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Fundamentals

1.1
Superconductivity

1.1.1
Basic Properties and Parameters of Superconductors1)

Reinhold Kleiner

1.1.1.1 Superconducting Transition and Loss of DC Resistance
In the year 1908, Kamerlingh-Onnes [3], director of the Low-Temperature Labora-
tory at the University of Leiden, had achieved the liquefaction of helium as the last
of the noble gases. At atmospheric pressure, the boiling point of helium is 4.2 K.
It can be reduced further by pumping. The liquefaction of helium extended the
available temperature range near the absolute zero point and Kamerlingh-Onnes
was able to perform experiments at these low temperatures.
At first, he started an investigation of the electric resistance of metals. At that

time, the ideas about the mechanism of the electric conduction were only poorly
developed. It was known that it must be electrons being responsible for charge
transport. Also one had measured the temperature dependence of the electric
resistance of many metals, and it had been found that near room temperature the
resistance decreases linearly with decreasing temperature. However, at low tem-
peratures, this decrease was found to become weaker and weaker. In principle,
there were three possibilities to be discussed:

1) The resistance could approach zero valuewith decreasing temperature (James
Dewar, 1904).

2) It could approach a finite limiting value (Heinrich Friedrich Ludwig
Matthiesen, 1864).

3) It could pass through a minimum and approach infinity at very low tempera-
tures (William Lord Kelvin, 1902).

In particular, the third possibility was favored by the idea that at sufficiently low
temperatures the electrons are likely to be bound to their respective atoms. Hence,
their free mobility was expected to vanish.The first possibility, according to which

1) Text and figures of this chapter are a short excerpt from monographs [1, 2].
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the resistance would approach zero value at very low temperatures, was suggested
by the strong decrease with decreasing temperature. Initially, Kamerlingh-Onnes
studied platinum and gold samples, since at that time he could obtain thesemetals
already with high purity. He found that during the approach of zero temperature
the electric resistance of his samples reached a finite limiting value, the so-called
residual resistance, a behavior corresponding to the second possibility discussed
above. The value of this residual resistance depended upon the purity of the sam-
ples.The purer the samples, the smaller the residual resistance. After these results,
Kamerlingh-Onnes expected that in the temperature range of liquid helium, ide-
ally, pure platinum or gold should have a vanishingly small resistance. In a lecture
at theThird International Congress of Refrigeration 1913 in Chicago, he reported
on these experiments and arguments.There he said: “Allowing a correction for the
additive resistance I came to the conclusion that probably the resistance of abso-
lutely pure platinum would have vanished at the boiling point of helium” [4].These
ideas were supported further by the quantum physics rapidly developing at that
time. Albert Einstein had proposed a model of crystals, according to which the
vibrational energy of the crystal atoms should decrease exponentially at very low
temperatures. Since the resistance of highly pure samples, according to the view of
Kamerlingh-Onnes (which turned out to be perfectly correct, as we know today),
is only due to this motion of the atoms, his hypothesis mentioned above appeared
obvious.
In order to test these ideas, Kamerlingh-Onnes decided to study mercury, the

only metal for which he hoped at that time that it can be extremely purified by
means of a multiple distillation process. He estimated that at the boiling point
of helium he could barely just detect the resistance of the mercury with his
equipment, and that at still lower temperatures it should rapidly approach zero
value.The initial experiments carried out by Kamerlingh-Onnes together with his
coworkers, Gerrit Flim, Gilles Holst, and Gerrit Dorsman, appeared to confirm
these concepts. At temperatures below 4.2K, the resistance of mercury, indeed,
became immeasurably small. During his further experiments, he soon recognized
that the observed effect could not be identical to the expected decrease of
resistance.The resistance change took place within a temperature interval of only
a few hundredths of a degree and, hence, it resembled more a resistance jump
than a continuous decrease.
Figure 1.1.1.1 shows the curve published by Kamerlingh-Onnes [5]. He com-

mented himself: “At this point (slightly below 4.2K) within some hundredths of a
degree came a sudden fall not foreseen by the vibrator theory of resistance, that had
framed, bringing the resistance at once less than a millionth of its original value at
the melting point. … Mercury had passed into a new state, which on account of its
extraordinary electrical properties may be called the superconductive state” [4].
In this way also the name for this new phenomenon had been found. The dis-

covery came unexpectedly during experiments, which were meant to test some
well-founded ideas. Soon it became clear that the purity of the samples was unim-
portant for the vanishing of the resistance. The carefully performed experiment
had uncovered a new state of matter.
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Figure 1.1.1.1 Superconductivity of mercury. (From [1], after Ref. [5].)

Today we know that superconductivity represents a widespread phenomenon.
In the periodic system of the elements superconductivity occurs in many
elements. Here, at atmospheric pressure, niobium is the element with the
highest “transition temperature” or “critical temperature” Tc of about 9K.
Eventually, thousands of superconducting compounds have been found, and this
development is by no means closed.
The vanishing of the DC electric resistance below Tc is not the only unusual

property of superconductors. An externally appliedmagnetic field can be expelled
from the interior of superconductors except for a thin outer layer (“ideal diamag-
netism” or “Meissner–Ochsenfeld effect”). This happens for type-I superconduc-
tors for field below the so-called critical field Bc, and for type-II superconductors
below the lower critical field Bc1. For higher fields, type-II superconductors can
concentrate themagnetic field in the form of “flux tubes.” Here themagnetic flux2)

is quantized in units of the “magnetic flux quantum” Φ0 = 2.07⋅10−15 Wb. The
ideal diamagnetism of superconductors was discovered byMeissner and Ochsen-
feld in 1933. It was a big surprise, since based on the induction law one would

2) Themagnetic fluxΦ through a loop of area F , carrying a perpendicular and spatially homogeneous
flux density B is given by Φ=B⋅F . In the following, we denote B simply by “magnetic field.” In
the general case of an arbitrarily oriented and spatially inhomogeneous magnetic field B, one must
integrate over the area of the loop,Φ = ∫F

B df .The unit of magnetic flux is weber (Wb), the unit of

the magnetic field is tesla (T). We have 1Wb= 1Tm2. If a loop is placed at a large distance around
the axis of an isolated flux tube, we have Φ=Φ0.
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have only expected that an ideal conductor conserves its interior magnetic field
and does not expel it.
The breakthrough of the theoretical understanding of superconductivity was

achieved in 1957 by the theory of Bardeen, Cooper, and Schrieffer (“BCS theo-
ry”) [6]. They recognized that at the transition to the superconducting state, the
electrons pairwise condense into a new state, in which they form a coherent mat-
ter wave with a well-defined phase, following the rules of quantum mechanics.
Here the interaction of the electrons is mediated by the “phonons,” the quantized
vibrations of the crystal lattice. The pairs are called Cooper pairs. In most cases,
the spins of the two electrons are aligned antiparallelly, that is, they form spin-
singlets. Also, at least in most cases, the angular momentum of the pair is zero
(s-wave). The theory also shows that at nonzero temperatures, a part of the elec-
trons remain unpaired. There is, however, an energy gap Δ which separates these
unpaired “quasiparticles” from theCooper pairs. It requires the energy 2Δ to break
a pair.
For more than 75 years, superconductivity represented specifically a low-

temperature phenomenon. This changed in 1986, when Bednorz and Müller [7]
discovered superconductors based on copper oxide.
This result was highly surprising for the scientific community, also because

already in the middle 1960s, Matthias and coworkers had started a systematic
study of the metallic oxides. They searched among the substances based on the
transition metal oxides, such as W, Ti, Mo, and Bi [8]. They found extremely
interesting superconductors, for example, in the Ba–Pb–Bi–O system, however,
no particularly high transition temperatures.
During the turn of the year 1986–1987, the “gold rush” set in, when it became

known that the group of Shigeho Tanaka in Japan could exactly reproduce the
results of Bednorz and Müller. Only a few weeks later, transition temperatures
above 80Kwere observed in the Y–Ba–Cu–O system [9]. During this phase, new
results more often were reported in press conferences than in scientific journals.
The media anxiously followed this development. With superconductivity at tem-
peratures above the boiling point of liquid nitrogen (T = 77K), one could envision
many important technical applications of this phenomenon.
Today we know a large series of cuprate “high-temperature superconductors.”

Here the mostly studied compounds are YBa2Cu3O7 (also “YBCO” or “Y123”)
and Bi2Sr2CaCu2O8 (also “BSCCO” or “Bi2212”), which display maximum tran-
sition temperatures around 90K. Some compounds have transition temperatures
even above 100K.The record value is carried byHgBa2Ca2Cu3O8, having at atmo-
spheric pressure a Tc value of 135K and at a pressure of 30GPa, a value as high as
Tc = 164K. Figure 1.1.1.2 shows the evolution of the transition temperatures since
the discovery by Kamerlingh-Onnes. The jump-like increase due to the discovery
of the copper-oxides is particularly impressive.
In Figure 1.1.1.2, we have also included the metallic compoundMgB2, as well as

the iron pnictides.
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Figure 1.1.1.2 Evolution of the superconducting transition temperature since the discovery
of superconductivity. (From [2], after Ref. [10].)

ForMgB2, surprisingly, superconductivity with a transition temperature of 39K
was detected only in 2000, even though this material has been commercially avail-
able for a long time [11]. Also, this discovery had a great impact in physics, and
many essential properties of this material have been clarified in the subsequent
years. It turned out that MgB2 behaves similarly as the “classical” metallic super-
conductors, however with two energy gaps. The discovery of the iron pnictides
in 2008 [12] had a similar impact. These are compounds like LaFeAsO0.89F0.11 or
Ba0.6KFe2As2, with transition temperatures of up to 55K.The iron pnictides con-
tain layersmade of FeAs as the basic building block, in analogy to the copper oxide
layers in the cuprates.
Many properties of the high-temperature superconductors (in addition also to

other superconducting compounds) are highly unusual. For example, the Cooper
pairs in the cuprates have an angular momentum of 2ℏ (d-wave) and the coherent
matter wave has dx2−y2 symmetry. For the d-wave symmetry, the energy gapΔ dis-
appears for some directions in momentum space. More than 25 years after their
discovery, it is still unclear how the Cooper pairing is accomplished in these mate-
rials. However, it seems likely that magnetic interactions play an important role.
Another important issue is themaximumcurrentwhich a superconductingwire

or tape can carry without resistance, the so-called critical current.Wewill see that
the property “zero resistance” is not always fulfilled.When alternating currents are
applied, the resistance can become finite. Also forDC currents, the critical current
is limited. It depends on the temperature and the magnetic field, and also on the
type of superconductor used and the geometry of the wire. It is a big challenge to
fabricate conductors in a way that hundreds or even thousands of amperes can be
carried without or at least with very low resistance.
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1.1.1.2 Ideal Diamagnetism, Flux Quantization, and Critical Fields

It has been known for a long time that the characteristic property of the super-
conducting state is that it shows no measurable resistance for direct current. If
a magnetic field is applied to such an ideal conductor, permanent currents are
generated by induction, which screen the magnetic field from the interior of the
sample. For that reason, a permanent magnet can levitate when placed on top of
an ideal conductor. This effect is demonstrated in Figure 1.1.1.3.
What happens if a magnetic field Ba is applied to a normal conductor and if

subsequently by cooling below the transition temperature Tc ideal conductivity
is reached? At first, in the normal state at the application of the magnetic field,
eddy currents are flowing because of induction. However, as soon as the magnetic
field has reached its final value and does not change anymore with time, these
currents decay, and finally the magnetic fields within and outside the supercon-
ductor become equal. If now the ideal conductor is cooled belowTc, thismagnetic
state simply remains, since further induction currents are generated only dur-
ing changes of the field. Exactly this is expected, if the magnetic field is turned
off below Tc. In the interior of the ideal conductor, the magnetic field remains
conserved. Hence, depending upon the way in which the final state, namely a tem-
perature below Tc and an applied magnetic field Ba, has been reached, within the
interior of the ideal conductor we have completely different magnetic fields.
Accordingly, a material with the only property R= 0, for the same external

variables T and Ba, could be transferred into completely different states, depend-
ing upon the previous history. Therefore, for the same given thermodynamic
variables, we would not have just one well-defined superconducting phase,
but, instead, a continuous manifold of superconducting phases with arbitrary
shielding currents, depending upon the previous history. However, the existence
of a manifold of superconducting phases appeared so unlikely, that also before
1933 one referred to only a single superconducting phase even without an
experimental verification.
As a matter of fact, a superconductor behaves quite different than an ideal elec-

tric conductor. Again we imagine that a sample is cooled below Tc in the presence
of an applied magnetic field. If this magnetic field is very small, one finds that

(a) (b)

Figure 1.1.1.3 The “levitated magnet” for demonstrating the permanent currents, which
are generated in superconducting lead by induction during the lowering of the magnet. (a)
Starting position and (b) equilibrium position.
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the field is completely expelled from the interior of the superconductor except for
a very thin layer at the sample surface. In this way, one obtains an ideal diamag-
netic state, independent of the temporal sequence in which themagnetic field was
applied and the sample was cooled.
This ideal diamagnetism has been discovered in 1933 byMeissner and Ochsen-

feld [13] for rods made of lead or tin. This expulsion effect, similar as the prop-
erty R= 0, can be nicely demonstrated using the “levitated magnet.” In order to
show the property R= 0, in Figure 1.1.1.3 we have lowered the permanent mag-
net toward the superconducting lead bowl, generating in this way by induction
the permanent currents. For demonstrating the Meissner–Ochsenfeld effect, we
place the permanent magnet into the lead bowl at T >Tc (Figure 1.1.1.4a) and
then cool further down. The field expulsion appears at the superconducting tran-
sition, themagnet is repelled from the diamagnetic superconductor, and it is raised
up to the equilibrium height (Figure 1.1.1.4b). In the limit of ideal magnetic field
expulsion, the same levitation height is reached as in Figure 1.1.1.3.
Above, we had assumed that the magnetic field applied to the superconduc-

tor would be “small.” Indeed, one finds that the ideal diamagnetism only exists
within a finite range ofmagnetic fields and temperatures, which, furthermore, also
depends upon the sample geometry.
Next we consider a long, rod-shaped sample where the magnetic field is applied

parallel to the axis. For other shapes, the magnetic field often can be distorted.
One finds that there exist two different types of superconductors:

• The first type, referred to as type-I superconductors or superconductors of the
first kind, expels the magnetic field up to a maximum value Bc, the critical field.
For larger fields, superconductivity breaks down, and the sample assumes the
normal-conducting state. Bc depends on the temperature and reaches zero at
Tc. Pure mercury or lead are examples of a type-I superconductor.

• The second type, referred to as type-II superconductors or superconductors of
the second kind, shows ideal diamagnetism for magnetic fields smaller than the

(a) (b)

Figure 1.1.1.4 “Levitated magnet” for demonstrating the Meissner–Ochsenfeld effect in
the presence of an applied magnetic field. (a) Starting position at T > Tc and (b) equilibrium
position at T < Tc.
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“lower critical magnetic field” Bc1. Superconductivity completely vanishes for
magnetic fields larger than the “upper critical magnetic field” Bc2, which often
is much larger than Bc1. Both critical fields reach zero at Tc. This behavior is
found in many alloys, but also in the high-temperature superconductors. In the
latter, Bc2 can reach even values larger than 100T, depending on the direction
the field is applied relative to the CuO layers.

What happens in type-II superconductors in the “Shubnikov phase” between
Bc1 and Bc2? In this regime, the magnetic field only partly penetrates into the sam-
ple. Now shielding currents flow within the superconductor and concentrate the
magnetic field lines, such that a system of flux lines, also referred to as Abrikosov
vortices, is generated. In an ideal homogeneous superconductor, in general, these
vortices arrange themselves in form of a triangular lattice. In Figure 1.1.1.5, we
show schematically this structure of the Shubnikov phase. The superconductor is
penetrated by magnetic flux lines, each of which carries a magnetic flux quan-
tum and is located at the corners of equilateral triangles. Each flux line consists
of a system of circular currents, which in Figure 1.1.1.5 are indicated for two flux
lines. These currents together with the external magnetic field generate the mag-
netic flux within the flux line and reduce themagnetic field between the flux lines.
Hence, one also talks about flux vortices. With increasing external field Ba, the
distance between the flux lines becomes smaller.
The first experimental proof of a periodic structure of the magnetic field in the

Shubnikov phase was given in 1964 by a group at the Nuclear Research Center
in Saclay using neutron diffraction [14]. However, they could only observe a
basic period of the structure. Real images of the Shubnikov phase were generated
by Essmann and Träuble [15] using an ingenious decoration technique. In

Ba

Figure 1.1.1.5 Schematics of the Shubnikov phase. The magnetic field and the super-
currents are shown only for two flux lines.



1.1 Superconductivity 9

Figure 1.1.1.6 Image of the vortex lattice
obtained with an electron microscope follow-
ing the decoration with iron colloid. Frozen-
in flux after the magnetic field has been
reduced to zero. Material: Pb+ 6.3 at.% In;

temperature: 1.2 K; sample shape: cylinder
60mm long, 4mm diameter; magnetic field
Ba parallel to the axis. Magnification: 8300×
(Reproduced by courtesy of Dr. Essmann.)

Figure 1.1.1.6, we show a lead–indium alloy as an example. These images of the
magnetic flux structure were obtained as follows: above the superconducting
sample iron atoms are evaporated from a hot wire. During their diffusion through
the helium gas in the cryostat, the iron atoms coagulate forming iron colloids.
These colloids have a diameter of <50 nm, and they slowly approach the surface
of the superconductor. At this surface, the flux lines of the Shubnikov phase exit
from the superconductor. In Figure 1.1.1.6, this is shown for two flux lines. The
ferromagnetic iron colloid is collected at the locations, where the flux lines exit
from the surface, since here they find the largest magnetic-field gradients. In this
way, the flux lines can be decorated. Subsequently, the structure can be observed
in an electron microscope.The image shown in Figure 1.1.1.6 was obtained in this
way. Such experiments convincingly confirmed the vortex structure predicted
theoretically by Abrikosov.
The question remains if the decorated locations at the surface indeed corre-

spond to the ends of the flux lines carrying only a single flux quantum. In order to
answer this question, we just have to count the number of flux lines and also have
to determine the total flux, say, bymeans of an induction experiment.Thenwe find
the value of the magnetic flux of a flux line by dividing the total flux Φtot through
the sample by the number of flux lines. Such evaluations exactly confirmed that in
highly homogeneous type-II superconductors each flux line contains a single flux
quantum Φ0 = 2.07⋅10−15 Tm2.
Today, apart from neutron diffraction and decoration, there are a number of dif-

ferentmethods for imagingmagnetic flux lines.Wewill not go into detail butmen-
tion that the methods often supplement each other and provide valuable informa-
tion about superconductivity.
Flux quantization, in integer multiples of Φ0, also occurs in a superconducting

ring. This has been demonstrated very nicely in pioneering experiments by Doll
and Näbauer [16] in Munich and by Deaver and Fairbank [17] in Stanford.
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1.1.1.3 The Origin of Flux Quantization, London Penetration Depth and
Ginzburg–Landau Coherence Length

Next we will deal with the conclusions to be drawn from the quantization of the
magnetic flux in units of the flux quantum Φ0.
For atoms we are well used to the appearance of discrete states. For example,

the stationary atomic states are distinguished due to a quantum condition for the
angular momentum appearing in multiples of ℏ= h/2π. This quantization of the
angularmomentum is a result of the condition that the quantummechanical wave
function, indicating the probability for finding the electron, be single-valued. If we
move around the atomic nucleus starting from a specific point, the wave function
must reproduce itself exactly if we return to this starting point. Here, the phase
of the wave function can change by an integer multiple of 2π, since this does not
affect the wave function. We can have the same situation also on a macroscopic
scale. Imagine that we have an arbitrary wave propagating without damping in
a ring with radius R. The wave can become stationary, if an integer number n of
wavelengths 𝜆 exactly fits into the ring. Then we have the condition n𝜆= 2πR or
kR= n, using the wave vector k = 2π/𝜆. If this condition is violated, after a few
revolutions the wave disappears due to interference.
Applying these ideas to the Cooper pair matter wave propagating around the

ring3) one obtains [1, 2]:

n ⋅
h
q
= 𝜇0𝜆

2
L∮ jsdr + Φ (1.1.1.1)

Equation (1.1.1.1) represents the so-called fluxoid quantization.The integral has to
be taken along some closed contour inside the superconductor andΦ is magnetic
flux penetrating this contour. The expression on the right-hand side denotes the
“fluxoid.” The quantity

𝜆L =
√

m
𝜇0q2ns

(1.1.1.2)

is the London penetration depth (q: charge; m: particle mass; ns: particle density;
𝜇0: permeability) and js is the super-current density.
In many cases, the super-current density and, hence, the path integral on the

right-hand side of Eq. (1.1.1.1) is negligibly small. This happens in particular if we
deal with a thick-walled superconducting cylinder or with a ring made of a type-I
superconductor. Because of the Meissner–Ochsenfeld effect, the magnetic field
is expelled from the superconductor. The shielding super-currents only flow near
the surface of the superconductor and decay exponentially toward the interior,
as we will discuss further below. We can place the integration path, along which
Eq. (1.1.1.1) must be evaluated, deep into the interior of the ring. In this case, the
integral over the current density is exponentially small, and we obtain in good

3) Themoving wave is connected with the motion of the center of mass of the pairs, which is identical
for all pairs.
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approximation

Φ ≈ n ⋅
h
q

(1.1.1.3)

This is exactly the condition for the quantization of the magnetic flux, and the
experimental observation Φ = n ⋅ (h∕2|e|) = n ⋅Φ0 clearly shows that the super-
conducting charge carriers have the charge |q|= 2e.The sign of the charge carriers
cannot be found from the observation of the flux quantization, since the direction
of theparticle current is not determined in this experiment. Inmany superconduc-
tors, the Cooper pairs are formed by electrons, that is, q=−2e. On the other hand,
in many high-temperature superconductors, we have hole conduction, similar to
that found in p-doped semiconductors. Here we have q=+2e.
From Eq. (1.1.1.1), one can also show [1, 2] that for a solid material which is

superconducting everywhere in its interior only n= 0 is possible.Then one arrives
at

𝜇0𝜆
2
L∮ jsdr = −Φ = −∫F

Bdf (1.1.1.4)

Using Stokes’s theorem, this condition can also be written as

B = −𝜇0𝜆
2
L curl js (1.1.1.5)

Equation (1.1.1.5) is the second London equation. It is one of two fundamental
equations with which the two brothers F. London andH. London in 1935 [18] con-
structed a successful theoretical model of superconductivity. From Eq. (1.1.1.5),
after some math one finds

ΔB = 1
𝜆2L

B (1.1.1.6)

Δ is the Laplace operator, Δf = (∂2f ∕∂x2) + (∂2f ∕∂y2) + (∂2f ∕∂z2), which in Eq.
(1.1.1.6) must be applied to the three components of B.
Equation (1.1.1.6) produces theMeissner–Ochsenfeld effect, as we can see from

a simple example. For this purpose, we consider the surface of a very large super-
conductor, located at the coordinate x= 0 and extended infinitely along the (x,y)-
plane. The superconductor occupies the half-space x> 0 (see Figure 1.1.1.7). An
external magnetic field Ba = (0, 0,Ba) is applied to the superconductor. Owing to
the symmetry of our problem, we can assume that within the superconductor only
the z-component of the magnetic field is different from zero and is only a function
of the x-coordinate. Equation (1.1.1.6) then yields for Bz(x) within the supercon-
ductor, that is, for x> 0:

d2Bz(x)
dx2

= 1
𝜆2L

Bz(x) (1.1.1.7)

This equation has the solution

Bz(x) = Bz(0) ⋅ exp
(
− x
𝜆L

)
(1.1.1.8)
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Figure 1.1.1.7 Decrease of the magnetic field within the superconductor near the planar
surface.

which is shown in Figure 1.1.1.7.Within the length 𝜆L themagnetic field is reduced
by the factor 1/e, and the field vanishes deep inside the superconductor.
We note that Eq. (1.1.1.7) also yields a solution increasing with x: Bz(x) = Bz(0) ⋅

exp(+x∕𝜆L). However, this solution leads to an arbitrarily large magnetic field in
the superconductor and, hence, is not meaningful.
From Eq. (1.1.1.2), we can obtain a rough estimate of the London penetration

depth with the simplifying assumption that one electron per atom with the free-
electron mass me contributes to the super-current. For tin, for example, such an
estimate yields 𝜆L = 26 nm.This value deviates only little from themeasured value,
which at low temperatures falls in the range 25–36 nm. More values for 𝜆L are
listed in Table 1.1.1.1 together with a number of other parameters that will be
introduced in this chapter. All numbers should be taken just as rough guidelines
since they depend strongly on the sample purity. For somematerials, 𝜆L, as well as
the other quantities, depend strongly on the crystal orientation. These materials
are often layered structures.TheLondonpenetration depth can be very largewhen
the magnetic field is applied parallel to the layers.
Only a few nanometer away from its surface the superconducting half-space

is practically free of the magnetic field and displays the ideal diamagnetic state.
The same can be found for samples with a more realistic geometry, for example,
for a superconducting rod, as long as the radii of curvature of the surfaces are
much larger than 𝜆L and the superconductor is also much thicker than 𝜆L. Then
on a length scale of 𝜆L, the superconductor closely resembles a superconducting
half-space. Of course, for an exact solution Eq. (1.1.1.6) must be solved.
The London penetration depth depends upon temperature. From Eq. (1.1.1.2)

we see that 𝜆L is proportional to 1∕n1∕2
s . We can assume that the number of

electrons combined to Cooper pairs decreases with increasing temperature and
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Table 1.1.1.1 Critical temperature and zero temperature values of the energy gap, the
coherence length, and the upper critical field. Numbers vary strongly in the literature and
thus should be taken as a rough guide only. For Pb and Nb, the critical field rather than
Bc2 is quoted. (ab) and (c), respectively refer to in-plane and out-of-plane properties; “max.”
indicates the maximum energy gap.

