavior
and emergence. The human brain has about 1011 neurons with ~1014 contacts
between them. The approach based on network or graph theory is especially well
suited for describing multiscale systems and nonlinear dynamics on them ([4–13,
21,23–25,51,52,71–90]. In Systems Biology a graph can be utilized, for example, to
describe the cellular differentiation hierarchy. Overall, network theory enables one
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to analyze the effect of multiscale structure (spatial scales) on multiscale evolu-
tionary dynamics (and vice versa), and as such provides a general framework for the
integration of multiscaling and collective dynamics. This perspective is illuminated
by a few contributions, which are described below.
Paul Nunez, Ramesh Srinivasan, and Lester Ingber, in their contribution

“Theoretical and Experimental Electrophysiology in Human Neocortex: Multiscale
Dynamic Correlates of Conscious Experience,” treat human brains as the preemi-
nent complex system with consciousness assumed to emerge from dynamic
interactions within and between brain subsystems. Given this basic premise,
they first look for general brain features underlying such complexity and, by
implication, the emergence of consciousness. They then propose general dynamic
behaviors to be expected in such systems and outline several tentative connections
between theoretical predictions and experimental observations, particularly the
large-scale (�cm) extracranial electric field recorded with electroencephalographic
technology (EEG).
Danielle Bassett and Felix Siebenh€uhner, in their chapter called “Multiscale

Network Organization in the Human Brain,” examine the multiscale organization
evident in brain network models. Structural brain networks, derived from estimated
anatomical pathways, display similar organizational features over different topolog-
ical and spatial scales. In fact, these networks are hierarchically organized into large,
highly connected modules that are in turn composed of smaller and smaller
modules. Together, these properties suggest that the cortex is cost-efficiently, but
not cost-minimally, embedded into the 3D space of the brain. Functional brain
networks, derived from indirect relationships in regional activity, are similarly
organized into hierarchical modules that are altered in disease states and adaptively
reconfigure during cognitive efforts such as learning. In general, it is the multiscale
structure of complex systems that is responsible for their major functional propert-
ies. Thus, multiscale organization might have important implications for cortical
functions in the human brain in particular. A better understanding of this structure
could potentially help elucidate healthy cognitive functions such as learning and
memory, and provide quantitative biomarkers for psychiatric diagnosis and the
monitoring of treatment and rehabilitation.
Michel Le Van Quyen, Vicente Botella-Soler, and Mario Valderrama, in their

contribution “Neuronal Oscillations Scale Up and Scale Down Brain Dynamics,”
approach brain dynamics from the perspective of their recent work on simultaneous
recording from micro- and macroelectrodes in the human brain. They propose a
physiological description of these multilevel interactions that is based on phase–
amplitude coupling of neuronal oscillations that operate at multiple frequencies and
on different spatial scales. Specifically, the amplitude of the oscillations at a
particular spatial scale is modulated by variations of phases in neuronal excitability
induced by lower frequency oscillations that emerge on a larger spatial scale.
Following this general principle, it is possible to scale up or scale down multiscale
brain dynamics. It is expected that large-scale network oscillations in the low-
frequency range, mediating downward effects, may play an important role in
attention and consciousness.
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Michael Cohen and Bradley Voytek, in their chapter called “Linking Nonlinear
Neural Dynamics to Single-Trial Human Behavior,” emphasize that human neural
dynamics are complex and high dimensional. There seem to be limitless possi-
bilities for developing novel data-driven analyses to examine patterns of activity
that unfold over time, frequency, and space, and interactions within and among
these dimensions. A better understanding of the neurophysiological mechanisms
that support cognition, however, requires linking these complex neural dynamics
to ongoing behavioral performance. Performance on cognitive tasks (measured,
e.g., via response accuracy and reaction time) typically varies across trials, thus
providing a means to determine which neural dynamical processes are related to
which cognitive processes. They review and present several methods for linking
nonlinear neural dynamics, based on oscillatory phase, phase-based synchroni-
zation, and phase–amplitude cross-frequency coupling. There are two major
advantages of linking nonlinear neural phase dynamics with trial-varying task
performance. First, if the goal of the research is to identify the neural dynamics
that underlie cognition, linking phase dynamics to task performance helps
identify task-related features of the EEG, and dissociate those from background
(and nontask-related) neural dynamics. Second, because the oscillation phase has
been linked to a variety of synaptic, cellular, and systems-level phenomena
implicated in learning, information processing, and network formation, linking
trial-varying performance to EEG phase provides a neurophysiologically grounded
framework within which results are interpreted. That is, not only can the features
in EEG data be linked to cognition, but they also bridge cognition and neuro-
physiological properties.
Etienne Hugues, Juan Vidal, Jean-Philippe Lachaux, and Gustavo Deco, in their

contribution called “Brain Dynamics at Rest: How Structure Shapes Dynamics,”
study neural activity present at rest. By using EEG and magnetoencephalography
(MEG) techniques it has been well established that neural resting-state activity
exhibits prominent alpha oscillations. More recently, data obtained in humans by
using blood oxygen level-dependent functional magnetic resonance imaging
(BOLD fMRI) revealed the existence of spatial structures across the brain called
functional connectivity (FC) patterns, and the so-called resting-state networks
(RSNs). FC patterns have also been found in EEG and MEG studies. Lately, the
RSNs detected by BOLD fMRI have also been observed in the alpha and beta
bands by using MEG technique. Although the alpha oscillations and the RSNs are
now well characterized experimentally, their neural origin remains a matter of
debate. To study this issue, they introduce a model of the spontaneous neural
activity of the brain, comprising local excitatory and inhibitory neural networks
connected via white matter fibers. Theoretical analysis and numerical simulations
of this model reveal that neural activity exhibits various modes. Many of these
modes are found to be oscillatory and the most dominant ones can be identified
with the different alpha oscillations. They show that these modes are responsible
for correlated activity in the alpha band as well as in the BOLD signal. Comparison
with intracranial EEG in humans validates the dynamical scenario proposed by
the model.
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Misha Pesenson, in his contribution “Adaptive Multiscale Encoding – A
Computational Function of Neuronal Synchronization,” addresses the problem of
multiscale encoding of information by human perception systems. A nonlinear
mechanism based on neural synchronization that achieves the desired multiscale
encoding is proposed. Entrainment of different neurons produces larger receptive
fields than that of a single cell alone, leading to amultiresolution representation. Such
receptive fields can be called entrainment receptive fields (ERF), or synchronization
receptive fields. The size of ERF is determined by external stimulus (bottom-up
activation along the sensory pathways), as well as by attention (top-down activation),
which selects or forms the underlyingnetwork structure. In otherwords, the receptive
field size is controlled by this bidirectional signaling and the proposed mechanism
does not rely solely on a fixed structure of the receptive fields (or a bank of fixed,
predetermined filters), but instead attains multiscale representation adaptively and
dynamically. In this way themodel goes beyond the classically defined receptivefields.
This entrainment-based mechanism may underlie multiscale computations in vari-
ous sensory modalities, as well as experimentally observed correlations between
multiple sensory channels. From the information processing perspective, the impor-
tance of the model lies in the fact that it allows one to generalize the scale concept to
functions defined onmanifolds and graphs. Themodel also leads towhat can be called
a synchronization pyramid. In addition, it enables gradient-preserving smoothing of
images, dimension reduction, and scale-invariant recognition.

1.4
Conclusions

The examples discussed demonstrate the crucial role of multiscaling in modeling
various natural phenomena and in exploring (the associated) complex data sets. Taken
together, the chapters in this book deal with diverse multiscale processes in Systems
Biology and Systems Neuroscience, as well as describe some general mathematical
constructs to parse essential multiscale features. Collective dynamics together with
mechanisms operating simultaneously on multiple scales often trigger adaptive,
emergent behavior, so the unified point of view based on iMCD gives insights into
these processes by emphasizing the conceptual and mathematical principles that are
common to them. In summary, this book focuses on parallels between different fields
and approaches and it is hoped that this perspectivewill contribute to taking the task of
exploring analogies to the next level – building “analogies between analogies.”
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