Material Tc (K) 𝚫 (meV) 𝝃GL (nm) 𝝀L (nm) Bc, Bc2 (T)

Pb 7.2 1.38 51–83 32–39 0.08 (Bc)
Nb 9.2 1.45 40 32–44 0.2 (Bc)
NbN 13–16 2.4–3.2 4 250 16
Nb3Sn 18 3.3 4 80 24
Nb3Ge 23.2 3.9–4.2 3–4 80 38
NbTi 9.6 1.1–1.4 4 60 16
YBa2Cu3O7 92 15–25

(max., ab)
1.6 (ab)
0.3 (c)

150 (ab)
800 (c)

240 (ab)
110 (c)

Bi2Sr2CaCu2O8 94 15–25
(max., ab)

2 (ab)
0.1 (c)

200–300 (ab)
>15 000 (c)

>60 (ab)
>250 (c)

Bi2Sr2Ca2Cu3O10 110 25–35
(max., ab)

2.9 (ab)
0.1 (c)

150 (ab)
>1000 (c)

40 (ab)
>250 (c)

MgB2 40 1.8–7.5 10 (ab)
2 (c)

110 (ab)
280 (c)

15–20 (ab)
3 (c)

Ba0.6K0.4Fe2As3 38 4–12 1.5 (ab)
c> 5 (c)

190 (ab)
0.9 (c)

70–235 (ab)
100–140 (c)

NdO0.82F0.18FeAs 50 37 3.7 (ab)
0.9 (c)

190 (ab)c
>6000 (c)

62–70 (ab)
300 (c)

vanishes at Tc. Above the transition temperature, no stable Cooper pairs should
exist anymore.4) Hence, we expect that 𝜆L increases with increasing temperature
and diverges at Tc. Correspondingly, the magnetic field penetrates further and
further into the superconductor until it homogeneously fills the sample above the
transition temperature.
How can one measure the London penetration depth? In principle, one

must determine the influence of the thin shielding layer upon the diamagnetic
behavior. This has been done using several different methods. For example, one
can measure the magnetization of plates which are thinner and thinner [19]. As
long as the thickness of the plate is much larger than the penetration depth, one
will observe nearly ideal diamagnetic behavior. However, this behavior becomes
weaker, if the plate thickness approaches the range of 𝜆L. Another method uses
spin-polarized muons, which, by varying their kinetic energy, are implanted in
different depths from the surface. The spin of the muon precesses in the local
magnetic field and, by measuring the electron that are emitted upon its decay,
it is possible to determine the precession frequency and thus the local magnetic
field [20]. For determining the temperature dependence of 𝜆L, only relative

4) Here we neglect thermal fluctuations by which Cooper pairs can be generated momentarily also
above Tc.
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measurements are needed. One can determine the resonance frequency of a
cavity fabricated from a superconducting material. The resonance frequency
sensitively depends on the geometry. If the penetration depth varies with the
temperature, this is equivalent to a variation of the geometry of the cavity and,
hence, of the resonance frequency, yielding the change of 𝜆L [21].
A strong interest in the exact measurement of the penetration depth, say, as a

function of temperature, magnetic field, or the frequency of the microwaves for
excitation, arises because of its dependence upon the density of the superconduct-
ing charge carriers. It yields important information on the superconducting state
and can serve as a sensor for studying superconductors.
What causes the difference between type-I and type-II superconductivity and

the generation of vortices? From the assumption of a continuous superconduc-
tor, we have obtained the second London equation and the ideal diamagnetism.
In type-I superconductors, this state is established, as long as the applied mag-
netic field does not exceed a critical value. At higher fields, superconductivity
breaks down. For a discussion of the critical magnetic field, we must treat the
energy of a superconductor more accurately. This is done in the framework of the
Ginzburg–Landau theory. Here, one can see that it is the competition between
two energies, the energy gain from the condensation of the Cooper pairs and
the energy loss due to the magnetic field expulsion, which causes the transition
between the superconducting and the normal-conducting state.
At small magnetic fields, theMeissner phase is also established in type-II super-

conductors. However, at the lower critical field, vortices appear within the mate-
rial. Turning again to Eq. (1.1.1.1), we see that the separation of the magnetic flux
into units5) of±1Φ0 corresponds to states with the quantum number n=±1. Here,
the superconductor cannot display continuous superconductivity anymore, for
which case n= 0 was the only possibility. Instead, we must assume that the vortex
axis is not superconducting, similar to the ring geometry.
A more accurate treatment of the vortex structure based on the Ginzburg–

Landau theory shows that the magnetic field decreases nearly exponentially with
the distance from the vortex axis on the length scale 𝜆L. Hence, we can say that
the flux line has a magnetic radius of 𝜆L.
Second, on a length scale 𝜉GL, theGinzburg–Landau coherence length, the den-

sity ns of the Cooper pairs vanishes as one approaches the vortex axis. Depending
on the superconducting material, this length ranges between 0.1 nm and a few
hundred nanometers; see also Table 1.1.1.1. Similar to the London penetration
depth, it is temperature dependent, in particular close toTc.We alsomention here
that there is also a coherence length associated with the distance over which the
two electrons forming the Copper pairs are correlated. This is the BCS coherence
length 𝜉0 = ℏvF∕kBTc, where vF is the Fermi velocity.
Whydoes each vortex carry exactly one flux quantumΦ0?Againwemust look at

the energy of a superconductor. Essentially, we find that in a type-II superconduc-
tor it is energetically favorable if it generates an interface superconductor/normal

5) The sign must be chosen according to the direction of the magnetic field.
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conductor above the lower critical magnetic field. Therefore, as many of these
interfaces as possible are generated. This is achieved by choosing the smallest
quantum state with n=±1, since in this case the maximum number of vortices
and the largest interface area near the vortex axis is established.
Now we can estimate the lower critical field Bc1. Each flux line carries a flux

quantum Φ0, and at least one needs a magnetic field Bc1 ≈Φ0/(cross-sectional
area of the flux line)≈Φ0/(π𝜆2L) for generating this amount of flux. With a value
of 𝜆L = 100 nm one finds Bc1 ≈ 65mT. From the Ginzburg–Landau theory, one
obtains an expression which differs from our simple estimate by a factor of
(ln𝜅 + 0.08)/4, with 𝜅 = 𝜆L/𝜉GL. This factor is on the order of unity for not too
small values of 𝜅.
For increasing magnetic field, the flux lines are packed closer and closer to

each other, until near Bc2 their distance is about equal to the Ginzburg–Landau
coherence length 𝜉GL. For a simple estimate of Bc2, we assume a cylindrical
normal-conducting vortex core. Then superconductivity is expected to vanish, if
the distance between the flux quanta becomes equal to the core diameter, that is,
at Bc2 ≈Φ0/(π𝜉2GL). An exact theory yields a value smaller by a factor of 2. In fact,
often one uses the corresponding relation for determining 𝜉GL. We further note
that, depending on the value of 𝜉GL, Bc2 can become very large. With the value
𝜉GL = 2 nm, one obtains a field larger than 80T. Such high values of the upper
critical magnetic field are reached or even exceeded in the high-temperature
superconductors.
Table 1.1.1.1 lists Bc2 for several superconductors. In the table, we have also

listed the critical field of Nb and Pb. Pure single crystals of these materials are
type-I superconductors. It should be noted, however, that in most practical cases,
due to a reduced mean free path, the electrons can travel without scattering, the
coherence length is smaller, and 𝜆L is larger, making these materials type-II.
At the end of this section, we wish to ask how the permanent current and zero

resistance, the key phenomena of superconductivity, can be explained in terms of
the macroscopic wave function. From the second London equation (1.1.1.5), with
the use Maxwell’s equations one obtains

E = 𝜇0𝜆
2
L j̇s (1.1.1.9)

This is the first London equation. For a temporally constant super-current, the
right-hand side of Eq. (1.1.1.9) is zero. Hence, we obtain current flow without an
electric field and zero resistance.
Note that the relation E ∝ j̇s is similar to that of an inductor, UL ∝ İL. We can

thus understand one of the reasonswhy an alternating current will produce a finite
resistance. At nonzero temperatures, a part of the electrons in the superconductor
is unpaired (quasiparticles). In the presence of an alternating electric field, both
quasiparticles and Cooper pairs are accelerated and a nonzero resistance appears
which grows with increasing frequency.
Equation (1.1.1.9) also indicates that in the presence of a DC electric field, the

super-current density continues to increase with time. For a superconductor this
seems reasonable, since the superconducting charge carriers are acceleratedmore
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and more due to the electric field. On the other hand, the super-current density
cannot increase up to infinity.Therefore, additional energy arguments are needed
for finding themaximum super-current density which can be reached.This can be
treated in the framework of the Ginzburg–Landau theory and yields the so-called
pair-breaking critical current density.
We could have derived the first London equation also from classical arguments,

if we note that for current flow without resistance the superconducting charge
carriers cannot experience (inelastic) collision processes. Then, in the presence
of an electric field, we have the force equation mv̇ = qE. We use js = qnsv and
find E = (m∕q2ns)j̇s. The latter equation can be turned into Eq. (1.1.1.9) using the
definition (1.1.1.2) of the London penetration depth.
Finally, we brieflymention here that thewell-defined phase of the superconduct-

ing matter wave is responsible for interference effects as they appear in Joseph-
son junctions and in superconducting quantum interference devices (SQUIDs).
It turns out that, in a Josephson junction, a sandwich consisting of two super-
conducting electrodes separated by a very thin barrier, there is a super-current
across the barrier which varies sinusoidally with the difference 𝛿 of the phases of
the matter wave of the two electrodes. If there is a voltage drop U across the bar-
rier this phase differences increases in time, with the time derivative of 𝛿 given
by �̇� = 2πU∕Φ0. In SQUIDs two Josephson junctions are integrated in a super-
conducting loop. Here, the maximum super-current that can be sent across the
two junctions varies sinusoidally with the magnetic flux threading the loop. The
modulation period is given by the flux quantum. Details will be given in the cor-
responding chapters.

1.1.1.4 Critical Currents

Wehave alreadymentioned that a superconductor can carry only a limited electric
current without resistance. The existence of a critical current is highly impor-
tant for technical applications of superconductivity. In type-II superconductors,
we have materials which can remain still superconducting also for technically
interesting magnetic fields. However, for applications it is also important that
these superconductors still can transport sufficiently high electric currents with-
out resistance also in high magnetic fields. As we will see, here we are confronted
with a problem, which has been solved only with the so-called hard superconduc-
tors.
Before we turn to the special features in type-I and type-II superconductors, we

want to briefly look at the magnitude of the critical super-current density in the
ideal case of a thin and homogeneous superconducting wire. This pair-breaking
critical current density jcp, which can be reached undermost favorable conditions,
can be treated within the Ginzburg–Landau theory. We consider a homogeneous
superconducting wire having a diameter which is smaller than the London pene-
tration depth 𝜆L and the Ginzburg–Landau coherence length 𝜉GL. We find

jcp =
2
3

√
2
3

Bcth ⋅
1

𝜇0𝜆L
(1.1.1.10)
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Bcth is the so-called thermodynamical critical field which for a type-I supercon-
ductor under certain conditions equals the critical field Bc. For a type-II super-
conductor, it can be related to the upper critical field via Bcth = Bc2∕

√
2𝜅, with

the Ginzburg–Landau parameter 𝜅 = 𝜆L∕𝜉GL.
If for Bcth we take a value of 1T and for 𝜆L a value of 100 nm, we obtain for jcp a

value of about 4.3⋅108 A cm−2.
With respect to type-I superconductors, we consider a wire with circular cross-

section carrying a current I. The wire is assumed much thicker than the London
penetration depth. At sufficiently small currents, the superconductingwire resides
in the Meissner phase. In this phase, the interior of the superconductor must
remain free of magnetic flux. However, this also means that the interior cannot
carry an electric current, since otherwise the magnetic field of the current would
exist. From this, we conclude that also the current passing through a supercon-
ductor is restricted to the thin surface layer, into which the magnetic field can
penetrate in the Meissner phase. The external currents applied to a supercon-
ductor are referred to as transport currents, in contrast to the shielding currents
appearing in the superconductor as circulating currents.The total current is given
by the integral of the current density over the cross-sectional area.
Already in 1916, Silsbee [22] proposed the hypothesis, that in the case of “thick”

superconductors, that is, for superconductors with a fully developed shielding
layer, the critical current is reached exactly, when themagnetic field of the current
at the surface attains the value Bcth.This hypothesis has been confirmed perfectly.
In otherwords, itmeans that themagnetic field and the current density at a surface
with a well-developed shielding layer are strongly correlated. The critical value of
the current density is associated with a certain critical field, namely Bcth, where it
is completely irrelevant, if the current density is due to shielding currents or to a
transport current.
Because of the validity of the Silsbee hypothesis, it is very simple to calculate the

critical currents of wires with circular cross-section from the critical fields. The
magnetic field at the surface of such a wire carrying the current I is given by

B0 = 𝜇0
I

2πR
(1.1.1.11)

where B0 is the field at the surface, I is the transport current, R is the wire radius,
and 𝜇0 = 4π⋅10−7 V s (Am)−1.
The only requirement is cylinder symmetry of the current distribution.

The radial dependence of the current density is arbitrary. According to Eq.
(1.1.1.11), the critical field of about 30mT at 0K – the value for the critical field
of tin – corresponds to a critical current Ic0 = 75A.This critical current increases
only proportionally to the wire radius, since the total current only flows within
the thin shielding layer.
We can also find an average critical current density at the surface. In this case, we

replace the exponentially decaying current density by a distribution, in which the
full current density at the surface remains constant to a depth 𝜆L, the penetration
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depth, and then abruptly drops to zero.6) Based on this argument, for the tin wire
at 0K, we obtain a critical current density

jc0 =
Ic0

2πR𝜆L(0)
= 7.9 ⋅ 107 Acm−2 (1.1.1.12)

where R= 0.5mm, 𝜆L(0)= 3⋅10−6 cm, Ic0 = 75A.
This critical current density is similar to the critical pair-breaking current den-

sity of a thin wire of Sn. It would allow very high transport currents, if the shield-
ing effect, leading to the restriction of the current to a thin surface layer, can be
avoided. Such substances have been developed in form of the hard superconduc-
tors.
Using Silsbee’s hypothesis, we can also calculate the critical currents of a super-

conductor in an external magnetic field. One only has to add the vectors of the
external field and of the field of the transport current at the surface. The critical
current density is reached, when this resulting field attains the critical value.
Next we turn to the type-II superconductors which differ in an important fun-

damental point from the type-I superconductors. For small magnetic fields and,
hence, also for small transport currents, the type-II superconductors reside in the
Meissner phase. In this phase, they behave like type-I superconductors, that is,
they expel the magnetic field and the current into a thin surface layer. A difference
to the type-I superconductors first appears when the magnetic field at the surface
exceeds the value Bc1.Then the type-II superconductor must enter the Shubnikov
phase, that is, flux lines must penetrate into the superconductor.
One finds that in the Shubnikov phase, an “ideal,” that is, perfectly homoge-

neous, type-II superconductor has a finite electric resistance already at very small
transport currents. On the other hand, in type-II superconductors containing a
large amount of defects, we can observe very large super-currents. These are the
“hard superconductors.”
With respect to an ideal type-II superconductor, we consider a rectangular plate,

carrying a current parallel to the plane of the plate and kept in the Shubnikov phase
due to amagnetic fieldBa >Bc1 oriented perpendicular to the plate (Figure 1.1.1.8).
As the first important result of such an experiment, one finds that under these

conditions the transport current I is distributed over the total cross-section of
the plate, that is, it is not completely restricted anymore to a thin surface layer.
After the penetration of the magnetic flux into the superconducting sample, the
transport current can flow also within the interior of the superconductor. The
transport current, say, along the x-direction, also passes through the vortices, that
is, through regions, where a magnetic field is present. This causes a Lorentz force
between the vortices and the current. In the case of a current along awire of length
L in a perpendicular magnetic field Ba, the absolute magnitude of this force is
F = I ⋅ L ⋅ B. It is oriented perpendicular to B and to the current (here given by the
wire axis). Since the transport current is spatially fixed by the boundaries of the

6) Since the penetration depth is only a few 10–6 cm, for macroscopic wires we always have R≫𝜆L.
Therefore, for our considerations, the surface of the wire can be treated as a plane.
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Figure 1.1.1.8 Shubnikov phase in the presence of a transport-current density j. The flux
lines experience a force F driving them along the y-direction. The magnetic-field distribution
around the flux lines is indicated by the hatching.

plate, under the influence of the Lorentz force the vortices must move perpendic-
ular to the current direction and to the magnetic field, that is, perpendicular to
their own axis [23]. For ideal type-II superconductors, in which the free motion
of the vortices is possible, this vortex motion should appear already at arbitrarily
small forces and, hence, at arbitrarily small transport currents. However, the vor-
tex motion across the superconductor causes dissipation, that is, electric energy
is changed into heat. This energy can only be taken from the transport current by
means of an electric voltage appearing along the sample. Hence, the sample shows
electric resistance.
Therefore, ideal type-II superconductors are useless for technical applications,

say, for building magnets, in spite of their high critical field Bc2. Finite critical cur-
rents in the Shubnikov phase can only be obtained if the vortices in some way are
bound to their locations.
Such pinning of the vortices can indeed be achieved by incorporating suitable

“pinning centers” into the material. In the simplest way, we can understand the
effect of pinning centers by means of an energy consideration. The formation of
a vortex requires a certain amount of energy. This energy is contained, say, in the
circulating currents flowing around the vortex core.We see that, for the given con-
ditions, a vortex is associated with a certain amount of energy per unit length, that
is, the longer the flux line the larger is also the energy needed for its generation.
We denote this energy by 𝜀*. It can be estimated from the lower critical field Bc1,
above which magnetic flux starts to penetrate into a type-II superconductor. The
resulting gain in expulsion energy suffices for generating the vortices in the inte-
rior. For simplicity, we consider again a long cylinder in a magnetic field parallel
to its axis, that is, a geometry with zero demagnetization coefficient. At Bc1, the
penetration of the magnetic flux results in n flux lines per unit area. Each flux line
carries just one flux quantum Φ0. This requires the energy

ΔEF = n ⋅ 𝜀∗ ⋅ L ⋅ F (1.1.1.13)

where n is the number of flux lines per unit area, 𝜀* is the energy per unit length
of vortex, L is the sample length, and F is the sample cross-section.
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The gain in magnetic expulsion energy is

ΔEM = Bc1 ⋅ ΔM ⋅ V (1.1.1.14)

where ΔM is the change of the magnetization of the sample and V = L⋅F , is the
sample volume.
ΔM can be expressed in terms of the penetrated flux quanta. We have

ΔM =
n ⋅Φ0
𝜇0

(1.1.1.15)

This yields for the gain in expulsion energy

ΔEM = 1
𝜇0

Bc1 ⋅ n ⋅Φ0L ⋅ F (1.1.1.16)

If both energy changes are being set equal (ΔEF =ΔEM), from the definition of Bc1
we obtain

n ⋅ 𝜀∗ ⋅ L ⋅ F = 1
𝜇0

⋅ Bc1 ⋅ n ⋅Φ0 ⋅ L ⋅ F (1.1.1.17)

and hence

𝜀∗ = 1
𝜇0

⋅ Bc1 ⋅Φ0 (1.1.1.18)

From our knowledge of the vortex energy 𝜀*, we can easily understand the pinning
effect of normal precipitates. If a vortex can pass through a normal-conducting
inclusion, its length within the superconducting phase and thereby its energy are

(a)

l

(b)

Figure 1.1.1.9 Pinning effect of normal-conducting precipitates. In location (a), the effec-
tive length of the vortex is shorter compared to location (b), since in the normal-conducting
region there are no circulating currents.
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reduced. In Figure 1.1.1.9, this is schematically indicated. The hatched region
indicates the normal inclusion. A vortex in location (a) has an energy smaller by
the amount 𝜀*⋅l compared to one in location (b). This means that we must supply
the energy 𝜀*⋅l to the vortex, in order to move it from (a) to (b). Hence, a force is
needed to effect this change in location.
If there are many pinning centers, the vortices will attempt to occupy the

energetically most favorable locations. As shown in Figure 1.1.1.10, they will
also bend in order to reach the minimum value of the total energy. The length
increment caused by the bending must be overcompensated by the effective
shortening within the normal-conducting regions. In a vortex lattice, as it is
generated in the Shubnikov phase, in the total energy balance we must take into
account also the repulsive forces acting between the flux lines.
In principle, also other pinning centers, say, lattice defects, can be understood

in the same way. Every inhomogeneity of the material, which is less favorable for
superconductivity, acts as a pinning center, with the completely normal state rep-
resenting the limiting case. For example, superconducting precipitates, however,
with a lower transition temperature in general act as pinning centers. We will not

Figure 1.1.1.10 Vortex configuration in a hard superconductor. The hatched regions repre-
sent pinning centers. The dots indicate atomic defects.
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go into details but mention details can be very complicated. It is still a high art to
obtain superconductors which sustain a large transport current.
The effect of the pinning centers can also be described in terms of an energy

landscape. Now the pinning center represents a potential well of depth Ep. The
vortex is located at its most favorable position, similar to a ball at the lowest point
of a bowl. If the ball is to be displaced from this location, one needs a force in
order to supply the increase of the potential energy. For removing the ball from its
most favorable location, wemust supply the energy needed to lift the ball out of the
bowl. Usually, in amaterial there exist many pinning centers, which are irregularly
distributed and which have different energy depths Ep. If the superconductor is
cooled below Tc in a magnetic field, the vortices will quickly occupy the potential
wells, instead of generating a regular triangular lattice. At best, we have a distorted
lattice, or in the extreme case even a glassy state [24].
The deviation of an individual vortex from its ideal location within the triangu-

lar vortex lattice depends not only on the depth of the potential wells but also
on the configuration of all other vortices, because of the repulsive interaction
between them. An energetically highly unfavorable arrangement of the vortices
will be changed quickly because of the thermal fluctuations. These fluctuations
can provide the energy differenceΔE, needed for leaving the potential well, with a
probability w= exp(−ΔE/kBT). In this case, the thermodynamic fluctuations can
reduce the depth of the potential well, or they can supply the missing energy to
the vortex. At low temperatures and for large values of ΔE, this probability can
become very small, such that the state with the lowest energy cannot be occupied
anymore. Furthermore, because of the interaction between the vortices, ΔE can
approach infinity. In this case, we deal with the state of the vortex glass, which
experiences no changes anymore within finite times.
Next, we want to discuss the effect of the pinning centers during the current

transport in superconducting wires or thin films.We have seen that an ideal type-
II superconductor in the Shubnikov phase cannot carry a current perpendicular to
the direction of the magnetic field without dissipation. However, in a real super-
conductor, the vortices are never completely freely mobile. There is always a per-
haps very small force necessary in order to tear the vortices off the pinning centers
which are practically always present. The strength of the pinning forces acting on
the individual vortices will have a certain distribution about an average value FH.
Also, the whole vortex lattice will affect the pinning forces due to collective effects.
However, for simplicity, we will only speak of a single pinning force FH.
As long as the Lorentz force FL is smaller than the pinning force FH, the vor-

tices cannot move. Therefore, also in every real type-II superconductor in the
Shubnikov phase, we will be able to observe current flow without dissipation.
If the transport current exceeds its critical value at which FL = FH, the vortex
motion sets in, and electric resistance appears.7) We see that the critical current

7) If the pinning forces acting on the individual vortices are different, initially the most weakly pinned
vortices will start moving, resulting in only a relatively small resistance. With increasing current,
their number and, hence, the sample resistance will approach a certain limiting value.
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is a measure of the force FH, with which the vortices are pinned at energetically
favored locations.
By means of a systematic study of the hard superconductors, one has been able

to develop empirically quite useful materials.
To return to the effect of levitation – applications of this effect are discussed in

Sections 4.1 and 4.2 – let us now consider a hard superconductor which is cooled
in the field of a permanent magnet. We assume that this field is well above Bc1.
Quite in contrast to a standard permanent magnet, but also in contrast to an

ideal type-I or type-II superconductor, the hard superconductor will try to keep
the field in its interior at the value, at which it was cooled down. After they are
pinned, the flux lines do not move anymore as long as the maximum pinning
force of the pinning centers is not exceeded. If a hard superconductor is cooled
down within a certain distance above a permanent magnet, an attractive force is
active, if the superconductor is moved away from the magnet. In the same way, a
repulsive force is active, if the superconductor is moved closer to the permanent
magnet.The same applies in the case of any arbitrary directions of the movement.
As soon as the external field changes, the hard superconductor generates shield-
ing currents in such a way, that the field (or the vortex lattice) remains unchanged
in its interior. Therefore, a hard superconductor, including a loading weight, can
not only float above a magnet but also hang freely below a magnet, or placed at
an arbitrary angle. This effect is demonstrated in Figure 1.1.1.11 [25]. In this case,
properly prepared little blocks of YBa2Cu3O7 weremountedwithin a toy train, and
the blocks were cooled downwithin a certain working distance from themagnets,
forming the “train tracks.” The train can move along the track practically without
friction, since the magnetic field keeps its value along this direction.
When, say in a magnet, the magnetic field is swept between two large values

±Bmax, vortices are forced to enter and leave the superconductor once the

Figure 1.1.1.11 Hanging toy train [25]. (Institut für Festkörper- und Werkstoffforschung,
Dresden. From [1].)
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Figure 1.1.1.12 Complete magnetization cycle of a Pb–Bi alloy [26]. The jumps on the
solid curve are due to jumps of magnetic flux lines. The dashed curve is expected if there
were no such jumps (1 kG= 0.1 T). (From [1].)

pinning force is surpassed. This leads to a hysteresis in the magnetization of the
superconductor, see Figure 1.1.1.12. Accompanied with this are, for example,
hysteresis losses for alternating magnetic fields.
We want to conclude our discussion of the critical currents in superconductors

with a few general remarks. We have seen that the mechanism of pair-breaking
results in an intrinsic maximum super-current density. However, in the cases
which are technically relevant, the critical current of a superconductor is deter-
mined by extrinsic properties. On the one hand, the latter properties in the form
of pinning centers in the Shubnikov phase only allow a finite super-current,
and on the other hand, for example, in the form of grain boundaries in high-
temperature superconductors, represent weak regions in the material strongly
reducing the maximum super-current. The question, if a new material, say, the
iron pnictides, finds interesting technical applications depends on the concrete
problems and often can be answered only after a long development period.
In summary, in this chapter, we have seen that the main ingredient of the super-

conducting state is that electron pairs (Cooper pairs) form a macroscopic matter
wave. For conventional superconductors, as described by the BCS theory, the elec-
trons interact via phonons. There are also unconventional superconductors like
the cuprates where the pairing mechanism is not yet clear.The well-defined phase
of the matter wave leads us to the ideal diamagnetism at not too large fields and to
the vortex state in type-II superconductors. Interference effects of coupled matter
waves are the basis of the physics of Josephson junctions and of SQUIDs.We have
further introduced important length scales like the London penetration depth
𝜆L (the scale over which magnetic fields decay inside the superconductor), the
Ginzburg–Landau coherence length 𝜉GL (the scale over which the amplitude of
the matter wave and thus the Cooper pair density varies), and the BCS coherence
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length 𝜉0 (the scale over which the two partners of a Cooper pair are correlated).
We alsomentioned that unpaired electrons are separated by an energy gapΔ from
a Cooper pair and we have seen that there is a maximum field, as well as a maxi-
mum current a superconductor can carry.
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1.1.2
Review on Superconducting Materials

Roland Hott, Reinhold Kleiner, Thomas Wolf, and Gertrud Zwicknagl

1.1.2.1 Introduction
The discovery of superconductivity was the result of straightforward research to
see how low one can go concerning the electrical resistance of metals: studies on
alloys and temperature-dependent measurements had evidenced that it could be
decreased by reducing the density of impure atoms as well as by lowering temper-
ature. Mercury offered the best low-impurity perspectives – Kamerlingh Onnes
had built up in Leiden a unique cryogenic facility: the jump to apparently zero
resistivity that he observed here in 1911 below 4K came nevertheless as a big sur-
prise [1].He soon extended the list of superconducting (SC)materials by tin (3.7 K)
and lead (7.2 K), and his Leiden successors found thallium (2.4 K) and indium
(3.4K) [2]. Meißner successfully continued the search through the periodic table
until 1930 with tantalum (4.2 K), thorium (1.4 K), titanium (0.4 K), vanadium (5.3
K), and niobium, the element with the highest critical temperature, Tc = 9.2 K [3]
(Figure 1.1.2.1).The extension to binary alloys and compounds in 1928 by de Haas
andVoogdwas fruitful with SbSn, Sb2Sn, Cu3Sn, andBi5Tl3 [4]. Bi5Tl3 and, shortly
afterwards, a Pb–Bi eutectic alloy established first examples of critical magnetic
field values Bc2 in the tesla range, which revived hope for high-field persistent cur-
rent SC electromagnets as already envisioned by Kamerlingh Onnes.
After 1930, SC materials research fell more or less asleep until Matthias and

Hulm started in the early 1950s a huge systematic searchwhich delivered a number
of new compounds withTc > 10K as well as technically attractiveBc2 > 10T: NbTi
(Tc = 9.2 K) and the A15 materials were the most prominent examples. Matthias

H

Na

K

Rb

Fr Ra Ac Rf

Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

CmPu Bk Cf Es Fm Md No Lr

Db Sg Bh Hs Mt

Pd

Pt

Ag

NiCoMnCr Cu

Au Po At Rn

Xe

Kr

Ar

Ne

Cl

FN

He

Mg

?

Li

Ca

Be
20 Tc (K)

15

0.026

Ti
0.4

V
5.3

Zr
0.6

Nb
9.2

Hf
0.13

La
5.9

Th
1.4

Pa
1.4

U
0.2

Np
0.075

Am
0.8

Ta
4.4

Mo
0.92

W
0.01

Tc
7.8

Re
1.7

Ru
0.5

Os
0.65

Rh
.0003

Ir
0.14

Zn
0.9

Cd
0.55

Hg
4.15

Ga
1.1

Al
1.19

In
3.4

Tl
2.39

Sn
3.72

Pb
7.2

50 GPa applied pressure

150 GPa

Sc

Element

0.3
21 GPa

Fe
2

21 GPa

B
11

250 GPa

O
0.6

120 GPa

Si
8.5

12 GPa

P
6

17 GPa

S
17

160 GPa

Ge
5.4

11.5 GPa

As
2.7

24 GPa

Se
7

13 GPa

Br
1.4

150 GPa

Sb
3.6

8.5 GPa

Bi
8.5

9 GPa

Te
7.4

35 GPa

I
1.2

25 GPa

C
4

B-doped

Sr
4

50 GPa

Ba
5

15 GPa

Cs
1.5

5 GPa

Ce
1.7

5 GPa

Lu
1.1

18 GPa

Y
2.8

15 GPa

S s-d s-p

s-f

Figure 1.1.2.1 Periodic table with the distribution and Tc [K] of the chemical elements for
which superconductivity has been observed with or without application of pressure [1, 5, 6].
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condensed his huge practical knowledge fromhis heroic preparation of some 3000
different alloys into “rules” on how to prepare “good” superconductors: high crys-
tal symmetry, high density of electronic states at the Fermi level, no oxygen, no
magnetism, no insulators! [7].
In spite of his inofficial sixth rule “Stay away from theorists!” in 1957 the

Bardeen–Cooper–Schrieffer (BCS) theory [8] brought the desperately awaited
breakthrough of theoretical solid state physics to a microscopic explanation
of superconductivity. The key idea of BCS theory is that in metals even a tiny
attractive interaction between the conduction electrons results in the formation
of bound electron pair states (“Cooper pairs”) which are no longer obliged to obey
the Fermi–Dirac statistics which enforced the electrons to occupy high kinetic
energy single particle states due to the Pauli principle. The energy gain of the
SC state with respect to the normal state does not result from the small binding
energy of the pairs, but it is the condensation energy of the pairs merging into a
macroscopic quantum state which can be measured as an energy gap for electron
excitations into single particle states. Although the BCS theory was derived from
the physical idea of attractive electron–phonon coupling, the model-based weak
pair coupling theory as its mathematical kernel is well applicable to other pairing
mechanisms. BCS theory had an impact not only on solid-state physics but
also on elementary particle physics where it was further developed to the Higgs
mechanism of mass generation [9].
In 1979, in violation of another Matthias rule, superconductivity was discov-

ered in themagneticmaterial CeCu2Si2 as the first representative ofheavy-fermion
(HF) superconductors [10] where magnetism is suspected as mechanism respon-
sible for the Cooper pairing: in these intermetallic compounds, the electronic
degrees of freedomwhich are responsible for superconductivity are directly linked
with magnetic moments of partially filled f-shells of lanthanide or actinide atoms.
The superconductivity below a typical Tc ∼ 1K seems to arise here from the deli-
cate balance between the localized magnetic moments which try to imprint their
magnetic signature on the shielding conduction electrons, and the conduction
electrons which try to neutralize these magnetic moments by spin flipping, for
example, via Kondo effect [11].
The search for organic superconductors had been boosted in the 1960s by the

idea that conductive polymer chains with polarizable molecular groups may pro-
vide for electrons running along the polymer chains a highly effective Cooper
pair coupling by means of an energy exchange via localized excitons [12]. Since
the first discovery of an organic superconductor in 1980 [13] Tc > 10K has been
achieved [14]. However, the origin of superconductivity has turned out to be far
from the suggested excitonic mechanism. Electric conduction stems here from π-
electrons in stacked aromatic rings forming one-dimensional or two-dimensional
(2D) delocalized electron systems. This restriction of the effective dimensionality
and strong Coulomb repulsion effects push the systems toward metal-insulator,
magnetic, and SC transitions [15].
The Mermin–Wagner theorem [16] that long-range order cannot exist in two

dimensions at finite temperature due to strong fluctuations seemed to restrict
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superconductivity to the physical dimension d = 3. The cuprate high-temperature
superconductors (HTS) [17] proved in 1986 that the limiting case d = 2+ 𝜀 (𝜀→ 0),
that is, basically 2DCuO layer-oriented superconductivity with slight SC coupling
to neighboring CuO layers, can even be enormously beneficial for SC long-range
order [18]. The problem for a theoretical description of cuprate HTS within BCS
theory and its extensions [19] is not the high Tc of up to 138K under normal
pressure [20], far above the pre-HTS record of 23K [21]. There is no theoretical
argument why a textbook phonon BCS superconductor should not achieve such
a high Tc: in the McMillan–Rowell formula [22], the commonly used theoretical
Tc approximation, Tc, depends in a very sensitive way on the involved material
parameters. The HTS Tc range is readily accessible with a still reasonable param-
eter choice [23]. The real problem is that, in contrast to the “deep” Fermi sea of
quasi-free electrons in classical metals where the Cooper-pair condensed elec-
trons amount only to a small part of the valence electron system (kBTc ≪ EFermi),
in these layered cuprate compounds there is only a “shallow” reservoir of charge
carriers (kBTc ∼EFermi) which first have to be introduced in the insulating anti-
ferromagnetic (AF) stoichiometric parent compound by appropriate doping. The
thus generated normal-conducting state corresponds to a “bad metal” in which
Coulomb correlations strongly link the charge and spin degrees of freedom. The
BCS recipe to express the SC wavefunction in terms of the normal-metal single
particle states does not work here anymore since the macroscopic many-particle
wavefunction is thoroughly changing in the superconductive transition: additional
electronic degrees of freedomcome into playwhich had not been accessible before
in the normal-conducting state. This transition process still lacks a satisfactory
theoretical description [24, 25]. Nevertheless, the SC instability in cuprate HTS,
as well as in the structurally and chemically related layered cobaltate and ruthen-
ate compounds, is believed to stem predominantly from a magnetic and not from
a phononic interaction as in the case of the classical metallic superconductors
where magnetism plays only the role of an alternative, intrinsically antagonistic
long-range order instability.

Fullerides (C60, C70, … ) discovered in 1985 are a third modification of elemen-
tary carbon. The superconductivity in C60 induced by doping and intercalation
of alkali-metal atoms, with Tc values up to 33K at normal pressure [26], followed
soon as another surprise. In spite of the high Tc, superconductivity can be
explained by BCS theory based on intramolecular phonons [27]. Borides were
investigated with respect to high-Tc superconductivity already in the 1950s:
the rationale was the BCS Tc-formula [22] where a high characteristic phonon
frequency, as provided by the light boron atoms, was predicted to be particularly
helpful. In the 1990s, the borocarbide superconductors RE Ni2B2C with Tc up
to 16.5 K [28] fulfilled this promise at least halfway. However, phonons are here
apparently only one of the contributing superconductivity mechanisms: addi-
tional magnetism due to localized RE3+ 4f-electrons is here weakly interacting
with the SC 3d-electrons of the Ni2B2 layers.The huge surprise came in 2001 with
the discovery of superconductivity up to Tc = 40K in MgB2, a compound which
was well known since the 1950s and which was in 2001 already commercially
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available in quantities up to metric tons [29]. In spite of the high Tc, a phononic
mechanism is here highly plausible. As a new feature, multiband superconductiv-
ity, that is, the coherent coupling of the Cooper-pair instabilities of several Fermi
surfaces [30], is essential for the theoretical description of the SC properties
[31]. This multiband mechanism plays an even more dominant role in iron-based
superconductors [32] where the scattering between the Fermi surfaces of up to five
Fe-derived electronic bands is apparently the origin of a complicated magnetic
superconductive coupling mechanism [33]. Tc = 26K observed for LaFeAsO in
2008 [34] started a “gold rush” where Tc was immediately pushed up to 55K [35].
The Matthias rules paradigm has thus changed completely: layered materials

with strong electronic correlations – that is where you can expect new high-Tc
superconductors!

1.1.2.2 Cuprate High-Temperature Superconductors
Cuprate HTS have played an outstanding role in the scientific and technological
development of superconductors due to the enormous efforts made to cope with
the challenges due to the plethora of preparational degrees of freedom and the
inherent tendency toward inhomogeneities and defects in combination with the
very short SC coherence lengths of the order of the dimensions of the crystallo-
graphic unit cell.
The structural element of HTS compounds related to the location of mobile

charge carriers are stacks of a certain number n= 1, 2, 3,… of CuO2 lay-
ers “glued” on top of each other by means of intermediate Ca layers (see
Figure 1.1.2.2) [36]. Counterpart of these active blocks of (CuO2/Ca/)n−1CuO2
stacks are charge reservoir blocks EO/(AOx)m/EO with m= 1, 2 monolayers of
a quite arbitrary oxide AOx “wrapped” on each side by a monolayer of alkaline
earth oxide EO with E=Ba, Sr (see Figure 1.1.2.2b). The HTS structure results
from alternating stacking of these two block units. The general chemical formula
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Figure 1.1.2.2 (a) Crystal structure of YBa2Cu3O7 (“YBCO”) [39]. (b) General structure of a
cuprate HTS A-m2(n− 1)n (AmE2Can−1CunO2n+m+2+y) for m = 1.
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AmE2Can−1CunO2n+m+2+y (see Figure 1.1.2.2b) is conveniently abbreviated as
A-m2(n− 1)n [37] (e.g., Bi2Sr2Ca2Cu3O10: Bi-2223) neglecting the indication of
the alkaline earth element (see Figure 1.1.2.1). The family of all n = 1, 2, 3, …
representatives with common AOx are referred to as A-HTS, for example, Bi-
HTS. The most prominent compound YBa2Cu3O7 (see Figure 1.1.2.2a), the first
HTS discovered with a critical temperature Tc above the boiling point of liquid
nitrogen [38], traditionally abbreviated as “YBCO” or “Y-123” (Y1Ba2Cu3O7−𝛿),
fits into this classification scheme as a modification of Cu-1212 where Ca is
completely substituted by Y.
The following scenario (see Figure 1.1.2.3) applies to hole-doping [40] as well as

to electron-doping of all HTS [41]: the undoped compounds are AF insulators up
to a critical temperatureTN well above 300K, with alternating spin orientations of
the hole states that are localized around the Cu atoms in the CuO2 layers. Adding
charge carriers by doping relaxes the restrictions of spin alignment: TN decreases
and the insulator turns into a “bad metal.” At low temperature, the electric trans-
port shows a dramatic change within a small doping range from an insulating to a
SC behavior [42]. For La2−xSrxCuO4, this happens at a critical hole concentration
x= 0.05 in theCuO2 planes (see Figure 1.1.2.2). On stronger doping, superconduc-
tivity can be observed up to an increasingly higher critical temperature Tc until
the maximum Tc is achieved for “optimal doping” (x≈ 0.16 for La2−xSrxCuO4).
On further doping, Tc decreases again until finally (x≥ 0.27 for La2−xSrxCuO4)
only normal conducting behavior is observed.
The rationale that the phenomenon of superconductivity in HTS can be

conceptually reduced to the physics of the CuO2 layers [44] has evolved to a
more and more 2D view in terms of CuO2 planes. The superconductive coupling

Non-
Fermi-
liquid

Fermi-
liquid

Pseudogap
state

TN

T

Tc

SC

Hole doping x

AF

T*

0 0.05 0.16 0.27

Figure 1.1.2.3 HTS temperature-doping phase diagram with the interplay of antiferromag-
netism (AF) and superconductivity (SC) [40, 43].



1.1 Superconductivity 31

Interlayer
coupling

Josephson
coupling

Figure 1.1.2.4 Hierarchy of the superconductive coupling in cuprate HTS.

between these planes within a given (CuO2/Ca/)n−1CuO2 stack (“interplane
coupling”) is much weaker than the intraplane coupling, but still much stronger
than the superconductive coupling between the (CuO2/Ca/)n−1CuO2 stacks
which can be described as Josephson coupling (see Figure 1.1.2.4).
HTS are extreme type-II superconductors [45] with 𝜆> 100 nm and 𝜉 ∼ 1 nm.

The quasi-2D nature of superconductivity in HTS leads to a pronounced
anisotropy of the SC properties with much higher super-currents along the CuO2
planes than in the perpendicular direction [46] and a corresponding anisotropy
of the magnetic penetration depth 𝜆, for example, 𝜆ab = 750 nm and 𝜆c = 150 nm
in optimally doped YBCO [47] (the indices refer to the respective orientation of
the magnetic field). Material imperfections of the dimension of the coherence
length which are required as pinning centers preventing the flux flow of magnetic
vortices are easily encountered in HTS due to their small coherence lengths, for
example, for optimally doped YBCO 𝜉ab = 1.6 nm, 𝜉c = 0.3 nm for T → 0K [48]
which are already comparable to the lattice parameters (YBCO: a= 0.382 nm,
b= 0.389 nm, c= 1.167 nm [39]).The high Tc in combination with the small value
of coherence volume (𝜉ab)2𝜉c ∼ 1 nm3 allows large thermally induced magnetic
fluctuations in the SC phase at temperature close to Tc, an effect which could be
completely neglected in classical superconductors [4]. Moreover, since technical
superconductor materials consist of a network of connected grains, already small
imperfections at the grain boundaries with spatial extensions of the order of the
coherence length lead to a substantial weakening of the SC connection of the
grains and thus to “weak-link behavior” of the transport properties which has
to be avoided in technical conductor materials [49]. On the other hand, this has
been widely exploited for the fabrication of HTS Josephson junctions [50].
The low 𝜉c, that is, the weak superconductive coupling between the

(CuO2/Ca/)n−1CuO2 stacks, may lead for c-axis transport to an intrinsic
Josephson effect within the unit cell even for perfectly single-crystalline materials
[51]. If the thickness of the charge reservoir blocks EO/(AOx)m/EO in-between
these stacks is larger than 𝜉c, vortices are here no longer well defined due to the
low Cooper pair density (see Figure 1.1.2.5).This leads to a quasi-disintegration of
the vortices into stacks of pancake vortices which are much more flexible entities
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Figure 1.1.2.5 Quasi-disintegration of magnetic vortex lines into “pancake” vortices [52].

than the continuous quasi-rigid vortex lines in conventional superconductors.
The effects described in the preceding two paragraphs combine to reduce the
irreversibility field Birr[T], the tolerable limit for magnetic fields with respect to
SC transport, in cuprate HTS substantially below the thermodynamical critical
field Bc2[T], a distinction which was more or less only of academic interest in the
case of classical superconductor.
Besides these intrinsic obstacles for the transport of super-current in single-

crystalline HTS materials, there are additional hurdles since HTS materials
are not a homogeneous continuum but rather a network of linked grains (see
Figure 1.1.2.6).Themechanism of crystal growth is such that material that cannot
be fitted into the lattice structure of the growing grains is pushed forward into
the growth front with the consequence that in the end all remnants of secondary
phases and impurities are concentrated at the boundaries in-between the grains.
Such barriers impede the current transport even if they consist of only a few
atomic layers and have to be avoided by careful control of the growth process,
in particular of the composition of the offered material. Another obstacle for
super-currents in HTS (which is not only detrimental for transport currents but
also enables the fabrication of HTS Josephson junctions) is misalignment of the
grains: exponential degradation of the super-current transport is observed as
a function of the misalignment angle due to the d-symmetry of the SC order
parameter [53] and even more due the build-up of charge inhomogeneities [54].
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a

b

Figure 1.1.2.6 Schematic HTS microstructure with differently oriented single crystal grains
separated by secondary phase regions. Oxygen depletion and thus Tc reduction may occur
at grain boundaries.

1.1.2.3 Other Oxide Superconductors
The discovery of superconductivity in the bismuthate BaPb1−xBixO3 in 1975 with
a rather high Tc ∼ 13K in those days for x∼ 0.25 [55] raised great interest in the
mechanism of superconductivity in this at that time quite exotic oxide compound
with a low density of states at the Fermi level. The cuprate HTS soon chased
away that exotic touch in spite of the rise of Tc to >30K in Ba1−xKxBiO3 (BKBO;
x∼ 0.35) in the middle of the HTS bonanza days [56]: tunneling showed clean
gap structures consistent withweak-to-moderate coupling BCS theory [57]. In the
parent compound BaBiO3, a three-dimensional (3D) charge-density wave (CDW)
arrangement of Bi(4−𝛿)+O6 and Bi(4+𝛿)+O6 octahedra (| 𝛿 |≪ 1) creates a gap at the
Fermi level and leads to an insulating electric behavior. K or Pb doping suppresses
this CDW by means of the random occupation of the A position with Ba and K
or Pb ions in a simple pseudo-cubic ABO3 solid solution structure [58]. Further-
more, this doping introduces hole carriers and finally results in a metal-insulator
transition at a critical doping level xc ∼ 0.35. The maximum Tc occurs for slightly
higher doping. On further doping, Tc rapidly decreases and finally disappears at
the K solubility limit x∼ 0.65. The SC pairing mechanism is apparently related to
the structural and concomitant electronic 3D CDW instability.
The extensive search for other SC transition metal oxides following the discov-

ery of the cuprate HTS came in 1994 across strontium ruthenate (Sr2RuO4), a
layered perovskite with an almost identical crystal structure as the cuprate HTS
La2−xSrxCuO4 (“LSCO”), albeit only with a Tc ∼ 1.5 K [59]. In both materials,
the conduction electrons stem from partially filled d-bands (of the Ru or Cu ions,
respectively) that are strongly hybridized with oxygen p-orbitals. In contrast to
the nearly filled Cu 3d-shell in cuprate HTS with only one hole state, in Sr2RuO4,
in the formal oxidation state of the ruthenium ion Ru4+ four electrons are left in
the 4d-shell. The closely related ferromagnetic material SrRuO3 shows the inher-
ent tendency of Ru4+ toward ferromagnetism. Hence, in analogy with the cuprate
HTS,where ondoping theAF ground state of the parent compounds seems to “dis-
solve” in spin-singlet Cooper pairs in a d-wave orbital channel, it was suggested
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that the superconductivity in Sr2RuO4 is brought about by spin-triplet pairing
where the Ru ions “release” parallel-spin, that is, triplet Cooper pairs in p-wave
or even higher odd order angular orbital channels.
RuSr2GdCu2O8 (Ru-1212) is a ruthenate-cuprate hybrid containing both CuO2

andRuO2 layers. It fits into the elucidated cuprateHTS layer structure scheme (see
Figure 1.1.2.2b) substituting the Ca of the canonical 1212-HTS structure (or the
Y in YBCO, or the RE in RE-123, respectively) by Gd to render CuO2/Gd/CuO2
stacks, separated by a SrO “wrapping layer” from the RuO2 layers as “charge reser-
voir layers.” Like rare earth borocarbides (see Chapter 7), Ru-1212 and some other
closely related rutheno-cuprate compounds display ferromagnetism and super-
conductivity coexisting on a microscopic scale [60], with TCurie ∼ 135K and Tc up
to 72K for Ru-1212. The CuO2/Gd/CuO2 stacks are believed to be responsible
for the superconductivity, whereas the (ferro)magnetic ordering arises from the
RuO2 layers. A clear intrinsic Josephson effect shows that thematerial acts as a nat-
ural superconductor–insulator–ferromagnet–insulator–superconductor super-
lattice [61].

Cobaltates made in 2003 their entry into the SC zoo. Tc = 4.5 K has been
achieved in hydrated sodium cobaltate Na0.3CoO2⋅1.4 H2O [62]. Na provides
here the doping. The intercalation of water increases the separation between
the CoO2 layers and seems to be essential for the onset of superconductivity:
Na0.3CoO2⋅0.6 H2O, with the same formal Co oxidation state but substantially
less separation between the CoO2 layers is not SC [63]. A major difference
compared to cuprate HTS is the triangular lattice geometry of the CoO2 layers
which introduces magnetic frustration into the Co spin lattice, in contrast to the
square lattice geometry of Cu ions in cuprate HTS which favors unfrustrated AF
spin orientation.
𝛽-Pyrochlore oxide superconductors AOs2O6 with A=K, Rb, Cs, and respective

Tc = 9.6, 6.3, 3.3 K [64] have a triangle-based crystal structure, which is in princi-
ple even more subject to magnetic frustration [65]. The A ion sits here in a cage
formed by the surrounding OsO6 tetrahedra (see Figure 1.1.2.7) [66]. Anomalous
phonons are observed as an anharmonic oscillation (“rattling” motion) of the A
ion cage [67]. Intriguingly, the rattling motion participates in the SC properties

A

O
OsO6

Figure 1.1.2.7 Crystal structure of the β-pyrochlore oxides AOs2O6. The A atom is located
in an oversized atomic cage made of OsO6 octahedra and can move with a large excursion
along the four [72] directions pointing to the neighboring A atoms in adjacent cages [68].



1.1 Superconductivity 35

[68, 69]. Comparing the three compounds, Tc rises with increasing magnitude of
the rattling motion and electron–phonon coupling [70], while the density of state
decreases [71], opposite to what is expected from BCS theory.

1.1.2.4 Iron-Based Superconductors

The 2D layer structure of iron-based superconductor families (“Fe–Sc”) [32, 73]
bears close resemblance to the cuprate HTS structure: the transition element
atoms (Fe/Cu) are arranged in a quadratic lattice (Figure 1.1.2.8b) and apparently
provide the SC mechanism. Instead of the Cu–Cu bonding via O atoms sitting
halfway in-between next-nearest Cu atoms in the cuprate HTS, in Fe–Sc the
Fe–Fe bonding happens via tetrahedrally arranged P, As, Se, or Te atoms above
and underneath the Fe plane and affects the second-nearest Fe neighboring atoms
as well (see Figure 1.1.2.8a). The Fe atoms form thus with the (P/As/Se/Te) atoms
a network of regular pyramids with alternating upward/downward orientation.
For both SC families, optimum Tc is observed for the most symmetric arrange-
ment of these layer geometries, that is, for flat CuO2 layers [74] and for regular
Fe(P/As/Se/Te)4 tetrahedra [75].
A huge difference is the replacibility of the transition metal atoms: in cuprate

HTS, 10% substitution of Cu atoms by Zn, the rightward neighboring atom in the
periodic table, suppresses superconductivity completely. In BaFe2−xCoxAs2, the
introduction of Co into the Fe layers even introduces superconductivity by the
concomitant electron doping, for example, up to Tc = 24K for Co concentration
x= 0.06 [76]: Fe–Sc apparently tolerate considerable disorder in the Fe planes.
Another huge difference: the undoped, “parent” compounds of cuprate HTS
are AF insulators whereas Fe–Sc derive from magnetic metal compounds [7].
Electronic correlations in Fe–Sc are certainly weaker than in cuprate HTS, but
electron–orbital selective correlation mechanisms in the Fe atoms introduce
here novel basic physics [77].

Ba

Fe

As

(a) (b)

“11,”
e.g., FeSe

“1111,”
e.g., LaFeAsO

“122,” e.g., BaFe2As2

Figure 1.1.2.8 (a) Crystal structure of BaFe2As2. (b) Schematic structure of the 122, 11, and
1111 Fe–Sc indicating the up/down-orientation of the Fe(P/As/Se/Te) pyramids.
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Just like HTS, Fe–Sc are extreme type-II superconductors with 𝜆 > 100
nm [78] and 𝜉 ∼ 1 nm [79]. For cuprate HTS, the discrepancy between the
distance d ∼ 1 nm in between the SC (CuO2/Ca/)n−1CuO2 stacks [47] and the
coherence length 𝜉c = 0.3 nm perpendicular to the planes leads to the discussed
weak-link behavior. For Fe–Sc, the situation is a bit more benign with the
reported d = 0.86 nm/𝜉c = 0.6 nm for Nd-1111, d = 0.65 nm/𝜉c = 1.5 nm for
Ba-122, and d = 0.6 nm/𝜉c = 0.6 nm for FeSe [79]. The almost isotropic magnetic
field behavior, for example, for Ba-122 with Bc2 [T = 0K] estimates of ∼50T and
40T for magnetic fields parallel and perpendicular to the planes, respectively
[79], is not related to the supposed isotropic s+/− SC order parameter but stems
from the fact that the Fe–Sc are apparently Pauli-limited: the Zeeman splitting
of the electronic single-particle states makes it energetically favorable that the
Cooper-pairs split into the constituent up- and down-spin states at fields below
the “orbital limit” Bc2 =Φ0/(2π𝜉2) given by the magnetic flux quantum Φ0 and
the product “𝜉2” of the SC coherence lengths perpendicular to the field.
The restrictions with respect to the crystalline alignment of neighboring grains

appear to be much less severe for Fe–Sc than for Cu-HTS: in both cases, for small
misalignment angles 𝛼, the critical current density Jc is observed to remain more
or less constant up to a critical angle 𝛼c, followed by an exponential decrease Jc ∼
e−𝛼∕𝛼0 for larger 𝛼. However, for Fe–Sc the recently reported values 𝛼c ≈ 10∘ and
𝛼0 ≈ 15∘ [80] indicate a much less stringent texture requirement than for cuprate
HTS (𝛼c ≈ 3∘–5∘, 𝛼0 ≈ 3∘/ 5∘). Moreover, it is not clear if this granularity is already
an intrinsic limit: the progress achieved in 2011 [80] compared to 2009 [81] gives
rise to hope for further substantial improvement.

1.1.2.5 Heavy Fermion Superconductors
HF systems are stoichiometric lanthanide or actinide compounds whose
qualitative low-temperature behavior in the normal state closely parallels
the one well known from simple metals. The key features are the specific
heat which varies approximately linearly C ∼ 𝛾T, the magnetic susceptibility
which approaches a temperature independent constant 𝜒(0), and the electrical
resistivity which increases quadratically with temperature 𝜌(T) = 𝜌0 + AT2.
However, the coefficient 𝛾 ∼ 1 J mol−1 K−2 as well as 𝜒(0) are enhanced by a
factor of 100–1000 as compared to the values encountered in ordinary metals
while the Sommerfeld–Wilson ratio [π(kB)2 𝜒(0)]/[3(𝜇B)2𝛾] is of order unity.
The large enhancement of the specific heat is also reflected in the quadratic
temperature coefficient A of the resistivity A ∼ 𝛾2. These features indicate that
the normal state can be described in terms of a Fermi liquid [82]. The excitations
determining the low-temperature behavior correspond to heavy quasiparticles
whose effective mass m∗ is strongly enhanced over the free electron mass m.
The characteristic temperature T∗ which can be considered as a fictitious Fermi
temperature or, alternatively, as an effective band width for the quasiparticles
is of the order 10–100K. Residual interactions among the heavy quasiparticles
lead to instabilities of the normal Fermi liquid state. A hallmark of these systems
is the competition or coexistence of various different cooperative phenomena
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Ce

M

X

Figure 1.1.2.9 Conventional unit cell of CeM2X2 (M = Cu,
Ni, Ru, Rh, Pd, Au, … ; X = Si, Ge) and URu2Si2.

which results in highly complex phase diagrams. Of particular interest are the
SC phases which typically form at a critical temperature Tc ≤ 2K [83]. PuCoGa5
with Tc ∼ 18.5 K is up to now the only “high-Tc” HF representative [84].
The discovery of superconductivity in CeCu2Si2 (Tc = 1.5 K; see Figure 1.1.2.9)

[10] forced condensed-matter physicists to revise the generally accepted picture
of the electrons occupying the inner shells of the atoms. Traditionally, the cor-
responding states were viewed as localized atomic-like orbitals which are popu-
lated according to Hund’s rules in order to minimize the mutual Coulomb repul-
sion. This leads to the formation of local magnetic moments which tend to align
and which are weakly coupled to the delocalized conduction electrons. The latter
were viewed as “free” fermions which occupy coherent Bloch states formed by the
valence orbitals of the atoms. Usually, Cooper pairs which characterize a SC phase
are broken by magnetic centers. The damaging effect of 4f- and 5f-ions was well
established by systematic studies of dilute alloys. In stark contrast, in CeCu2Si2
[10] the magnetic degrees of freedom of the partially filled f-shells must generate
superconductivity since the non-f reference compound LaCu2Si2 remains normal.
During the past decade, it became clear that there are different routes to heavy

fermion behavior [85] where themagnetic degrees of freedomof the partially filled
f-shells form a strongly correlated paramagnetic Fermi liquid with an effective
Fermi energy of the order of 1–10meV [86]. In Ce- and Yb-based compounds,
the heavy quasiparticles with predominantly 4f-character arise through theKondo
effect in the periodic lattice [87]. For the actinide compounds, increasing experi-
mental evidence points toward a dual character of the 5f-electrons with some of
them being delocalized forming coherent bands while others stay localized reduc-
ing the Coulomb repulsion by forming multiplets [85, 88]. In Pr skutterudites, on
the other hand, the quasiparticles are derived from the conduction states whose
effective masses are strongly renormalized by low-energy excitations of the Pr
4f-shells [89]. It is generally agreed that the pairing interaction in HF supercon-
ductors is of electronic origin.
In the past decade, superconductivity at ambient pressure was found in the Ce-

based HF superconductors CeMmIn3+2m (M= Ir or Co; m= 0, 1) [90]. The most
prominentmember of this family is CeCoIn5, which has a relatively highTc = 2.3 K
(see Figure 1.1.2.10) [91]. Of fundamental interest is the discovery ofHF supercon-
ductivity in CePt3Si (Tc = 0.75K; see Figure 1.1.2.11) [92] which crystallizes in a
lattice without inversion symmetry [93]. Highly promising systems with tailored
violation of local inversion symmetry are artificial superlattices consisting of the
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Ce

In

M

Figure 1.1.2.10 Unit cell of CeIn3 and CeMIn5 (M = Co, Ir).

Ce

Pt(1)

Pt(2)

Si

Figure 1.1.2.11 Crystal structure of CePt3Si.

HF superconductor CeCoIn5 and its conventional metallic counterpart YbCoIn5
[94]. It remains a major challenge to give reasons for the apparent asymmetry
between Ce- and Yb-based HF systems, that is, to explain why there is a great
variety of Ce-based HF superconductors but only one weak Yb-based HF super-
conductor β-YbAl4B [95]. HF superconductivity is foundmore frequently in inter-
metallic actinide-compounds than in lanthanide-compounds.This may be related
to the different nature of heavy quasiparticles in actinide-compounds where the
5f-electrons have a considerable, though orbitally dependent, degree of delocal-
ization.The genuine Kondomechanism is not appropriate for heavy quasiparticle
formation as in lanthanide-compounds. This may lead to more pronounced delo-
calized spin fluctuations in U-compounds which mediate unconventional Cooper
pair formation. AF order, mostly with small moments of the order 10−2 𝜇B is fre-
quently found to envelop and coexist with the SC phase.
UPt3 (see Figure 1.1.2.12) [96] exhibits triplet pairing. It sticks out as the most

interesting case of unconventional superconductivity with a multicomponent
order parameter whose degeneracy is lifted by a symmetry-breaking field due
to a small moment AF order. In contrast, in UPd2Al3 (see Figure 1.1.2.13) [97]
superconductivity coexists with large moment antiferromagnetism. Probably
spin singlet pairing is realized. There is experimental evidence for a new kind of
magnetic pairing mechanism mediated by propagating magnetic exciton modes.
The sister compound UNi2Al3 [98] is an example of coexistence of large moment
antiferromagnetism with a SC triplet order parameter. In URu2Si2 [99], the SC
order parameter symmetry is still undetermined. The interest in this compound
is focused more on the enveloping phase with a “hidden” order parameter
presumably of quadrupolar type or an “unconventional” spin density wave (SDW)
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Figure 1.1.2.12 Crystal structure of UPt3 and AF magnetic structure (T < TN = 5.8 K).

Pd

U

Al

Figure 1.1.2.13 Conventional unit cell of UPd2Al3 and simple AF magnetic structure.

[100]. The oldest cubic U-HF superconductor UBe13 [101] and its thorium alloy
U1−xThxBe13 is also the most mysterious one. While for the pure system there is
a single SC phase of yet unknown symmetry, in the small Th concentration range
two distinct phases exist which either may correspond to two different SC order
parameters or may be related to a coexistence of superconductivity with a SDW
phase. In UGe2 [102], ferromagnetism and superconductivity coexist. Due to
the ferromagnetic polarization the triplet gap function contains only equal spin
pairing.
The possibility of coexisting ferromagnetism and superconductivity was first

considered by Ginzburg [103] who noted that this is only possible when the
internal ferromagnetic field is smaller than the thermodynamic critical field of
the superconductor. Such a condition is hardly ever fulfilled except immediately
below the Curie temperature TC where coexistence has been found in a few
superconductors with local moment ferromagnetism and TC <Tc such as
ErRh4B4 and HoMo6S8. If the temperature drops further below TC, the internal
ferromagnetism molecular field rapidly becomes larger than Hc2 and supercon-
ductivity is destroyed. The reentrance of the normal state below TC has indeed
been observed in the above compounds.
The transuranium-based superconductors PuCoGa5 (Tc = 18.5 K) [84],

PuRhGa5 (Tc = 8.7 K) [104], and NpPd5Al2 (Tc = 4.9 K) [105] are all unconven-
tional superconductors at ambient pressure with the highest transition
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Sb

Figure 1.1.2.14 Cubic crystal structure of the filled skutterudite RT4X12. The T atoms are
located in the center of the X octahedra.

temperatures Tc among all the HF superconductors. The HF superconductor
PrOs4Sb12 [106] is potentially of similar interest as UPt3 because it represents
the second example of multiphase superconductivity [107] with a critical tem-
perature Tc = 1.85K. The skutterudites RT4X12 (R = alkaline earth, rare earth
or actinide; T = Fe, Ru, or Os and X=P, As, or Sb) show a cage structure where
large voids formed by tilted T4X12 octahedrons can be filled with R atoms (see
Figure 1.1.2.14).They are, however, rather loosely bound and are therefore subject
to large anharmonic oscillations (“rattling”) in the cage.

1.1.2.6 Organic and Other Carbon-Based Superconductors
Carbides, for example, NbC (Tc = 12K) [108, 109] and MoC (Tc = 14.3K) [109,
110], were among the first discovered compound superconductors and contended
in these early days of superconductivity with nitrides and borides for the highest
Tc.
Theoretical speculations of superconductivity in organic compounds [12]

were met for a long time with total disbelief from the experimental side, for
example, from B. Matthias. Things changed when immediately after Matthias’s
death in 1980 superconductivity was discovered below 0.9 K in the compound
(TMTSF)PF6 under a hydrostatic pressure of 12 kbar, with the organic molecule
TMTSF (tetra-methyl-tetra-selenium-fulvalene; see Figure 1.1.2.15) [13]. Mean-
while, a number of TMTSF-based superconductors with Tc ∼ 1K have been
found, for example, (TMTSF)2ClO4 which becomes SC at 1K already under
normal pressure conditions [111]. The organic molecules are stacked here on top
of each other (see Figure 1.1.2.15). The general chemical formula is (TMTSF)2X
where X denotes an electron acceptor such as PF6, ClO4, AsF6, or TaF6. In the
normal state, the TMTSF compounds have a relatively large electric conductivity
along the stacks, but only a small conductivity perpendicular to the stacks, thus
forming nearly one-dimensional (normal) conductors. The TMTSF compounds
are type-II superconductors with highly anisotropic properties. For example, in
(TMTSF)2ClO4 along the stacks the Ginzburg–Landau coherence length is about
80 nm, whereas along the two perpendicular directions of the crystal axes it is
about 35 and 2 nm, respectively.The latter value is of the same order of magnitude
as the lattice constant along the c-axis. Hence, the compound represents a nearly
2D superconductor [72].
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Se H

Figure 1.1.2.15 (a) Structure of the organic molecule tetra-methyl-tetra-selenium-fulvalene
(TMTSF). (b) Stack arrangement of the molecules forming one-dimensional conduction chan-
nels.

Another important class of organic superconductors, often exhibiting Tc
well above 1K, is based on the bis-ethylene-dithia-tetra-thiafulvalene molecule,
abbreviated as “BEDT-TTF” or “ET.” (BEDT-TTF)2Cu[N(CN)2]Br becomes
SC at 11.2 K [14], (BEDT-TTF)2Cu(NCS)2 at 10.4 K. The ET-compounds are
also highly anisotropic. However, in contrast to the TMTSF-compounds, in the
normal state they form 2D layered structures with a large electric conductivity
in two dimensions. Like the TMTSF-based materials, the ET-compounds are
type-II superconductors, with very short out-of-plane coherence lengths. These
compounds thus also represent SC layered structures making them in many
respects similar to HTS. The pairing mechanism of the organic superconductors
is at present still unclear as well. At least some compounds appear to be d-wave
superconductors, in the compound (TMTSF)2PF6 one may even deal with a
spin-triplet superconductor [112].
The quasi-2D organic superconductors are prime candidates for exhibiting the

long-sought Fulde–Ferrell–Larkin–Ovchinnikov (“FFLO/LOFF”) phases [113].
When the magnetic field is applied parallel to the conducting planes, the orbital
critical field is strongly enhanced and superconductivity is Pauli limited. First
thermodynamic evidence for the formation of a FFLO/LOFF state was found in
κ-(BEDT-TTF)2Cu(NCS)2 [114]. The angle-dependence of the formation of the
FFLO/LOFF state was demonstrated in [115].
In 1994 superconductivitywas found in boron carbides [116] (see theChapter 7),

in 2004 in diamond with Tc up to 4K when doped with boron [6] and up to 11.4 K
in thin films [117]. For yttrium and rare earth carbide compounds Tc as high as
18 K [118] was reported. Superconductivity in a graphite intercalation compound
was first observed in 1965 [119] on KC8 which exhibits very low critical temper-
ature Tc = 0.14K [120]. Later, several ternary graphite intercalation compounds
revealed higher Tc of 1.4 K for KHgC8 [121] and 2.7K for KTl1.5C4 [122]. Recently,
the discovery of high critical temperatures in graphite intercalation compounds
YbC6 (Tc = 6.5K) [123], CaC6 (Tc = 11.5 K) [124], and Li3Ca2C6 (Tc = 11.15K)
[125] has renewed the interest in this family of materials [123].

Fullerides are compounds of the form A3C60 which may become SC on the
admixture of alkali atoms or of alkaline earth atoms [126]: Rb3C60 has a value of
Tc of 29.5 K, the present record under pressure is held by Cs3C60 with Tc = 40K
[27, 127]. The crystal structure of the fullerides is face-centered cubic, with
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Figure 1.1.2.16 Structure of the C60 molecule. The arrows indicate one of the intramolecu-
lar phonon modes which are believed to be mainly responsible for the SC pairing [27].

the alkali atoms occupying interstitial sites between the large C60 molecules.
Fullerides are BCS-like s-wave superconductors. Intramolecular C60 phonons
(see Figure 1.1.2.16) seem to contribute the most important part of the pairing
interactions [27]. However, for body-centered cubic A15-structured Cs3C60
(which is not SC at ambient pressure), an apparently purely electronic transition
to a SC state with Tc up to 38 K can be induced by pressure, where the Tc
dependence on pressure cannot be described by BCS theory in terms of the
induced changes of anion packing density [128].
Recent experiments on alkali-doped picene and dibenzopentacen, hydrocarbon

molecules made up of an assembly of five and seven fused benzene rings, respec-
tively, reported superconductivity up toTc of 18 [129] and 33K [130], respectively.
A linear increase of Tc with the number of constituent benzene rings is suspected.
However, the fabrication process cannot be controlled yet sufficiently to achieve
single-phase preparation. This holds true even more for carbon nanotubes where
long-standing speculations on superconductivity [131] have now been confirmed
experimentally for the case of double-wall carbonnanotubes (DWNTs)with resis-
tively measured Tc = 6.8 K [132].

1.1.2.7 Borides and Borocarbides

Rare earth borocarbide superconductors have provided the first example of
a homogeneous coexistence of superconductivity and ferromagnetism for all
temperatures below Tc: the two antagonistic long-range orders are carried by
different species of electrons that interact only weakly through contact exchange
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Figure 1.1.2.17 Structure of the layered transition metal borocarbides RNi2B2C.

interaction leading to a small effect of the local moment molecular field on
the SC conduction electrons. The nonmagnetic rare earth borocarbides have
extremely large gap anisotropy ratios Δmax/Δmin ≥ 100 [133]. Surely, the standard
electron–phonon mechanism has to be supplemented by something else, per-
haps anisotropic Coulomb interactions to achieve this “quasi-unconventional”
behavior in borocarbides.
The SC class of layered transition metal borocarbides RNi2B2C (nonmagnetic

R= Y, Lu, Sc; magnetic R= lanthanide elements in a R3+ state; see Figure 1.1.2.17)
was discovered in 1994 [116, 134–136]. The crystal structure consists of R C
rock-salt-type planes separated by Ni2B2 layers built from NiB4 tetrahedra and
stacked along the c-axis. More general structures with more than one R C layer
are possible [135]. The nonmagnetic borocarbides have relatively high Tc values
of around 15K. There is evidence that the SC mechanism is primarily of the
electron–phonon type, although this cannot explain the large anisotropy of
the SC gap. At first sight, the layered structure is similar to the HTS cuprates.
However, unlike the copper oxide planes the NiB2 planes show buckling. As a
consequence, the electronic states at the Fermi level in the borocarbides do not
have quasi-2D dx2−y2 character and, therefore, have much weaker correlations
excluding the possibility of AF spin-fluctuation-mediated superconductivity.
The discovery of superconductivity in MgB2 (see Figure 1.1.2.18) in early

2001 with Tc ∼ 40K, came as a huge surprise since this simple material was
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Figure 1.1.2.18 Hexagonal crystal structure of MgB2. The arrows indicate the B-phonon
mode which presumably introduces the strongest SC coupling.

known since the early 1950s and had simply been missed in the systematic
research for superconductivity [137]. Since no atomic d- or f-shells are involved
in the conduction electron system of this binary compound of light elements
Coulomb correlation do not play a role. The simple crystal structure consisting of
graphite-like B-layers with intercalated Mg favors conduction along these layers
and a respective superconductive and normal state anisotropy, but it does not
introduce a reduction of the effective dimensionality, as in the case of organic
superconductors due to the stacking of isolated aromatic rings. The coupling of
the conduction electrons to a particular boron phonon mode (see Figure 1.1.2.18)
was identified right from the start as basic origin of superconductivity in MgB2
[138]. The observation of two energy gaps (at 1.8 and 6.8meV [139, 140]) and
the considerable superconductive anisotropy as large as 6–9 [141] challenged a
more thorough theoretical investigation which explained these findings in terms
of two-band superconductivity [30] on the basis of the large anharmonicity of the
involved phonon mode and a refined treatment of its coupling with the different
sheets of the electronic conduction band [139, 142].
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1.2
Main Related Effects

1.2.1
Proximity Effect
Mikhail Belogolovskii

1.2.1.1 Introduction
The proximity effect (hereafter as PE) manifests itself as a mutual induction of
physical properties from one material into an adjacent one across their interface.
This definition means that the structure studied consists, at least, of three main
elements: two materials with distinct characteristics and the interface whose
transparency determines an effectiveness of the discussed phenomenon. In
the most known N/S (normal/superconductor) example, due to the adjacent
superconductor (S), electron pairs permeate into the neighboring normal (N)
metal and, conversely, through the N/S interface, normal electrons leak into the
superconductor partly destroying superconducting correlations in the S-side of
the bilayer ([1]; Chapter 6).
Two prototypical examples of the N/S sandwich, namely, that with a low

transparent interface (the so-called tunneling limit) as well as a direct NS contact,
were studied, for the first time, in two seminal papers by McMillan published
in 1968 [2, 3]. Taking into account incoherent single-particle scatterings from
one layer to another treated within the tunnel-barrier approximation, he suc-
ceeded to explain such proximity-induced features as the enhancement of the
Bardeen–Cooper–Schrieffer (BCS) potential in the N film, inducedmini-gapΩN,
qualitative changes of electronic densities of states in the adjacent metals, and so
on [2]. The tunneling PE model was widely used to explain experimental data, for
example, those for Nb/Pb sandwiches [4]. Note that the barrier in this model need
not to be directly related to an insulating layer since reflection of quasiparticle
states can be associated, for example, with different electronic structures of two
metals in contact. In the second paper by McMillan [3], the analysis was based on
a specific elastic phase-coherent transfer process across the NS interface by which
normal current is converted into a super-current (in particular, at energies below
the superconducting energy gap ΔS, when direct single particle transmissions are
forbidden). It is known as the Andreev scattering: an electron (hole) incident on
the interface from the N side is elastically retroreflected into a hole (electron)
from a spin-reversed band which is traveling in the opposite direction to the
incoming charge. Starting from a step-like BCS pairing potential, McMillan [3]
recalculated it and found that the new potential, which is nearly self-consistent, is
roughly half ΔS at the interface, very quickly (exponentially) approaches the bulk
value of the energy gap ΔS into the S-side, and drops rapidly into the N-side.
Generally, an advanced PE theory should be based on the microscopic Gor’kov

equations and on a realistic treatment of the N/S interface. But even the oversim-
plified McMillan’s models, which took into account two different aspects of the
very complicated problem, are able to provide deep insight into the underlying
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Figure 1.2.1.1 Sketch of the spatial depen-
dence of the energy gap value (solid lines) in
a proximity N/S sandwich with comparatively
thick (a) and very thin (b) N (with a weak
attractive electron–electron interaction) and
S layers; ΔS is the BCS potential in an iso-
lated S metal, dN and dS are thicknesses of N

and S layers, respectively. In (a), the dashed
line demonstrates a step-like approximation
for the BCS pairing potential. In (b), N and
S films are separated by a potential barrier;
if its height is comparatively low, we get a
so-called Cooper limit shown with a dotted
line.

physics and to explain, at least, qualitatively the main part of experimental data.
According to them, principal spatial behavior of the order parameterΔ(x) in a pla-
nar N/S sandwich for extremely thick and extremely thin proximity-coupled S and
N layers has the form shown in Figure 1.2.1.1a,b, respectively.The extent of super-
conducting correlations in the N part of the bilayer is determined by its structure
and geometry: in a thin N layer, the proximity-induced mini-gap ΩN is uniform,
whereas in a thick N film the correlations extend over some distance determined
by the energy of the electrons E relative to the Fermi level EF. One of the signatures
of the PE is the modification of local electronic densities of states N(𝜀) in N and S
parts, 𝜀 = E −EF. The case of very thin N and S layers with one single gapΩN, two
different peaks corresponding to ΩN, and a new (corrected) value of the gap in a
superconductor is shown in Figure 1.2.1.2.
Although the main conclusions of the McMillan’s papers remain valid to

date, see reviews by Gilabert [5], Pannetier and Courtois [6], and Klapwijk [7],
a substantial body of novel results and new developments has contributed to
the present level of PE understanding. One of the main advances of the last
two decades has been a comprehension idea about the key role of the Andreev
reflection in the PE. Other novel aspects of the problem relate new nonsuper-
conducting and superconducting materials which were unknown or unused in
previous experiments with proximized bilayers, an effect of the interface between
superconducting and nonsuperconducting films, which in some cases is not
limited to the penetrability of superconducting correlations but can be a source
of unexpected interfacial phenomena, and so on.
In the following, we attempt to present a simple introduction into the PE with

the aim to explain fundamentals of the phenomenon and at the same time to
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the normal NN(𝜀) and superconductor NS(𝜀)
sides of an S/N sandwich; N0 = const is the

normal-state density of states of the sam-
ple, ΔS is the BCS potential in an isolated S
metal, and ΩN is the minigap induced in the
proximized N layer.

deliver current understanding of the general physical picture to a reader. In con-
trast to previous PE reviews, where the main attention was paid to basic effects
in N/S sandwiches, we discuss all types of superconducting hybrid structures,
composed from constituents of fundamentally different electronic structures, and
present some novel devices and experiments in order to show PE perspectives for
practical applications. The ideas underlying the two McMillan’s papers will form
a basis for our discussion.
The overview is structured as follows. In order to put the superconducting

proximity phenomenon into a broader context, we commence with a simplest
version of the PE by considering a relatively trivial case of a metal–insulator (MI)
contact. In spite of diverse nature and very different values of superconducting
and dielectric gaps, we demonstrate a few similar features exhibited byMI andNS
sandwiches. A summary of the works on N/S bilayers, the most often studied PE
samples, is presented in the next section. Then we deal with a specific PE arising
between a ferromagnetic (F) metal and a superconductor in contact, explain
the origin of the singlet-triplet conversion and the long-range PE in F/S hybrid
bilayers. We finish the chapter by reviewing last ideas concerning the discussed
phenomenon, in particular those relating contacts of superconductors with
PE-affected topological insulators, a new class of quantum materials which, due
to time-reversal symmetry, relativistic effects, and the inverted band structure,
are insulating in bulk and completely metallic with a Dirac-like spectrum at their
surface.

1.2.1.2 Metal–Insulator Contact

In order to be able to gain an insight into the main ideas of superconducting
PEs, we start with a more simple system made of a metal and an insulator in
contact. Owing to the wave nature of an electron, there is a finite probability to
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find the charge in a classically forbidden region adjacent to a metal film. It is well
known that the probability exponentially decays into the insulating film and, when
the film thickness is nanoscale, an electron can be found at the outer side of the
potential barrier. The quantum-mechanical tunneling phenomenon in solid-state
systems realized by separating two conductors with a very thin insulator is known
from 1950s and now constitutes a basis upon which such devices as Josephson
junctions, scanning tunneling microscope, and others are operating.
Less known is that fits of the rectangular barrier model to experimental data

often lead to unphysically small values of extracted parameters, especially, barrier
heights [8].The origin of the discrepancy can be, in particular, related to the pres-
ence of a high density of extra metal-induced states in the gap energy range [9].
What is important for superconductor–insulator interfaces is that, according to
Choi et al. [10], these states are strongly localized at theMI interface by inevitably
random fluctuations in the electronic potential and so can produce paramagnetic
spins. It can explain the origin ofmagnetic flux noise in superconducting quantum
interference devices (SQUIDs) with a power spectrum ∼1/f ( f is the frequency)
which limits the decoherence time of superconducting flux-sensitive qubits [10].
Spin-flip scattering of conduction electrons by local magnetic moments, possibly
located at metal–oxide interfaces, was revealed in granular Al films in the vicin-
ity of the metal-to-insulator transition [11]. The most surprising finding was the
coexistence of enhanced superconducting properties in Al granules with surface
magnetic moments which raises a question about the mechanism of supercon-
ductivity in such films.
Notice that electrons trapped into the localized states in the near-surface region

in an insulator can tunnel into the adjacent metal when an electric field is applied
to the interface (in a superconductor it occurs only when the energy gained by an
electron is larger than the energy gap). Such a model was proposed by Halbritter
[12] to explain lossmechanisms in superconducting niobium cavities. Usually, this
effect is negligible but in the case of Nb it can be important due to the presence of
conductingNboxides.When the radio frequency (RF) field in the cavities is raised,
a longitudinal electric field penetrates the insulator and stimulates electrons to
tunnel to the superconductor and to return back when the field is lowered. The
losses due to interface tunnel exchange are an example of the interface-induced
effect which should be more pronounced in the case of small grain sizes.
Let us now look at the NI proximity problem from a perspective of elastic scat-

tering processes at the interface (see Figure 1.2.1.3a). An electron (hole) incident
on the interface from theN side is retroreflected into an electron (hole) of the same
energy E and the same absolute value of momentum but traveling in the opposite
direction to the incoming charge. Let us consider an ideal three-dimensional pla-
nar structure with two normal metallic electrodes, two insulating layers I which
are so thick that electrons can tunnel across them very rarely, and a normal-metal
nanometer-thinN′ interlayer of the thicknessdN. In theNIN′IN structure, an elec-
tron is spatially confined in the direction x normal to the layers but remains free
to move in the parallel direction. It results in the creation of a two-dimensional
electron gas at quasi-bound quantized electron states.
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Figure 1.2.1.3 Scattering processes at NI
(a), NS (b), and FS (c) interfaces. The filled
and empty circles denote the quasielectron
(e) and quasihole (h) states in the nonsuper-
conducting layer. The Fermi surface with the
Fermi wave vector kF, the constant-energy

electron surface, and the constant-energy
hole surface are shown with dotted, solid,
and dashed lines, respectively; arrows in the
(c) panel denote the spin direction of the
corresponding energy band.

The electron transmission coefficient (transparency) D through the NIN′IN
structure is sharply peaked about certain energies corresponding to virtual
resonant levels in the quantum well of the thickness dN. The energies can be
easily found from the demand of coherent superposition of scattered electron
waves. According to the Bohr–Sommerfeld quantization rule, the electron
wave-function phase shift acquired during the electron “round-trip” inside the N′

interlayer (shown in Figure 1.2.1.4a) 2kxdN = 2πj, where kx is the x-component of
the electron wave vector, j is integer. When two insulating I layers are atomically
thin and identical, an electron with one of the resonant energies can cross
the NIN′IN system without being reflected (the resonant tunneling effect).
Although the latter phenomenon is well known from elementary quantum
mechanics, we want to stress that the peaked structure appears just due to
the presence of insulating layers adjacent to the N′ interlayer and that energy
locations of strong maxima and minima in its spectrum can be obtained by
very simple quantum-phase arguments which will be applied further to NS
and FS cases. The second remark concerns a strong effect of barrier inhomo-
geneities on electron tunneling near resonance energies (see [13] and references
therein).
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structure (a) and those by the superconduct-
ing pair potential and a barrier potential in
an MIN′IS junction (b).

Resuming this subsection, we would like to attract the attention to three dif-
ferent aspects of the NI PE which are common for the cases discussed below as
well: (i) leakage of itinerant electrons from a metal into an insulator, (ii) existence
of energy regions with a strongly suppressed density of states in the excitation
spectrum of a spatially confined N′ interlayer due to backscattering of electron
waves from theN′I interface, and (iii) specific properties of theMI interface which
appears only when the surfaces of the two separated materials are brought into a
contact. Generally, the three features are only different manifestations of the same
phenomenon and, in principle, should be described self-consistently within a uni-
fied formalism for the inhomogeneous solid-state structures. Keeping inmind the
analogy (and the difference as well) between I and S layers, we can now transfer
to the superconducting PE.

1.2.1.3 Normal Metal–Superconductor Contact
Even the simplest hybrid NS heterostructure with an ideal interface reveals sev-
eral interesting phenomena. The energy scale in the NS bilayer is characterized
by a superconducting gap energy of the order of 1meV, which is much less than a
N-metal electron band width (∼1 eV and more). That is why the probability of the
normal backscattering from a clean NS interface is extremely small and a quasi-
classical approximation, see the review in [14], applied to the Green-function
formalism serves usually as a starting point for theoretical works dealing with a
quasi-ballistic NS problem when elastic quasielectron-into-quasihole transfor-
mations of Bogoliubov quasiparticles and inverse (with a missing charge of 2e
absorbed into the superconducting ground state as a Cooper pair) occur at the NS
interface – see Figure 1.2.1.3b. At voltage bias V = 0, the differential conductance
G(V ) = dI(V )∕dV of an ideal NS bilayer is determined only by pair transferring
processes and is as large as twice normal-state conductance, whereas in the very
low transparency limit G(0) of the N/S contact is vanishing at T = 0. The current
across the junction with N and S layers divided by an insulating barrier does
not increase until the electron volt reaches the superconducting gap ΔS [15]. At
V = ΔS∕e, the differential conductance G(V ) of the trilayer exhibits a peak.
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Proximity-induced changes in the electronic density of states NN(𝜀) of a normal
metal are directly reflected in the G(V ) characteristic of a planar tunnel junc-
tion formed by a normal counter-electrode M, an isolator I, and the NS contact.
Thus, the tunneling experiment (real or imagined) can serve as a probe of the
local electronic density of states at the tunneling surface weighted by the angu-
lar distribution of tunneling electrons [3]. Considering MINS junction within the
Bohr–Sommerfeld quantization condition, we can easily understand the origin of
the coherent peak in the spectrumof a superconductor and itsmodification for the
N layer of the thickness dN′ . The characteristic energy E of a bound state formed
in the N interlayer corresponds to the coherent superposition of reflected quasi-
particle waves. To find it, we suppose a planar geometry of the MINS structure
(Figure 1.2.1.4b) where the trajectories of quasiparticles in the electron branch
and those in the hole branch are denoted by solid and dashed lines, respectively.
A charge velocity component perpendicular to the layers changes its sign in the
normal reflection from the MI interface, whereas all velocity components change
their signs in the Andreev backscattering from the NS interface. The reflection
coefficients can be calculated from the boundary conditions of the wave functions
using the fact that in the discussed geometry transverse components of the wave
vectors are unchanged. In this case, each Andreev reflection within the energy
gap contributes an additional phase shift 𝜒eh(he)(k) = − arccos(𝜀∕|Δ(k)|) ∓ iΦ(k),
where |Δ(k)| and Φ(k) are absolute value and phase of the complex supercon-
ducting order parameter (see, e.g., [16]). Adding the phases accumulated along an
electron “round-trip” in the N interlayer with two subsequent Andreev reflections
(Figure 1.2.1.4b), for an s-wave superconducting electrode, we get the following
expression for the phase shift: ke

xdn + 𝜒eh − kh
x dn + π − kh

x dn + 𝜒he + ke
xdn + π =

(4𝜀∕ℏvF)(dN∕ cos 𝜃) − 2 arccos(𝜀∕ΔS), where 𝜃 is the incident angle, the x-axis is
normal to interfaces. The bound-state energies 𝜀 = E − EF can be found requir-
ing the total phase shift to be an integer multiple of 2π. Hence, the lowest bound
level follows from the relation 𝜀 = ℏvF arccos(𝜀∕ΔS) cos 𝜃∕2dN. For a clean sys-
temwhich is translationally invariant in the y and z directions, contributions from
long path lengths (𝜃 → π∕2) result in no gap in the excitation spectrum [3]. But
this conclusion is valid for infinite samples. If the volume of the N part of a meso-
scopic N/S bilayer is finite, we get a sharp gap in the excitation spectrum like that
in the PE tunneling model [2] or in the dirty (diffusive) limit when electrons expe-
rience a huge number of elastic scatterings on impurities during the way from one
surface to another. In the latter case, the size limiting the phase coherence length
for electron-like and hole-like quasiparticles traversing a diffusive trajectory is the
elastic mean free path le =

√
D𝜏e, here D is the diffusion constant in the normal

metal, and 𝜏e is the elastic scattering time. If so, then in the previous formula for
𝜀, we should replace the average time ∼ dN∕vF for the motion of a quasiparticle
across a cleanN filmwith 𝜏e ∼ d2

N∕D.When 𝜀 ≪ ΔS, theminigap in a dirty N layer
is thus expected to be approximately 𝜀 ≈ πℏD∕4d2

N (compare with the numerically
exact expression 𝜀 ≈ 0.78ℏD∕d2

N obtained in [17]).
In d-wave superconductors like YBCO, dissimilar values of Φ(k) seen by a

quasiparticle moving along different scattering trajectories (Figure 1.2.1.4b)
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brings to the Bohr–Sommerfeld quantization rule an additional phase shift
𝛿Φ(k). The most dramatic effect of 𝛿Φ(k) = π occurs for the tunneling direction
[110], converting destructive interference at 𝜀 = 0 in the s-wave case into con-
structing interference (see, e.g., [16]). Owing to the phase conjugation between
electrons and holes at the Fermi level, it survives even in the presence of a normal
interlayer when tunneling across the barrier in MINS devices is specular and a
strong zero-bias peak in the G(V ) characteristic of a MINS junction is one of the
main signatures of the d-wave symmetry of the order parameter in an S electrode.
Notice that the stepwise approximation for the pair potential used above

and known as a rigid-boundary condition for superconducting bilayers is not
self-consistent. According to Likharev [18], in real N/S junctions the deviation
of the self-consistent solution from the step-like function strongly decreases
when the interface resistivity is much bigger than that of metal electrodes. From
the Andreev-scattering view, the penetration of superconducting correlations
into a normal material is limited by dephasing between electron and hole wave
functions 𝛿𝜑 = (ke

x − kh
x )l which grows with increasing distance l from the N/S

boundary into the N-side. The relevant length scale governing superconducting
correlations in a clean N-metal is given by the temperature-dependent coherence
length 𝜉T = ℏvF∕(2πkBT).
Since practically used films are usually full of different imperfections, the charge

scatterings inside them render the Green function to be isotropic in space. The
quasi-classical Eilenberger equations can be further simplified to the form which
is more appropriate for numerical calculations and is known as Usadel equations,
see the review in [14]. Related boundary conditions for an interface between two
superconductors were derived by Kupriyanov and Lukichev [19]. The validity of
Usadel equations depends on the superconductor (le ≪ 𝜉0) as well as on the nor-
mal metal (le ≪ dN, 𝜉T), where 𝜉T =

√
ℏD∕(2πkBT) is the temperature-dependent

decay length in the dirty N layer. Note that the validity of the clean-limit solution
is restricted to le, 𝜉T ≫ dN and to le ≫ dN exp(2dN∕𝜉T) if 𝜉T ≪ dN [20].
Specific properties of proximity-coupled NS bilayers can be useful for practical

purposes since they provide an additional internal degree of freedom which can
offer new abilities to design and tune such characteristics as the critical tempera-
ture, the energy gap, and the shape of corresponding temperature dependencies.
The most straightforward application consists in the control over Tc, which
is determined by PEs and can, therefore, be tuned by varying individual layer
thicknesses. As an example, we consider NS sandwiches where the thicknesses
dS and dN are somewhat larger than corresponding coherence lengths [21].
Then the bilayer critical temperature as a function of dN follows an exponential
law Tc = T̃c − const ⋅ exp(−𝛼dN) where the decay constant 𝛼 increases with the
decrease of the electron mean free path in the superconductor (see the related
experimental data in Figure 1.2.1.5). The possibility to tune Tc with a PE was
realized, in particular, in bolometers [22] and superconducting screening ground
planes [23]. In the first case, the absorber and the thermistor were Ti–Al–Ti
trilayers with thicknesses ∼50 nm chosen to achieve Tc of 380mK. In order to
produce superconducting screening planes with tunable Tc’s between 4 and 7K,
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Figure 1.2.1.5 Transition temperature of Pb/Cu bilayers versus the Cu-film thickness dN;
the thickness of the Pb films was 100 nm (1), 50 nm (2), 30 nm (3), 15 nm (4), 10 nm (5), and
7 nm (6). (Adapted from [1], Figure 6.6. Reproduced with permission of John Wiley & Sons.)

Kain et al. [23] used Pb/Ag bilayers. In agreement with the theory, in samples with
good electrical contact between two layers, the measured Tc values followed well
the Cooper model of the PE when superconducting characteristics are averaged
over the bilayer (see Figure 1.2.1.1b).
Themain goal of the work by Lacquaniti et al. [24] was to design an intrinsically

shunted Josephson device resistant to temperature fluctuations above 4.2 K and
based on the niobium technology. A strong temperature dependence of critical
current Ic in conventional Nb-based superconductor–insulator–superconductor
(SIS) Josephson junctions appears when they are employed above 5K. The prob-
lem comes from a steep-like behavior of the Ic(T) curve above T ≈ 0.5Tcs, where
Tcs is the S-film critical temperature. In order to obtain more gentile curve, the
authors replaced one of the superconducting electrodes with an N/S bilayer. It
has been shown experimentally that with increasing temperature the supercon-
ducting order parameter in a normal layer of a thickness dN comparable with that
of the S film dS first rapidly decreases and then at T ≈T* becomes flat up to a
nearest vicinity of the bilayer Tc. Changing the ratio dN/dS, the authors mod-
ified the T* value and were able to engineer thermal stability of the Josephson
superconductor–normal conductor–isolator–superconductor (SNIS) devices.

1.2.1.4 Ferromagnetic Metal–Superconductor Contact
Coexistence of such antagonistic phenomena as superconductivity and ferromag-
netism is a long-standing problem in solid-state physics. Originally, it was believed
that they aremutually exclusive, butmore recently it was found that they can coex-
ist under certain circumstances giving rise to novel combined effects. One of the
possibilities to observe the interplay between itinerant electron ferromagnetism
(F) and superconductivity is to put the two metallic films into a contact. Besides a
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fundamental physics interest, such bilayers hold important potential for applica-
tions in spintronics devices [25] as well as for recovery of amechanism of the high-
Tc phenomenon which typically occurs in the vicinity of a magnetic instability.
The main changes caused by replacing the N film in the MINS heterostruc-

ture with an F layer are related to the difference in their electronic structures.
Since the charge reflected at the F/S interface in an MIFS sample is created in the
electron density of states with a spin opposite to that of the incident quasiparti-
cle, the scattering strength (and, as a result, the F/S bilayer resistance) strongly
depends on the spin imbalance in the ferromagnet. Its theoretical analysis is usu-
ally based on the Stoner model of metallic ferromagnetism where charge carriers
with opposite spins occupy rigidly shifted bands with the difference in energy
equal to 2𝜀ex (see Figure 1.2.1.3c). In this case, Fermi wave vectors for electron
spin-up k↑

F and spin-down k↓
F bands are different: 𝛿k(F) = k↑

F − k↓
F = 2𝜀ex∕ℏvF =

const (their energy dependence may be not taken into account for 𝜀 ≤ Δ ≪ EF).
For example, in Ni the averaged over Fermi surface s-subband values are k↑

F =
5.1 nm−1 and k↓

F = 4.7 nm−1 [26]. Thus, the semiclassical quantization condition
for the Andreev bound state in an F interlayer looks as follows: k↑

FxdF + 𝜒eh −
k↓
FxdF + π − k↓

FxdF + 𝜒he + k↑
FxdF + π = 2𝛿k(F)

x dF − 2 arccos(𝜀∕ΔS) = 2πj, where dF
is the thickness of the F interlayer. As the distance from the F/S interface increases,
the phase shift 𝛿k(F)

x dF grows continuously and for dF ≈ 2πℏvF∕4𝜀ex is equal to
π. This phase shift produces oscillations of the superconducting order parameter
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Figure 1.2.1.6 Calculated differential
conductance-versus-voltage dependencies
for a tunneling junction with a Ni/Nb bilayer;
dF = 0 nm (solid line), 1.0 nm (dotted line),
2.5 nm (dashed line), and 4.0 nm (dashed-
dotted line), RN is the resistance of the junc-
tion in a normal state; the Nb energy gap
was set to 1.3meV; temperature T = 0. The
inset demonstrates schematic behavior of

the superconducting order parameter in
the F/S bilayer. The continuity of Δ(x) at the
interface implies the absence of the poten-
tial barrier. In the general case, the jump of
the order parameter occurs at x = 0 like in
Figure 1.2.1.1. (Adapted from [26]. Repro-
duced with permission of World Scientific
Publishing Company.)
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on a length scale ∼ 1∕𝛿k(F) = ℏvF∕2𝜀ex (see the inset in Figure 1.2.1.6). The states
corresponding to a positive sign of the order-parameter real part are called 0-states
and those corresponding to the negative sign are known as 𝜋-states. In general,
the overall character of the differential conductance for finite thicknesses of the
F interlayer remains similar to that for MINS junctions, but now the measurable
shift of the peak in G(V ) can be obtained for relatively small values of dF. The
effect of increasing dNi from 0 to 5 nm in transport characteristics of Al–I–Ni/Nb
samples measured by SanGiorgio et al. [27] well agree with related numerical sim-
ulations by Belogolovskii et al. [26] including an anomalous double-peak structure
for extremely thin Ni films (Figure 1.2.1.6).
In addition to the spatial oscillations of the pair wavefunction, spin-singlet

Cooper pairs are fragile under the exchange potential which affects differently
electrons with opposite spins. As in Nmetals, the penetration of superconducting
correlations into a ferromagnetic metal is limited by dephasing between electron
and hole wave functions but in the case of an F layer, it is much stronger. That
is why for a direct FS bilayer, the penetration depth is atomically short (the
only exception is the clean limit le ≫ 𝜉0 at kBT ≪ 𝜀ex when it is limited only
by elastic impurity scattering and typically exceeds the oscillation period). In
general, the decay value depends on the presence of elastic scatterings as well as
on the strength of the exchange field (see the review by Golubov et al. [14]). In
the dirty limit at T = 0, the decay length exactly coincides with the oscillation
period and for sufficiently strong diffusive ferromagnetic materials like Fe,
Co, Ni even at finite temperatures 𝜉F =

√
ℏD∕(2𝜀ex). But in the general case,

especially for weak ferromagnets, when the temperature and the exchange field
are equally important, the period of the Cooper potential oscillations and their
decay do not coincide. Moreover, when the temperature is going down, the decay
length increases whereas the oscillations period decreases. Because of it, the
temperature variation can be used as a good tool for engineering the phase shift
of the superconducting order parameter along the F layer from 0 to π [28].
The new burst of interest to the F/S problem is associated with the so-called

long-range equal spin-triplet pairing state, a new type of proximity-induced
superconducting state in ferromagnets which can be realized in the presence of
a magnetically inhomogeneous F/S interface [29]. Spin-dependent phase shifts
which are acquired by electrons penetrating through the interface can induce
spin-triplet s-wave Cooper pairs in ferromagnets. The latter ones should have
the odd-frequency symmetry to satisfy the requirement from the Fermi–Dirac
statistics of electrons and be not suppressed by the exchange potential. If so,
they are able to deepen into the ferromagnet at distances of the order of the
decay length 𝜉T for a normal metal. The novel aspect of the PE consists in the
fact that by introducing a low-transparent magnetic interface, we can enhance
the penetration depth into the F layer from nanometers for singlet pairing to
microns (at least, at very low temperatures) for triplet one. The relative fraction
of odd-frequency pairs to even-frequency pairs depends sensitively on such
junction parameters as its geometry, the interface transparency, and so on. Notice
also that the inhomogeneous magnetization needed for the transformation does
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not necessarily be intrinsic. For example, it can be introduced by two misaligned
magnetic layers like in the experiment by Khare et al. [30].
Let us now discuss a few practically useful ideas from a long list of striking

proposals relating the PE in systems with S and F layers. As was explained
above, in FS contacts the PE manifests itself in the damped oscillatory behavior
of superconducting correlations induced in a ferromagnet. As a result, for
certain thicknesses of the F layer and temperatures, the order parameter in a
superconductor–ferromagnet–superconductor (SFS) junction may become
positive at one S electrode and negative at the other S electrode. In this situation,
one gets a π Josephson junction with the spontaneous π-shift of the phase
difference in its ground state. Its properties are indeed unusual. For example,
when connecting the S electrodes with a superconducting wire, one may expect
the spontaneous super-current circulating in the loop, passing clockwise or
counterclockwise. It has been experimentally demonstrated that the π-junction
improves the performance and simplifies the design of classical and quantum
circuits. An idea to introduce π-junctions as passive phase shifters in rapid single
flux quantum (RSFQ) circuits was proposed by Ustinov and Kaplunenko [31].
It permits (i) to use only conventional junctions to carry flux quanta, and thus
to provide logical functionality, (ii) to substitute by π-junctions the relatively
large geometrical inductance of storing a single-flux quantum RSFQ cells and,
hence, to reduce greatly the size of RSFQ circuits, (iii) to operate in the passive
mode which has some advantages over the active regime. In a 𝜑-junction, a
generalization of the π-junction with a doubly degenerate ground state, the
Josephson phase takes the values +𝜑 or −𝜑 (0<𝜑< π) [32]. This device is, in fact,
a phase battery providing an arbitrary phase shift and being closed into a ring is
able to self-generate a fractional flux 𝜑Φ0∕(2π), where Φ0 is the magnetic flux
quantum.
Moreover, superconducting devices with a magnetic interlayer can be useful

for the solution of other problems of superconducting electronics and so are
able to realize its high performance potential. Let us provide some examples.
The first problem relates the lack of high-capacity superconducting random
access memory [33]. Magnetic Josephson junctions, that is, superconducting
structures with incorporated magnetic layer(s), were suggested to perform both
data storage and readout functions. By applying magnetic field pulses (e.g.,
by current pulses through a superconducting write line), the F-layer can be
magnetized in two opposite directions. To discriminate these directions, a read
current bias is applied through the junction inducing a reference magnetic field.
Depending on F-layer magnetization, this field either adds to or subtracts from
F-layer magnetic field effectively forming two possible magnetic states with high
or low magnetizations corresponding to low (“1”) and high (“0”) critical currents,
respectively [33]. Another problem relates a superconducting three-terminal
device which could switch and amplify electric signals like a semiconducting
transistor. One of the most promising designs is a double-barrier S1IS2IS3
structure based on the tunneling injection of nonequilibrium quasiparticles
through a thin insulating layer into the middle S2 layer and detection of the
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resultant energy gap suppression by the second junction. While possessing
essential transistor-like characteristics, the “symmetric” S1IS2IS3 device has a
drawback detrimental for its implementation, namely, lack of isolation between
the input and output terminals. Nevirkovets and Belogolovskii [34] proposed
to block parasitic back-action of the acceptor junction by a few-nanometer
thick inhomogeneous ferromagnetic film inserted between the barrier and the
middle S2 layer. At last, the long-range PEs in ferromagnets pave the way for the
controlled creation of completely spin-polarized super-currents which would
necessarily have to be triplet. Such superconducting spintronics devices are, in
particular, ideal candidates for quantum computing.

1.2.1.5 New Perspectives and New Challenges
A new step in the development of the PE that started several years ago is
related to the search of Majorana fermions (see the review by Beenakker [35]).
These hypothetical elementary particles which are often described as “half
fermions” since they are the only fermionic particles expected to be their
own antiparticles, have not been identified in the nature yet but can exist as
quasiparticle excitations in solid-state systems. A great variety of strategies has
been put forward in recent years to engineer Majorana fermions in different
condensed-matter platforms. One of the most promising proposals is to use
proximity-induced superconductivity in the surface of topological insulators, a
new phase of matter where conduction of electrons occurs only on the surfaces
due to strong spin–orbit coupling, which inverts the order of conduction and
valence bands. Three-dimensional topological insulators have surface electron
states with massless Dirac cones in which the spin of an electron is locked
perpendicular to its momentum in a chiral spin structure where electrons with
opposite momenta have opposite spins. When such a material is brought in
contact with a conventional spin-singlet, s-wave S layer, superconductivity is
induced on its surface, with a nondegenerate state at the Fermi level (𝜀= 0), in
the middle of the superconducting gap. This specific midgap state following from
the electron–hole symmetry is just the Majorana fermion. A key probe to detect
it experimentally is the tunneling differential conductance which should show a
peak at zero-voltage bias. Several groups have already reported zero-bias anoma-
lies in corresponding PE devices (see, in particular, [36]). Another interesting
prediction is a 4π-periodic Josephson effect [35]. At the moment it is not clear
whether or not the observed anomalous features reflect a Majorana bound state
signature. But, if the presence of Majorana fermions is proved, it will provide
a fundamentally new way to store and manipulate quantum information, with
possible applications in a quantum computer [35].
The progress in the PE research and arising challenges are not limited by this

exotic field. Whereas the main fundamental features of the N/S PE (at least, for
traditional superconductors) are clear, less is known about such structures very
far from equilibrium as well as about nonlocal correlations in a proximized N
layer (see [37, 38]). The problem of the competition between electron–electron
interactions and the superconducting PE remains largely unexplored. Recent
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experiments [39] have shown that graphene provides a useful experimental
platform to investigate it. Up to now, it is not clear why sometimes the Tc
of a superconductor is increased upon attachment to a nonsuperconducting
material. For example, in the work by Katzir et al. [40], it was shown that the Tc
of thin Nb films increases by up to 10% when they are chemically linked to gold
nanoparticles using ∼3 nm long disilane linker molecules.
Even more questions are arising for contacts between superconducting and

magnetic materials. While much of the work on F/S PE is focused on the pene-
tration of the superconducting order parameter into the ferromagnet, very little
was done to understand the penetration of the magnetization into the adjacent
S metal which is often called the inverse proximity effect. The first theoretical
interpretation of the problem arising in F/S bilayers was done by Krivoruchko
and Koshina [41]. Direct experimental observation of the inverse PE in Ni/Pb
and Co–Pd/Al bilayers was presented in the work by Xia et al. [42] where it was
shown that the magnetization in a ferromagnetic film induces a magnetization in
a superconducting film that is much smaller and opposite in sign.
Although singlet superconductivity and ferromagnetism are mutually exclusive

in homogeneous bulk materials, magnetization noncollinearity is expected to
enhance Tc. Zhu et al. [43] observed a nonmonotonic enhancement of supercon-
ductivity with the increase of magnetic noncollinearity in a related F/S sandwich.
An interest in PE contacts formed by superconductors and antiferromagnets
(AFs) has increased when it was found that at low temperatures iron-based
superconductors can be intrinsically phase separated into antiferromagnetic and
superconducting regions. Corresponding theoretical predictions [44] have not
been yet checked experimentally.

1.2.1.6 Summary

The current understanding of the relationship between the PE in the old sense, as
a leakage of superconductivity into a normal metal, and the Andreev backscatter-
ing at the NS interface is that they are only two sides of the same coin. Whereas
this statement helped to understand the basic observations for N/S bilayers, it is
not so in the case of F/S structures. From the experimental side, one of the most
significant recent developments has been a striking phenomenon of generation
of odd-frequency spin-triplet s-wave pairs in F/S devices by spin-mixing due to
inhomogeneous magnetization or spin-dependent potential. New physics is yet
to be captured in the theoretical treatments of F/S systems.
Discovery of topological superconductivity has paved the way for the novel

states of quantum matter which are not only of a fundamental significance
but have potential practical implications as well. The resemblance of the new
exotic phase with strong spin–orbit coupling to the already studied spin-triplet
superconductivity without it [45] permits to reveal the essential physics of
the PE in the novel materials using the previous knowledge about spin-triplet
superconductors. In our opinion, experimental and theoretical efforts aimed to
create topological superconductors, gapped phases of fermionic quantum matter



References 63

whose zero-energy states can be associated with Majorana quasiparticles, will
certainly be a major research theme in the PE field for the nearest future.
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1.2.2
Tunneling and Superconductivity

Steven T. Ruggiero

1.2.2.1 Introduction
Superconducting and related tunneling is a rich and broad field involving
investigations of the basic nature of superconductivity and other phenomena,
and includes a wide variety of unique electronic devices. Tunneling is a powerful
tool for uncovering the properties of the metals and insulators comprising tunnel
systems, and can reveal the excitation spectra of various types of species incor-
porated into tunnel systems. Since electrons are injected from one conductor
into another through an insulating barrier, we are performing spectroscopy [1].
And because of the physical nature of tunnel junctions, it is straightforward to
accurately measure the energy of the tunneling electrons.

1.2.2.2 Normal/Insulator/Normal Tunnel Junctions
Consider a simple tunnel junction comprising two normal metals separated by
a thin (∼1–2 nm) insulating barrier, a normal-metal/insulator/normal-metal
(NIN) junction as shown in Figure 1.2.2.1. Depicted is the semiconductor model
(Figure 1.2.2.1a) for a system comprising two normal metals with states filled to
the Fermi level, offset by the energy eV , where V is the externally applied bias
voltage. In this case, the current–voltage (I–V ) characteristic, Figure 1.2.2.1b, is
linear for small voltages compared to the tunnel barrier height of the insulator,
𝜙∼ 1 eV, and rises rapidly as the applied voltage approaches 𝜙 as:

N N

eV

Normalized
density of

states

(a) (b)

I

N NI

l

𝜙 𝜙

V

Rn

Figure 1.2.2.1 (a) Density of states for normal-metal/insulator/normal-metal (NIN) tunnel
junction. (b) Current–voltage characteristics for a NIN tunnel junction.
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I =
(

1
Rn

)
(V + aV 3) (1.2.2.1)

where a is a barrier-dependent scaling parameter. Otherwise, the tunneling char-
acteristics are featureless.

1.2.2.3 Normal/Insulator/Superconducting Tunnel Junctions
If we make one of the materials in a tunnel system superconducting, we have a
normal-metal/insulator/superconductor (NIS) junction, with I–V characteristics
markedly changed at low voltage compared to the featureless NIN systems. At
applied bias voltages typically on the order of ∼1–10mV, the energy gap in the
superconducting density of states will be strongly manifest in the tunnel charac-
teristics. We can see this effect by again viewing tunneling in the so-called semi-
conductor model (Figure 1.2.2.2a). Here, the tunneling process is depicted as the
convolution of the tunneling densities of state a superconductor, with an energy
gap Δ, and a normal metal, where the zero-temperature superconducting energy
gap is given by

Δ(0) = πe−𝛾kBTc

= 1.764 kBTc (1.2.2.2)

and 𝛾 = 0.5772… is the Euler–Mascheroni constant.
In this case, the tunnel current is given by

INS =
1

eRn ∫
∞

−∞

|E|
[E2 − Δ2]

1
2

[f (E) − f (E + eV )]dE (1.2.2.3)
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T = 0
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Figure 1.2.2.2 (a) Density of states for a normal-metal/insulator/superconductor (NIS) tun-
nel junction. For T > 0, some electrons are thermally excited across (twice) the supercon-
ducting energy gap Δ. (b) Current–voltage characteristics for NIS tunnel junction.
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~10–50 nm(a)

(b) 𝜉

Figure 1.2.2.3 Shown on (a) is a tunnel
junction, in its simplest form comprising a
“sandwich” of a thin-film base electrode, a
thin insulating barrier, and a top electrode
and (b) is a weak-link Josephson system.

Here, macroscopic superconducting elements
are coupled by a small bridge or point con-
tact, on the order of or smaller than the
superconducting coherence length 𝜉.

where f (E) is the Fermi function. The resultant I–V characteristics are shown in
Figure 1.2.2.2b. Giaever [2] observed the superconducting energy gap by creat-
ing NIS junctions of the form Al/Al2O3/Pb. This was done by vapor depositing a
thin film of Al, allowing it to oxidize to create a ∼1–2 nm thick insulating tunnel
barrier, and finally depositing a cross stripe of Pb (and in a separate experiment
In). These so-called “sandwich” junctions (see Figure 1.2.2.3) were measured at
temperatures above the critical temperature of the Al stripe. Countless experi-
ments on a variety of superconductingmaterials followed from this seminal work.
Barriers can also be formed “artificially” by the direct deposition of insulating or
semiconducting materials [3].

1.2.2.4 Superconductor/Insulator/Superconducting Tunnel Junctions

In the case where both materials are superconducting, the tunneling behavior
becomes yet more interesting (Figure 1.2.2.4). For superconductor/insu-
lator/superconductor (SIS) systems, the tunnel current is given by the expression:

ISS =
1

eRn ∫
∞

−∞

|E|
[E2 − Δ2

1]
1
2

|E + eV |
[(E + eV )2 − Δ2

2]
1
2

[ f (E) − f (E + eV )]dE (1.2.2.4)

where the integral is assumed to exclude values of E, where |E|<Δ1 and
|E + eV |<Δ2. If we follow the characteristics along the voltage axis, for quasi-
particle tunneling, we see a current rise to V /Rn when we reach a bias potential
V = (Δ1 +Δ2)/e, where Rn is the normal tunnel resistance in the absence of
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Figure 1.2.2.4 (a) Density of states for a superconductor/insulator/superconductor (SIS)
tunnel junction. (b) Current–voltage characteristics for an SIS tunnel junction.

superconductivity. At finite temperature, an increase in current will also be
observed at a bias voltage of V = |𝛥1 −𝛥2|/e.
There is also a rich set of phenomenology associated with the second, zero-

voltage Josephson branch of the I–V characteristics. Here, the current rises – at
zero voltage identically – until a maximum sustainable or critical current, Ic, is
reached. This is a manifestation of the DC Josephson effect [4], where Cooper
pairs tunnel through the barrier.This phenomenonwas observed byAnderson and
Rowell [5] using Sb/Sb-oxide/Pb tunnel junctions prepared using the technique of
Giaever as noted earlier.
Josephson effects can also be observed in so-called weak-link systems

(Figure 1.2.2.3), where a nanoscale-size superconducting element connects
macroscopic-scale superconductors, as with a so-called point contact. The
critical current is given in general by Ambegaokar and Baratoff [6]

IcRn =
π[Δ1(T) + Δ2(T)]

4e
tanh

Δ1(T) + Δ2(T)
4kBT

(1.2.2.5)

At T = 0, then, both tunnel junctions and – in the dirty limit [7] – weak links will
have a critical value given by:

IcRn =
π[Δ1(0) + Δ2(0)]

4e
(1.2.2.6)

For temperatures in the vicinity of Tc, we have:

IcRn =
(2.34πkB

e

)
(Tc − T)

≈ (Tc − T) 635μVK−1 (1.2.2.7)

We note that this temperature dependence is strictly applicable in the case of
tunnel junctions (the topic of this chapter). Other Josephson devices – such
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S1 S2I

ei𝜃2ei𝜃1

𝜓1 𝜓2
Figure 1.2.2.5 Two superconductors separated by an
insulating tunnel barrier.

as weak links and superconductor/constriction/superconductor (ScS),
superconductor/normal-metal/superconductor (SNS), superconductor/insulator/
normal-metal/superconductor (SINS), superconductor/insulator/normal-metal/
insulator/superconductor (SINIS), superconductor/ferromagnet/superconductor
(SFS), and so on systems – will have a temperature dependence of IcRn that can
differ considerably from this classic Ambegaokar–Baratoff result.
To better understand the origin of Josephson behavior in tunnel junctions, let

us consider two superconductors separated by an insulating barrier, as sketched
in Figure 1.2.2.5. Each superconducting condensate can be described by a single
wavefunction as 𝜓i =

√
niei𝜃i , where n is the density of superconducting elec-

trons and 𝜃 is a phase factor. If a potential energy U2 −U1 = 2eV exists between
the superconductors, then the applicable coupled Schroedinger equations can be
written as:

iℏ
∂𝜓1
dt

= U1𝜓1 + K𝜓2

iℏ
∂𝜓2
dt

= U2𝜓2 + K𝜓1 (1.2.2.8)

where K is a coupling constant. DefiningΔ𝜃 = 𝜃1 − 𝜃2, this leads to a current flow
of:

I = Ic sinΔ𝜃 (1.2.2.9)

where Ic = 2K (n1n2)1/2/ℏ. We also have

∂(Δ𝜃)
∂t

= 2eV
ℏ

(1.2.2.10)

Equations (1.2.2.9) and (1.2.2.10) represent the DC and AC Josephson effects.
Thus, for a fixed applied voltage difference, V , there is a steadily increasing phase
difference

Δ𝜃(t) = Δ𝜃(0) + 2eV
ℏ

t (1.2.2.11)

Therefore, the Josephson current will oscillate at a frequency

f = 2eV
h

(1.2.2.12)

This result is remarkable in that it is true exactly, and that the appropriate
charge is indeed 2e, the charge of a Cooper pair. The Josephson frequency
2e/h= 483.6GHzmV−1. When a Josephson junction is irradiated with radio-
frequency waves of frequency f , a series of steps will appear in the DC I–V
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characteristics at voltages

Vn =
nhf
2e

(1.2.2.13)

These Shapiro steps [8] are the basis of Josephson-junction-based voltage stan-
dards because the frequency of microwaves can be very accurately determined,
seeChapter 7.N ×M arrays ofmicrowave-irradiated Josephson junctions can pro-
duce so-called “giant” Shapiro steps of voltage

Vn = N
nhf
2e

(1.2.2.14)

for arrays N junctions long in the direction of the current flow. This situation
can also be reversed to produce voltage-tunable microwave radiation sources [9].
While typically producing very low rf power, such arrays are suitable for applica-
tions such as local oscillators for low-noise superconductor-based mixers.
We note finally that for the high-temperature superconductors, a separate class

of internal, so-called intrinsic Josephson effects has been discussed in the litera-
ture, related to interlayer coupling [10].

1.2.2.5 Superconducting Quantum Interference Devices (SQUIDs)
We can also create a very interesting device by placing two Josephson junctions
in a ring as shown in Figure 1.2.2.6a. Here, we have two critical currents of Ic1 and
Ic2, so the total current is

I = Ic1 sin(Δ𝜃1) + Ic2 sin(Δ𝜃2) (1.2.2.15)

If we apply a magnetic field, then the flux in the ring will then be given as

Φ = ∫ B ⋅ dS

= ∮ A ⋅ d𝓁

=
Φ0
2π ∮ (𝛁𝜃) ⋅ d𝓁 (1.2.2.16)

0
(b)(a)

1–1

Ic(Φ)

Φ

Φ
Φ0

Figure 1.2.2.6 (a) A superconducting quantum interference device (SQUID) comprising two
Josephson junctions in a loop. (b) Critical current as a function of applied flux for a SQUID.
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whereΦ0 = h/2e= 2.068× 10−15 Tm2 is themagnetic flux quantum. Assuming we
have chosen a specific loop contour, we can then say

Δ𝜃 = 2π Φ
Φ0

(mod 2π) (1.2.2.17)

For a system with identical junctions, we can write

I = Ic sin(Δ𝜃1) + Ic sin(Δ𝜃2)

= Ic sin
[
Δ𝜃 + πΦ

Φ0

]
+ Ic sin

[
Δ𝜃 − πΦ

Φ0

]
= 2Ic sin(Δ𝜃) cos

πΦ
Φ0

(1.2.2.18)

So the critical current will be modulated by the applied flux as

Ic(Φ) = I0
|||||cos πΦΦ0

||||| (1.2.2.19)

as depicted in Figure 1.2.2.6b. Because the flux quantum is so small, this means
that superconducting quantum interference devices (SQUIDs) represent themost
sensitive systems for the detection of magnetic flux, permitting measurements of
absolute magnetic fields as small as ∼10−15 T.
Note that for a single junction, the application of a magnetic field leads to a

Fraunhofer dependence of the critical current for the case of homogeneous cur-
rent density. This behavior is analogous to single-slit optical diffraction. For fur-
ther discussion and examples, seeChapter 9.Other references to Josephson effects
can be found in texts on the subject [11].

1.2.2.6 Phonon Structure
Basic information can be obtained about the superconducting electrodes of
tunnel junctions by studying the details of their I–V characteristics. Of course
the tunneling characteristics immediately supply the superconducting energy gap
(or gaps) of the materials involved. In addition, we can learn about the phonon
structure of phonon-mediated superconductors. The superconducting density of
states, embodied earlier in our tunneling equations, can be expressed as:

NS(E) = N(0)Re
[

E2

E2 − Δ2 (E)

] 1
2

(1.2.2.20)

Here, we allow for the fact that the energy gap is not a structureless constant but
has both real and imaginary parts, the latter of which correspond to damping by
the creation of phonons, especially in the vicinity of energies E = h𝜈phonon [12].
This effect can be readily observed as small deviations in the tunnel conductance
as noted by Giaever et al. [13]. More detailed analysis can provide 𝛼2F(𝜔), the
electron–phonon coupling strength times the phonon density of states [14].
Obtaining the phonon density of states from tunneling falls into a larger

category of inelastic electron tunneling spectroscopies (IETS), another important
example of which is the examination of the vibrational spectra of molecular
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absorbates. This is done by introducing molecular species into tunnel structures
to create metal/insulator/absorbate/metal (MIAM) systems. This process can be
as simple as first depositing an aluminum film, allowing it to oxidize to form a
tunnel barrier, exposing the barrier to molecules in vapor form, and completing
the junction with a compatible counter-electrode metal. As discussed by Hipps
and Mazur [15], MIAMs can be employed to explore the vibrational and electron
spectroscopic information of the metal electrodes (magnons and phonons, the
latter as noted above), insulator, and absorbate. MIAMs have been applied to
the study of surface chemistry and catalysis, adhesion and corrosion, molecular
vibrational spectroscopy, and orbital-mediated tunneling.

1.2.2.7 Geometrical Resonances

Phenomena related to electron interference effects can also be explored. These
effects have been observed as oscillations in the tunnel characteristics in sys-
tems of the type SIN′S and/or SIS′, where N′ and S′ vary in thickness. The
observation of these effects may require especially clean films. For sub-gap
energies, multiple Andreev reflections [16] and de Gennes–Saint-James bound
states [17] can give rise to oscillations in the tunnel conductance which are
nonperiodic in energy. For energies above the superconducting gap, geometric
resonances can involve Tomasch oscillations [18] in superconducting electrodes
and McMillan–Rowell oscillations [19] in normal electrodes. The bias-voltage
spacings for Tomasch and McMillan–Rowell oscillations generally scale as
ΔV = hvFS∕2edS (ΔS ≪ eΔV ) and ΔV = hvFN∕4edN. Thus, the Fermi velocity
and thicknesses of the superconducting and normal layers govern the period of
the conductance oscillations.

1.2.2.8 Scanning Tunneling Microscopy

Scanning tunneling microscopy (STM) is a technique of vast importance and
applicability. Both superconducting and normal-metal tips with atomic-level
sharpness can be positioned within tunneling distance above surfaces. As the
tip is rastered over a surface, a two-dimensional picture of its tunneling density
of states can be created. As noted by De Lozanne [20], this information can
be coupled with other powerful surface-scanning techniques such as atomic
force microscopy (AFM), magnetic force microscopy (MFM), Hall effect (SHPM,
scanning Hall probe microscopy), SQUID, microwave, near-field optical, or
magneto-optic microscopies. These techniques have been notably useful in
exploring the properties of the high-temperature superconductors.

1.2.2.9 Charging Effects

Charging effects can be observed in tunneling if either one or more of the tunnel
electrodes has an ultra-small capacitance [21, 22] or else nano-size elements [23]
are otherwise incorporated into the tunnel structure. To observe charging effects,
it must also be generally true that Ec = e2/2C > kBT and that the charging energy
exceed the thermal energy, where C is the capacitance of the nano-element(s). It
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Figure 1.2.2.7 Shown is the coulomb staircase for tunneling into nano-droplets of metal
incorporated into the insulating barrier structure of a metal/insulator/metal (M/I/M) tunnel
system.

must also be true that R> h/4e2 and that the effective resistance of the measured
system exceed the quantum resistance.
In the case of nano-sized elements, tunnel junctions can be formed which

incorporate metal particles ∼1–10 nm in size into the tunnel barrier, which have
charging energies in the vicinity of ∼10meV, as shown in Figure 1.2.2.7 [23]. Such
junctions can exhibit both the “Coulomb blockade,” a gap-like overall offset in
the I–V characteristics of voltage e/2C, and a series of steps of width e/C and
height e/RC, which is the “Coulomb staircase.”
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1.2.3
Flux Pinning

Stuart C. Wimbush

1.2.3.1 Introduction

The amount of DC electrical current able to be transported without loss (or, in
practice, below some small but measurable voltage drop, typically quoted as 1V
over 10 km) by a superconducting wire under a given set of operating conditions
(temperature, magnetic field) is the parameter that ultimately determines its tech-
nological applicability, and this critical current in turn is determined by the immo-
bilization, or pinning, ofmagnetic flux lines within the superconductor.The origin
of the magnetic fluxmay be either an appliedmagnetic field, as exists in motors or
generators, or the field generated by the transport current itself (termed the self-
field) as is the case, for example, in power transmission cables or transformers.
Consequently, the existence of a pinning-limited critical current is unavoidable.
Likewise, in superconducting electronic devices and in bulk superconductors used
as permanentmagnets, the prevention of fluxmotion through pinning is critical in
order to reduce noise or to effectively trap an applied magnetic field. This section
examines the mechanisms by which magnetic flux lines can be pinned, the dif-
ferent types of pinning centers that have been employed to engineer high critical
current superconductors, the measurements able to provide experimental infor-
mation on flux pinning, and the state-of-the-art flux pinning presently achievable
in second generation coated conductors.

1.2.3.2 Flux Lines, Flux Motion, and Dissipation

Flux lines form within a type II superconductor because it is energetically favor-
able for the material to allow a magnetic field to locally penetrate the bulk to
form a mixed state comprising quantized threads of magnetic flux encircled by
regions of superconducting material through which spontaneous supercurrents
flow so as to screen the field from the bulk of thematerial, thereby forming a vortex
(Figure 1.2.3.1).This enables the superconductivity as a whole to persist to a much
higher field than would be possible if the Meissner state of complete flux expul-
sion were to be maintained (cf. Section 1.1.1), and is the case precisely because
the spatial extent of the magnetic penetration in the type II materials exceeds the
extent of the disruption to the superconducting state 𝜅 = 𝜆∕𝜉 > 1∕

√
2. Thus, by

allowing a small volume ofmaterial to revert to the normal state, the resulting pen-
etrating magnetic field can be screened over a large volume of superconducting
material. The upper critical field Bc2 =Φ0/2n𝜉2 at which superconductivity ceases
can be expressed intuitively as the field at which the non-superconducting regions
overlap, resulting in an entirely normal statematerial. However, from a technolog-
ical point of view, both this limiting field and the depairing current that provides
an absolute upper limit to the current-carrying capacity of the material are sup-
planted by stricter limits governed not by the thermodynamic phase transition
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Figure 1.2.3.1 A quantized line of mag-
netic flux penetrates a type II superconduct-
ing slab subjected to an applied magnetic
field exceeding its lower critical field. Sponta-
neous circulating supercurrents form a vortex
that screens the field from the bulk of the
superconductor. Under the influence of an

imposed transport current, the unpinned flux
line experiences a force analogous to the
Lorentz force that causes it to move, dissipat-
ing energy. For this to be prevented, the flux
line must be pinned by a countering force
that inhibits dissipative motion up to some
critical value of the transport current.

from the superconducting to the normal state but rather by energy dissipation
within the superconductor caused by motion of the flux lines.
Flux motion occurs as a result of a force analogous to the Lorentz force

FL = J ×B being exerted on the flux lines under the influence of an imposed
transport current J . The moving flux lines are accelerated until the retarding
force due to viscous flow, proportionally opposed to their velocity v, matches
the Lorentz force. The spatially varying magnetic field of the moving flux lines
induces an electric field E = –v×B in the direction of the transport current.
This electric field acts on the normal electrons within the superconductor,
dissipating energy through ohmic losses. Since the magnitude of the electric
field is likewise proportional to the velocity of the moving flux lines, it will also
be proportional to the transport current (E = 𝜌fJ), and the response is therefore
indistinguishable from an ohmic resistance. Macroscopically, while remaining
in the superconducting state and conducting current through the transport of
Cooper pairs, the superconductor will nonetheless exhibit a resistance, termed
the flux flow resistance. It is therefore the DC supercurrent that can bemaintained
in the absence of this resistance that dictates the range of practical operation of
the superconductor, and this is termed the critical current, Jc.
Such a zero-resistance DC transport current can only be established if some

means of preventing flux motion is available. Otherwise, the smallest transport
current will generate a self-field of some degree, which will penetrate the super-
conductor in the form of flux lines as soon as it exceeds the lower critical field.
Those flux lines will flow unimpeded through the superconductor under the influ-
ence of the Lorentz force, generating a flux flow resistance and dissipating energy.
Such a situation arises in high-quality single crystals, which have extremely low
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Jc values. To overcome this, a force termed the pinning force must counter the
Lorentz force that is acting to excite the flux lines into motion. The opposition to
vortex motion from pinning forces provides a mechanism for the enhancement
of Jc, and also introduces our second limiting parameter in the form of the
irreversibility field Birr beyond which the number of flux lines present within the
superconductor exceeds its capability to effectively pin them all, with the result
that the magnetization becomes reversible (flux flowing freely into and out of the
superconductor) and Jc drops to zero. Increasing flux pinning in technological
materials is an essential endeavor in order to increase the achievable current and
field ranges and thus the performance of superconducting machines and devices.
The amount of pinning can be increased either by promoting naturally occurring
sources of pinning or by introducing new sources, so-called artificial pinning
centers.

1.2.3.3 Sources of Flux Pinning
Flux pinning may best be described as the effect of spatial inhomogeneities
within the superconductor upon the flux line lattice that forms when mutually
repulsive vortex–vortex interactions (resulting from the Lorentz force between
the circulating supercurrent Jd of one vortex and the magnetic fluxΦ0 of another)
are taken into account. Such inhomogeneities may arise naturally, for example,
through local variations in material density, elasticity or electron–phonon
coupling strength and the existence of crystalline defects, or they may be
introduced artificially through doping, microstructural modification, or the
incorporation of foreign bodies. A change in the material density is equivalent
to a change in the (chemical) pressure, and will give rise to a local change in the
superconducting transition temperature, Tc, as may strain fields and variations
in the electron–phonon coupling. Genuine material doping may act to combine
several of these effects. The pinning that results is termed 𝛿Tc pinning [1].
A similar effect occurs upon the inclusion of non-superconducting material,
which provides a region of suppressed Tc that may be highly localized or rather
extended, depending on the nature of the inclusion; however, such an inclusion
also constitutes a material defect that will have a scattering effect on the charge
carriers, acting to vary the electronic mean free path, l (𝛿l pinning, formerly
termed 𝛿𝜅 pinning [2]). In all cases, the result is the same: the creation of a lower
energy (preferred) site for vortex occupation.
For maximum effect, the spatial variations must occur on the length scale

of either 𝜉 or 𝜆, depending on the nature of the interaction; any larger and the
inhomogeneity will not be seen by the superconductor as an inhomogeneity
but rather as a distinct phase, any smaller and the effectiveness will be reduced
due to the proximity effect. That said, small-scale modifications such as atomic
substitutions can create larger-scale inhomogeneities through alterations of the
electronic structure or the creation of strain fields, and so on. It is the extent of
the inhomogeneity, not the extent of the modification, that matters.
A useful distinction can be drawn between pinning forces operating over

the length scale of 𝜉, termed (vortex) core pinning, and those operating over a
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length scale of 𝜆, termed magnetic pinning. To the former category belong the
majority of artificial pinning centers successfully employed to date as well as
all common growth defects, while the latter category comprises such natural
sources as extended surfaces and pores where the flux entirely enters or exits
the superconductor as well as pinning due to vortex–vortex interactions. While
vortex–vortex interactions do act to pin vortices, it is important to note that
this can only occur if at least some of the vortices are pinned by another source;
otherwise, the entire lattice will simply slip through the material. Where some
vortices are strongly pinned and others are not, shearing as well as melting of the
flux line lattice becomes an effective depinning mechanism. Inherently, magnetic
artificial pinning centers will combine both of these types, exerting a core pinning
influence through their localized suppression of superconductivity as well as a
magnetic pinning effect resulting from their magnetization (see Section 1.2.3.8).
By definition, all of these spatial inhomogeneities constitute defects in the crys-

tal lattice of the superconductor, and so flux pinning is inextricably linked to the
defect structure (often termed the defect landscape) of the material. As a conse-
quence, defect engineering of technologically relevant materials forms an exten-
sive field of endeavor. It has become common to catalog the available types of
pinning defects, which is nothing more than a list of possible crystal defects, and
a useful classification is to enumerate them in terms of their dimensionality, as
illustrated in Figure 1.2.3.2.
Zero-dimensional (point) defects include foreign (impurity) atoms, atomic sub-

stitutions, and vacancies (particularly when referred to the non-stoichiometric
oxygen content of the cuprates).These are effective in high temperature supercon-
ductors (HTS) due to the short coherence length of the materials, meaning that
a variation in stoichiometry over even a single atomic site can have a sufficiently
wide sphere of influence to locally suppress the superconducting order parameter.

3D, e.g., precipitates 1D, e.g., dislocations

0D, e.g., oxygen vacancies2D, e.g., grain boundaries

Figure 1.2.3.2 Schematic illustration of the pinning of flux lines by crystalline defects of
varying dimensionality.
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One-dimensional (line or columnar) defects include dislocations and artificial
defects such as the damage tracks resulting from heavy ion, neutron, or proton
irradiation. They are a particularly interesting class from the point of view of flux
pinning due to their congruence with the form of the flux line itself. Correlation
between the defects and the flux lines can lead to extremely strong pinning, with
the flux line being pinned along its entire length.As an example, screwdislocations
arise naturally during the growth of yttrium barium copper oxide (YBCO) thin
films, forming part of the growth mode of the material and contributing strongly
to its high Jc even before microstructural modification. A heavy focus is applied
to engineering artificial pinning centers of this type in an attempt to smooth out
the naturally occurring Jc anisotropy of the HTS materials. Since high-energy
irradiation techniques are impractical for industrial production, the emphasis is
on self-assembly processes of second-phase inclusions, although low-energy ion
implantationmethods have been employedwith some success in introducing clus-
ters of atoms to act as volume pinning centers [3].
Two-dimensional (planar) defects include grain boundaries, twin planes, stack-

ing faults, and antiphase boundaries. Grain boundaries are important pinning
centers in low temperature superconductors (LTS) and MgB2, while twin planes
and stacking faults are particularly prevalent in second generation coated conduc-
tors due to the orthorhombic structure of the YBCO crystal promoting twinning
and the close proximity of the equilibriumphase formation conditions of Y123 and
Y124 encouraging stacking fault formation to accommodate compositional vari-
ations. The low angle grain boundaries in HTS are better viewed as “dislocation
fences” of one-dimensional defects than as continuous planar defects, due to the
short coherence lengths. Antiphase boundaries tend to be of limited effectiveness
due to their restricted spatial extent, tendency to heal out during growth by com-
binationwith stacking faults, and the fact that superconductivity is only somewhat
suppressed by them. Planar defects can also provide correlated pinning, although
with the risk of channeling of the flux lines along the planes [4].
Three-dimensional (volume) defects generally constitute secondary (impurity)

phases, precipitates, or inclusions as well as voids (porosity). The similarity
to point defects is apparent, although volume defects can also be effective in
high coherence length materials such as LTS or at temperatures close to Tc.
The majority of work on artificial pinning centers focuses on the intentional
introduction of non-superconducting secondary phases intended to promote
pinning. The requirements on these are that they should remain segregated from
the superconducting matrix, and that they should be of a size appropriate to
provide effective pinning while not consuming too great a volume fraction of the
material (which then becomes unavailable for supercurrent transport). The most
effective pinning arises from inclusions the size of 𝜉, and in HTS materials, this
implies nano-engineering.
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1.2.3.4 Flux Pinning in Technological Superconductors
Having enumerated the available sources of pinning in general terms,wenow look,
by way of example, at the specifics of flux pinning in the technological super-
conductors. Only a small subset of the many known superconductors has been
developed for commercial application: Nb–Ti and Nb3Sn of the LTS materials
and Bi-2223 and YBCO of the HTS materials, with MgB2 now also fighting to
enter the fold. Each of these has decidedly different flux pinning characteristics.
The ductile alloy Nb–Ti is formed into a wire by repeated bundling, drawing,

and annealing of rods of the material embedded within a stabilizing Cu matrix
to form a filamentary conductor. In this material, pinning occurs when flux
lines interact with dislocation tangles created during the drawing process. These
regions of dense dislocations decrease the electronic mean free path, resulting
in 𝛿l pinning. The microstructure of the filaments comprises elongated Nb–Ti
grains with non-superconducting Ti precipitates lying along the filaments. The
radial Lorentz force therefore drives flux lines across the grain boundaries and
through the non-superconducting precipitates.
The A15-structure compound Nb3Sn is initially prepared in a similar way, this

time using rods of pure Nb placed within a bronze (Cu–Sn) matrix.This is drawn
to again produce a filamentary conductor which is then heated to allow the Nb to
post-react with Sn leached from the bronze. Production in this sequence is neces-
sary due to the brittleness of the resulting intermetallic phase limiting subsequent
processing.The post-reaction process results in columnar grains of superconduc-
tor oriented perpendicular to the filament. Consequently, the Lorentz force drives
some of the flux lines along, rather than across, the grain boundaries, causing the
flux line lattice to shear and thereby reducing the effectiveness of the pinning.
In the high temperature superconductors, the critical current is limited by two

effects.The first, due to the small coherence length, results in any large angle grain
boundary forming a weak link, severely limiting current flow [5]. However, careful
materials processing has today virtually eliminated this type of grain boundary
from technological materials, and since this effect is not pinning related, it shall
not be considered further here. Once weak links have been eliminated, the critical
current is again determined by flux pinning.
The “first generation” HTS material, Bi-2223, is fabricated by a powder-in-tube

technique, whereby the precursor powder is packed into Ag tubes which are bun-
dled and drawn before reaction to form the superconducting phase. A filamentary
conductor again results, with a final rolling deformation into a tape serving to
induce the texture required to eliminate weak links. In contrast, the “second gen-
eration” HTS material based on YBCO must be fabricated as a thin film “coated”
conductor in order to achieve the required texturing, due to its less anisotropic
crystal structure preventing mechanical texturing. In both of these layered, tex-
turedmaterials, a formof pinning termed intrinsic pinning arises due to the intrin-
sic inhomogeneity of thematerial in passing through the crystal planes commonly
considered to be insulating that separate the superconducting CuO2 planes. This
form of pinning is only effective for flux lines (and therefore applied fields) lying in
the plane of thematerial, leading to a sharp increase in the critical current for high
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fields (where only the most prevalent pinning centers are still effective) applied
in-plane at low temperatures (where the coherence length is small, comparable to
the planar spacing, and the flux lines are rigid).
In seeking to improve the performance of the second generation YBCO con-

ductors, so-called “artificial” pinning centers have been introduced. In contrast to
the microstructural modifications applied to the formation of the other classes of
superconducting wire to maximize performance, these are non-superconducting
secondary (impurity) phases intentionally introduced with the aim of providing
an enhancement in Jc through pinning that outweighs their detriment through
the reduction in the superconducting cross-section of the wire. The most suc-
cessful, effective, and widely studied artificial pinning center for second gener-
ation coated conductors identified to date is the perovskite dielectric BaZrO3.
Its structural similarity to YBCO as well as its oxidic nature and the fact that it
adds only a single, benign, element into the mix are all points in its favor. Zr was
already known not to substitute into the YBCO lattice, while the material as a
whole was well known to be compatible with YBCO since it was commonly used
as a crucible for single crystal growth. It was also expected that its high melt-
ing point would correspond to slow growth kinetics, resulting in the desirably
small size of inclusions critical for effective pinning in HTS. The initial report [6]
of BaZrO3 incorporation in an YBCO thin film in the form of nanoparticles of
size ∼10 nm provided an immediate Jc enhancement of up to a factor 5 in sam-
ples grown on both single crystal and technical substrates across the entire field
range. Furthermore, in the case of in situ film growth techniques such as pulsed
laser deposition and chemical vapor deposition, the strain created by the epitaxial

10 nm

CeO2

Figure 1.2.3.3 Epitaxial strain-induced self-
assembly of individual BaZrO3 nanoparticles
in YBCO to form chains aligned with the film
growth direction (the so-called “bamboo”

microstructure), acting as one-dimensional
correlated artificial pinning centers. (Adapted
from Ref. [7]. Reproduced with permission of
AIP Publishing LLC.)
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growth of the lattice-mismatched nanoparticles within the YBCO matrix leads
to a self-assembly of chains of nanoparticles into nanocolumns aligned with the
growth direction (Figure 1.2.3.3), resulting in a much coveted enhancement in
pinning correlated with that direction acting to balance out the anisotropic pin-
ning due to the planar structure of the superconductor. In contrast, where ex situ
film growth occurs, as is the case for chemical solution deposition, this epitax-
ial strain-induced self-assembly cannot occur, and instead a general reduction in
Jc anisotropy associated with dispersed nanoparticle pinning is obtained. Thus,
even for the same sample composition, ultimately, it is the microstructure of the
particular sample that determines the pinning response.
Little further progress has beenmade in terms of the discovery of improved pin-

ning species since this earliest attempt at artificial pinning center creation. How-
ever, an additional contender has emerged in the form of BaHfO3 [8]. The need
for further improvement arises in the move to thicker films, where it is observed
that the nanocolumns of BaZrO3 bend or “splay” as growth proceeds, reducing
the effectiveness of their correlated pinning. BaHfO3 nanocolumns, in contrast,
maintain their orientation throughout the film thickness as well as being smaller
in size due to a further increasedmelting point. Hf is similarly inert to Zr in YBCO.
Some also suggest that the enhancements due to BaHfO3 pinning are maintained
to lower temperatures (see Section 1.2.3.7), although this is disputed with some
questioning whether BaHfO3 will prove truly superior to BaZrO3, or whether they
are in fact just very similar.
MgB2 wires are also prepared by a powder-in-tube method with both pre-

reaction (ex situ) and post-reaction (in situ) methods presently being employed.
Multiband superconductivity in MgB2 allows for a large enhancement in the
upper critical field to be achieved through carbon doping in place of boron, com-
monly achieved through the addition of malic acid [9], enabling improved in-field
performance through flux pinning. The primary pinning mechanism in MgB2
is through the dense three-dimensional network of grain boundaries resulting
from the solid state processing. The grain size, and thereby the effectiveness
and density of this pinning, is tailored through modifications to the processing
parameters. Pinning by nanoparticle artificial pinning centers is also commonly
employed, with the most effective addition to date being SiC [10], which acts to
combine the benefits of nanoparticle addition in the form of Mg2Si with carbon
doping during the reaction process.

1.2.3.5 Experimental Determination of Pinning Forces

It is a relatively straightforward matter to determine experimentally the magni-
tude of the pinning force |Fp(T , B)|= Jc(T , B)B in a given sample under a range of
operating conditions. Fietz and Webb [11] were the first to show that the pinning
force values so obtained scale rather simply with both temperature and field for
a variety of Nb–Ti alloys of widely varying 𝜅. Kramer [12] extended this analysis
to other superconductors, most notably Nb3Sn, and ultimately Dew-Hughes [13]
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generalized the function to the form commonly employed today for all supercon-
ductor materials:

Fp = JcB ∝ Bp+q
irr bp(1 − b)q with b = B

Birr
(1.2.3.1)

where the temperature dependence is entirely contained within the temperature
dependence of the irreversibility field Birr. The increasing bp part of the curve
describes the increase in total pinning force as the density of pinned flux lines
increases with the applied field until at the peak a “matching field” is reached
where all available strong pinning sites are occupied. Beyond this, the further
increasing applied field results in the (1− b)q diminishment in the pinning force
as the superfluid density decreases. The details of the distinct scaling laws thus
derived (different values of p and q) have been linked to specific mechanisms of
flux pinning thought to be operating, and explained through the similar scaling
of materials properties related to those mechanisms. The pinning force curves
of different technological materials are found to take on characteristically dif-
ferent forms (Figure 1.2.3.4), and it is therefore considered likely that the curves
contain definitive information regarding the contribution of the particular mate-
rial microstructure to flux pinning. For example, the b(1− b) form observed for
Nb–Ti is associated with transverse depinning of flux lines from the interface of
superconducting and non-superconducting regions, while the b1∕2(1 − b)2 form
common to Nb3Sn is identified with longitudinal shearing of the flux line lattice.
In HTS materials, more extreme forms of the behavior are observed, peaking at
much lower reduced field values and diminishing more rapidly in field.

F
p
 =

 J
c
 B

Bi-2223: b(1 − b)9

Nb3Sn: b1/2(1 − b)2

b = B/Birr

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Nb-Ti: b(1 − b)

Figure 1.2.3.4 Schematic pinning force
plots (as a function of the reduced applied
field) representative of the pinning com-
monly observed in different technological

superconductors. The characteristically dif-
ferent functional form of the curves for the
different materials is expressed in terms of
the generalized Kramer formula, Eq. (1.2.3.1).
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1.2.3.6 Regimes of Flux Motion
We have already described the low-pinning limiting case of flux flow, where the
Lorentz force fully overcomes the pinning force and the only resistance to flux
motion is the viscous drag on the flux lines.This is the inevitable consequence of a
sufficiently high current or a sufficiently high field, and is also the regime thatmost
commonly arises in close to perfect single crystals. At the other extreme, we may
consider the idealized case of extremely strong flux pinning or a close to negligible
transport current. In this regime, the pinning forces dominate, although even here,
thermal activation, particularly at the typical operating temperatures of the HTS
materials, will lead to so-called “thermally activated flux flow” in which individual
flux lines will hop statistically from one pinning site to the next. (It is important
to note that the persistent current experiments of S. C. Collins at MIT, in which
supercurrents were shown to remain undiminished over a period of years, were
performed on type I superconductors, where flux penetration does not occur.)
In an intermediate regime, the combination of a significant transport current

and thermal activation leads to a directed flux creep of particular significance in
the HTS materials. Here, not only the higher operation temperatures but also the
reduced core energy (related to 𝜉3) stemming from the small coherence length
mean that even at temperatures as low as 10K, fluxmotion, and consequent dissi-
pation due to creep can be significant. In LTS, in contrast, flux creep can be held to
a manageably low level, allowing the operation, for example, of highly stable giga-
hertz class NMR magnets formed from type II LTS materials, a possibility that
does not exist for HTS.
These three regimes of fluxmotion are illustrated schematically in Figure 1.2.3.5.

1.2.3.7 Limitations on Core Pinning Efficacy
We have seen how the depairing current is supplanted by the depinning current
as the limiting factor governing the operation of technological superconductors.
Nonetheless, the depairing current (at which the kinetic energy of the charge car-
riers constituting the current exceeds the binding energy of the Cooper pairs), as
themore fundamental limit, is still held up as a goal for efforts aimed at increasing
flux pinning. However, since the two are determined by entirely different mech-
anisms, there is no reason to suppose that their values should coincide. Indeed,
it could have been the case that depairing was the limiting mechanism for per-
formance, with depinning only occurring at higher transport currents than could
ever be achieved. However, it has been recognized for some time [14, 15] that this
is not the case, although sight of this fact appears to have been lost in regard to
the HTS materials [16].
If the depairing current were to flow, it would produce a Lorentz force per unit

length of flux line given by:

fd = JdΦ0 =
4BcΦ0

3
√
6𝜇0𝜆

(1.2.3.2)

In the case of core (𝜉) pinning, the maximum pinning force is obtained when each
vortex is pinned along its entire length. This requires an idealized microstructure
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Figure 1.2.3.5 Schematic pinning poten-
tials for different regimes of flux motion.
A generic pinning site is represented as
a parabolic potential well, superimposed
upon a series of which is a linear potential
gradient due to the Lorentz force arising

from the transport current. When the Lorentz
force overcomes the pinning force, the flux
lines flow freely. Below this, thermally acti-
vated regimes of flux creep and flux flow
occur.

comprising cylindrical non-superconducting regions of radius ∼𝜉 oriented
parallel to the applied field in an arrangement corresponding to that of the flux
line lattice. If this were achieved, the saving in condensation energy per unit
length of flux line would be

𝜀core = −1
2

B2
c

𝜇0
π𝜉2 (1.2.3.3)

producing a potential well over a length scale ∼𝜉 that would result in a pinning
force per unit length of flux line of

f corep = −∇𝜀core ≈
1
2

B2
c

𝜇0
π𝜉 (1.2.3.4)

Using Bc = Φ0∕2
√
2π𝜆𝜉, the ratio of the optimal core pinning force to the depair-

ing Lorentz force is thus

f corep

fd
= 1

2
B2
c

𝜇0
π𝜉

3
√
6𝜇0𝜆

4BcΦ0
=

3
√
3

16
≈ 0.32 (1.2.3.5)

A more detailed calculation by Matsushita [17] taking into account the precise
geometry of the flux line brings this down slightly to a value of 0.28, confirming
that the maximum critical current achievable through core pinning is around 30%
of the depairing current. In practice, such an idealized microstructure is impos-
sible to achieve, would occupy a significant fraction of the sample volume with



1.2 Main Related Effects 87

non-superconducting material (reducing the effective Jc), and in any case would
be ideal for only a single value of magnetic field applied in a particular direction.
Consequently, actual critical currents in the commercial LTS materials lie around
one-tenth of the optimal value, or one-thirtieth of the depairing current.
HTS materials are surprisingly similar in their performance, and it is perhaps

not surprising then that performance gains through pinning modification have
stalled. For YBCO at 77K, 0T, Jd ≈ 30MAcm−2 [16]. Therefore, core pinning
alone cannot be expected to achieve a Jc higher than about 9MAcm−2, which is
close to what has been observed (and never exceeded) experimentally [18]. At low
fields, Jc lies within an order ofmagnitude of the depairing current, better than has
been achieved in LTS. In-field, there remains room for improvement (Jc(B) decays
more rapidly than Jd(B)), but the challenge is one of obtaining an extremely high
density of correctly spaced near-perfect pinning centers, and any further gains
to be had must lie in increasing the irreversibility field through improved pin-
ning at high fields (>3T). At low temperatures, the requirement for perfection
becomes more stringent as the flux lines become more rigid, possibly explaining
the seeming ineffectiveness of presently engineered core pins at the temperatures
(20–30K) of interest for high-performance in-field applications. Hard-won per-
formance gains at 77K vanish completely when the same sample is cooled to 20K.
Indeed, a pinning-engineered sample that performs better at 77K than its coun-
terpart may in fact be found to perform worse at 20K [19]. Presently, there is no
known species of artificial pinning center that can reliably be said to improve low
temperature performance, and this is unquestionably the next great challenge for
defect engineering of HTSmaterials. Performance tweaks are still being achieved,
but generally performance lies around where we can expect it to reach, between
one-tenth and one-hundredth of the depairing current. Any further substantial
pinning gain must be based on an alternative pinning mechanism.

1.2.3.8 Magnetic Pinning of Flux Lines
Magnetic (𝜆) pinning offers a hitherto untapped opportunity to raise the depin-
ning critical current beyondwhat can be achieved through core pinning alone, and
to attain values closer to the depairing current.The simplest example of magnetic
pinning arises when a high density of flux lines is introduced, and they form them-
selves into a lattice, the so-called vortex glass phase. Vortex–vortex interactions
typically encourage this to be hexagonal in shape, and if the lattice is sufficiently
rigid, it suffices to pin a single vortex by core pinning and others nearby will be
held in place by those interactions. However, it is equally possible to conceive
of artificial magnetic pinning in which the magnetic interaction of an appropri-
ate artificial pinning center is utilized to provide a magnetic pinning contribution
in addition to its core pinning effect. The slow take-up of magnetic pinning lies
in the challenge of incorporating ferromagnetic material into the microstructure
of the superconductor without detriment to the superconductivity through pair
breaking interactions.
The claim is often made that magnetic pinning offers an advantage over core

pinning through the greatly increased strength of the magnetic Zeeman energy
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term compared to the condensation energy:

𝜀mag = −1
2∫A

M ⋅ B dA = 1
2

MΦ0 (1.2.3.6)

which is limited only by the magnetization of the pinning center, and might be
expected to reach a value several orders of magnitude greater than the core pin-
ning energy for a strong ferromagnet. However, it must be remembered that due
to the magnetic interaction occurring over the length scale of 𝜆 instead of 𝜉, the
pinning force may in fact not be much greater, or may even be less than the core
pinning force. The magnetic pinning force depends on the ratio of the magne-
tization of the pinning site to the thermodynamic critical field, which is of the
order of 1 T in the technological materials, very similar to that of available strong
ferromagnets:

f mag
p = −∇𝜀mag ≈

MΦ0
2𝜆

= 2
√
2
𝜇0M

Bc
f corep (1.2.3.7)

where we have again made use of the relation Bc = Φ0∕2
√
2π𝜆𝜉.

Nonetheless, the possibility of magnetic pinning remains attractive not only
because its effects are additive to those of core pinning, but also due to the poten-
tial existence of more exotic interaction mechanisms such as field compensation
effects [20] or a reduction in the Lorentz force experienced by the pinned flux line
[21] that may serve to lift the depinning limit to Jc altogether.

1.2.3.9 Flux Pinning Anisotropy
In general, the macroscopic pinning force resulting from a given sample
microstructure depends not only on the applied field, but also on the field angle
with respect to the sample, and attempts have been made to provide similar
scaling rules for the angle dependence of the pinning as for the field dependence.
The most popular of these was introduced by Blatter et al. [22] who proposed the
field angle scaling law:

B̃ = 𝜀𝜃B with 𝜀2𝜃 = cos2𝜃 + 𝜀2sin2𝜃 (1.2.3.8)

for a field applied at an angle 𝜃 to the c-axis, where 𝜀2 =mab/mc is the electronic
mass anisotropy of the superconductor. By scaling the applied field values in this
way, dependent on their angle, and choosing an appropriate value of 𝜀, the pinning
force curves for different field angles can be made to coincide (Figure 1.2.3.6). In
the usual interpretation, the pinning force variation described by the universal
curve is ascribed to electronic mass anisotropy effects, while the deviations are
explained by microstructure-related pinning, in this case a significant additional
in-plane component resulting from intrinsic pinning due to the layered structure
[23]. Under this interpretation, the 𝜀 value that provides the most consistent
scaling of the data is directly associated with the electronic mass anisotropy
of the superconductor [24]; however, where unfeasibly low 𝜀 values have been
obtained from such an analysis, the concept of an effective electronic mass
anisotropy has been introduced where the reduction in anisotropy is attributed to
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Figure 1.2.3.6 Blatter scaling of Jc(𝜃) for a
clean Ba(Fe1−xCox)2As2 film at 15 K under
various applied fields, showing the exper-
imental data and the angular Jc variation
ascribed to electronic anisotropy (solid lines)

and intrinsic pinning (broken lines). The inset
shows the combined pinning force plot of
the scaled datasets. Deviations from the
scaled universal curve are due to correlated
pinning. (Data from Ref. [23].)

a quasi-isotropic pinning force resulting from nanoscale inhomogeneous strain
fields that act to inhibit Cooper pair formation [25].

1.2.3.10 Maximum Entropy Treatment of Flux Pinning
To date, the most comprehensive framework proposed for modeling the general
experimental results of flux pinning studies is amethod based around amaximum
entropy derivation of the effects of statistical populations of pinning defects [26].
A consistent mathematical approach is able to provide formal derivations of the
commonly used empirical relations:

Jc(t) ∝ (1 − t)p with t = T
Tc

(1.2.3.9)

Fp(b) ∝ b𝛼(1 − b)𝛽−1 with b = B
Birr

(1.2.3.10)

arising from the Ginzburg–Landau theory [27] and initially proposed by Kramer
[12], respectively. In particular, it provides the generalization of the fixed expo-
nents p= 3/2, 𝛼 = 1/2, and 𝛽 = 3 occurring in those theories that is commonly
applied empirically without justification. For the geometrical dependence of Jc
on the applied field angle, it provides three fundamental components that are
summed to represent different statistically significant combinations of pinning
defect populations within the sample:

Uniform Jc(𝜓) =
J0
π

(1.2.3.11a)
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Figure 1.2.3.7 Maximum entropy model-
ing of Jc(𝜃) for a YBCO coated conductor at
65 K, 6 T, showing the experimental data and
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dataset features a distinct ab-centered angu-
lar Gaussian describing the intrinsic pinning
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Angular Gaussian Jc(𝜓) =
J0√

2π𝜎sin2𝜓
exp

(
− 1
2𝜎2tan2𝜓

)
(1.2.3.11b)

Angular Lorentzian Jc(𝜓) =
J0
π

𝛾

cos2𝜓 + 𝛾2sin2𝜓
(1.2.3.11c)

An example of the application of this modeling to typical results obtained on
pinning-optimized YBCO coated conductors is shown in Figure 1.2.3.7. It must be
noted that the method of the previous section would fail to provide any meaning-
ful interpretation of this dataset, where microstructure-based pinning completely
dominates the response.
The same maximum entropy functions have been shown equally capable of

describing the in-plane (variable Lorentz force) Jc(𝜙) variation as the out-of-plane
Jc(𝜃) variation, and are also able to accurately model the effects of oblique defect
structures such as those obtained on inclined substrates or through heavy ion
irradiation. A further development of the same mathematical framework has
been shown to have physical significance in describing vortex channeling along
planar pinning defects.
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1.2.4
AC Losses and Numerical Modeling of Superconductors

Francesco Grilli and Frederic Sirois

1.2.4.1 Introduction

Type-II superconductors can carry DC current without dissipation, but they do
exhibit energy dissipation when they carry AC current or when they are subjected
to AC magnetic field. This is because the magnetic field penetrates in the form of
discrete flux lines (or vortices) that get pinned to the superconductor material;
when there is a change of magnetic field (as in an AC cycle), the flux distribution
inside the superconductor material has to rearrange: the movement of magnetic
flux induces an electric field, which in turn creates dissipation because this electric
field induces currents in the normal conducting regions associatedwith the core of
each vortex. Dissipation occurs whenever there is a variation of the magnetic flux,
so the term AC losses is generally used for all the situations where the magnetic
field changes over time, for example, during the current ramp of a magnet. This
kind of energy dissipation is referred to as hysteresis loss.1)
Technical superconductors are composed of several materials, including metal-

lic and sometimes magnetic parts: as a consequence, they are affected by addi-
tional loss contributions (such as eddy current, resistive, coupling, and magnetic
losses), which can become important and in some cases largely exceed the hys-
teretic losses. In multifilamentary superconductors, coupling losses are caused by
the current induced by external magnetic fields and flowing from one filament to
the other via the normal metal in between; effective ways to reduce them include
filament twisting and resistive barriers around the filaments. Eddy current losses
can be reduced by increasing the stabilizer’s resistivity.

1.2.4.2 General Features of AC Loss Characteristics

Throughout this chapter, we maintain the distinction between transport and
magnetization losses to identify the dissipation caused by transport current
and external magnetic field, respectively. This distinction is merely of practical
nature because the mechanism responsible for the hysteresis losses inside
superconductors (i.e., the movement of magnetic flux) is the same in both cases.
Hysteresis losses strongly depend on the amplitude of the current or the applied

field. The transport losses typically increase with the third or fourth power of the
applied current (depending on the superconductor’s shape) for currents below
Ic, then they increase even more rapidly due to flux-flow dissipation. At suffi-
ciently high currents, some of the current starts flowing in the metallic parts of
the conductor, giving rise to a resistive contribution.Themagnetization losses too
increase rapidly with the amplitude of the field (third or fourth power), then when
the field fully penetrates the superconductor, they increase less rapidly, typically

1) Other lossmechanisms occur in superconductors, such as the response of normal electrons and the
losses associated to the Meissner state. However, they are important only at very high frequencies
and at extremely low fields, and they will not be addressed here.
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with the first power of the field. More details on the dependence of the hysteresis
losses on the current and field amplitude are given in Section 1.2.4.4 for different
geometries.
Generally, the hysteresis losses (per cycle) have a feeble dependence on fre-

quency, and the observed frequency dependence ofmeasured losses is usually due
to the eddy current or resistive losses occurring in themetal parts. Amodel for loss
dissociationwas proposed in Ref. [1], where the dissipated power is split into resis-
tive, hysteretic, and eddy current contributions, each with a different dependence
on the frequency:

Ptot = Pres
⏟⏟⏟
RI2rms

+ Physt
⏟⏟⏟

f Qhyst

+ Peddy
⏟⏟⏟

∝f 2

(1.2.4.1)

An example of the identification of the three components on measured data is
shown in Figure 1.2.4.1a. In general, the dominance of one component on the oth-
ers depends on several factors, related to the properties of thematerials and on the
operating conditions (frequency and amplitude of the field and current). Some-
times other loss components become important: for example, coupling losses or
losses in magnetic parts. Figure 1.2.4.1b shows an example where the losses in the
ferromagnetic substrate of a coated conductor are the major loss components in
a significant current interval.
The variation of the critical current density Jc inside the superconductor affects

the AC losses. Owing to the pinning mechanisms in type-II superconductors, Jc
depends on the local magnetic flux density and on its orientation, sometimes in a
very complicated fashion.This local reduction of Jc can influence the shape of the
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Figure 1.2.4.1 (a) Loss dissociation for a
multifilamentary Bi-2223 tape: according to
Eq. (1.2.4.1), the dissipated power is sepa-
rated into resistive, hysteretic, and eddy cur-
rent contributions with a least-square fitting
of the form p2f2 + p1f + p0. Different cur-
rent amplitudes i = Ia∕Ic are represented.
(Reprinted from Ref. [2] Reproduced with

permission of Ecole Polytechnique Fédérale
de Lausanne.) (b) Transport losses of a yttri-
umbarium copper oxide (YBCO) coated con-
ductor with ferromagnetic substrate: the
losses in the substrate are the dominating
components for currents <100A. The dif-
ferent components are calculated by finite-
element simulations.
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AC loss characteristics of the whole tape, as do local nonuniformities of Jc caused
by the manufacturing process.

1.2.4.3 Measuring AC Losses
This section describes the main methods used to measure AC losses in various
circumstances (transport, magnetization, and their combination) and for differ-
ent types of samples (short pieces of tape and large assemblies). Before proceed-
ing, a brief comment on the terminology used here: in the following, calorimetric
method indicates a method based on measuring the local increase of tempera-
ture caused by AC loss dissipation; this must be distinguished from the boil-off
method (sometimes called calorimetric as well in the literature), which consists in
measuring the amount of evaporated coolant.

1.2.4.3.1 Transport Losses
The goal is to measure the variation of magnetic flux caused by the AC transport
current. The standard technique for measuring transport losses in straight tapes
consists in soldering a pair of voltage taps on the tape, shaping them in the form
of a loop, and measuring the voltage (see Figure 1.2.4.2a). It can be easily shown
that, for the case of a sinusoidal transport current, only the voltage component in
phase with the current generates dissipation [3]. The measurements are therefore
developed to extract such component: this can be done, for example, by means of
a lock-in amplifier.The voltage taps measure the sum of the voltage drop between
the contact points and the voltage corresponding to the rate of variation of the
magnetic flux in the loop. In practice, one is usually interested inmeasuring losses
for currents smaller than the critical current Ic, and for such subcritical currents
the voltage drop is zero.The question is therefore to determine what flux variation
one measures.

(a) (b)2a

2a

d d
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Φint

Φext

Figure 1.2.4.2 (a) Setup for measuring
transport AC losses by electrical technique:
for a tape with noncircular cross-section, the
measuring loop needs to extend outside the
tape. (b) Setup for measuring magnetization

losses of a rectangular tape in parallel exter-
nal field: in perpendicular field, the recorded
loss value needs to be multiplied by a factor
accounting for the demagnetizing effect.
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In general, the voltage loop catches two types of fluxes, inside and out-
side the superconductor, which we can name Φint and Φext, respectively (see
Figure 1.2.4.2a).The ideal case is represented by a wire with circular cross-section
because the flux lines are circular and concentric and do not cross the wire’s
surface: one could therefore think of placing the voltage loop on the surface of
the wire, in this way catching all the relevant flux variations because the voltage
associated with Φext would be purely inductive (i.e., in quadrature with the
transport current). Real tapes have elliptical or rectangular cross-section, and
in those cases, things are more complicated because both Φint and Φext have
in-phase components. Onemust therefore extend the measuring loop outside the
tape [4]. In principle, a loop extending far away from the sample would make sure
that all the flux is caught; at the same time, however, a larger loop is also more
prone to catch spurious signals and noise, which could affect the measured loss
value. Clem calculated that a distance of three times the sample’s half-width is a
good compromise: the loop is sufficiently close to the sample and it provides loss
values within 5–10% of the expected value [5]. More details on the influence of
the position of the voltage taps and of the measured voltage signal on AC losses
can be found in Refs. [6] and [7].
A completely different approach to measure transport AC losses is represented

by the boil-off method, which consists in measuring the amount of coolant that
evaporates as a consequence of the energy dissipation in the superconductor [8].
Themain advantage is that it can be usedwith differently shaped and sized samples
and it does not present the problem (typical of the electrical method) of recording
the correct electric signal. This is particularly useful in the case of complex tape
assemblies, such as cables and coils: tapes are closely packed together and solder-
ing voltage taps and extracting the true loss signal can be quite problematic. The
boil-off method is the standard measuring technique for low-temperature super-
conductors, especially for coils and cables. Its application to high-temperature
superconductors cooled with liquid nitrogen is generally more difficult because
of the very small volume of generated gas compared to the case of helium [9, 10].

1.2.4.3.2 Magnetization Losses
The standard technique for measuring the magnetization losses of a supercon-
ducting sample consists in placing the sample in a varying uniform magnetic
field and measuring its magnetization by means of a pickup coil wound around
the sample (see Figure 1.2.4.2b). The signal measured by the pickup coil is
proportional to the energy dissipation in the sample.The ideal case is represented
by an infinite slab in parallel field, where the field on the superconductor’s surface
is known and is equal to the applied field. A tape with rectangular cross-section
with the field parallel to its longitudinal direction (as the one schematically shown
in Figure 1.2.4.2b) is a good approximation of the slab configuration. In this case,

the loss value is simply given by Q = (𝜇0Nd2a)−1∫
1∕f

0
Ba(t)U(t)dt, where N is

the number of turns of the pickup coil, d and 2a are the thickness and width
of the tape, respectively, and f is the frequency of the field. If the infinite slab
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approximation is not valid, for example, in the case of magnetic field applied
perpendicular to the tape’s face, a calibration constant c taking into account the
distortion of the field lines (which depends on the tape’s shape and on the pickup
coil’s position) must be added in the expression for Q.
The calibration constant can be determined by a calorimetric method, and in

general, it depends on field amplitude and frequency. A detailed description of
the calibration process, including a discussion on the influence of the pickup coil
position, can be found in [11].
In fact, the calorimetric method itself constitutes an alternative method for

measuring the magnetization losses [12, 13] and it can be used for measuring
the transport losses as well. It provides a direct measurement of the AC losses
because it measures the dissipation in terms of temperature increase of the sam-
ple; compared to the electromagnetic method, it is not prone to electromagnetic
disturbances, since the measured signal simply records a temperature increase;
however, it requires a more complicated hardware setup (thermometers, insu-
lations); in addition, the acquisition of data points is much slower, especially at
liquid nitrogen temperatures, when one has to detect small temperature increases
in a thermally noisy environment, which makes measurement repetition and
data averaging necessary. As a rule of thumb, at the liquid nitrogen temperature,
the calorimetric method is around 10 times slower than the electromagnetic
method.
The calorimetric method can however be used to calibrate the AC loss values

measured with the electromagnetic method, in particular to calculate the calibra-
tion factor c by which the measured signal needs to be multiplied in order to take
into account the differences from the ideal case of a slab in parallel field. One does
not need to wind the pickup coil literally around the sample, but can wind it on a
fixed frame built to accommodate different samples with the same size. However,
differently shaped or sized samples still require different pickup coils.
An alternative measuring approach that overcomes all the problemsmentioned

above is the so-called calibration-free method [14]. The method is based on the
observation that the losses in the sample constitute a fraction of the power sup-
plied to the whole system by the AC source; this fraction is generally small, but
can be detected by building a symmetric system consisting of two pickup coils,
subjected to the same external uniform magnetic field, connected in series, but
wound in opposite directions (see Figure 1.2.4.3a,b). In the absence of a sample,
the system is perfectly balanced and the measured voltage U(t) is zero. When the
sample is inserted inside one of the measuring coils, the symmetry is broken, the
total voltage induced in the two coils by the external field cancels out because of
their opposite winding directions, and the measured signal gives directly the loss
of the sample, irrespective of its shape and dimensions. This method has the big
advantage that the same experimental setup can be used to measure samples of
different shapes and sizes, without the need of building ad hoc pickup coils. An
alternative setup to measure the magnetization AC losses is presented in [15].
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Figure 1.2.4.3 Conceptual design (a) and practical realization (b) of the calibration-free
method. In the circuit, the rectangle represents the sample; in the picture, the arrow indi-
cates the Rogowski coil used to extract the reference phase signal.

1.2.4.3.3 Combination of Transport and Magnetization AC Losses

In real applications, superconductors carry current while being also subjected to
external magnetic fields, for example, produced by the adjacent turns in a coil. In
this case, due to the complex interaction of the self-field and of the external field
inside the superconductor, the AC losses are different from the simple sum of the
losses occurring in the current-only and field-only cases.
Ashworth and Suenaga [16, 17] performed pioneering calorimetric measure-

ments on Bi-2223 tapes. The calorimetric method, measuring the temperature
increase associated with the AC losses, is not affected by the complex interaction
of the electromagnetic fields. Its main limitation is the low speed of data acquisi-
tion and low accuracy for small currents and fields. Methods based on measuring
the sample’smagnetization by electromagneticmethods have also been developed
[18, 19], even for the case when current and field are not in phase [20, 21].

1.2.4.4 Computing AC Losses
1.2.4.4.1 Analytical Computation

In the framework of the critical state model originally proposed by Bean [22], the
loss density of a superconducting slab of width 2a in a parallel magnetic field of
amplitude Ha can be easily calculated as [8]2):

QM =
⎧⎪⎨⎪⎩

2
3
𝜇0H2

a

(
Ha
Hp

)
Ha ≤ Hp

2𝜇0H2
a

[
Hp

Ha
− 2

3

(Hp

Ha

)2
]

Ha ≥ Hp

(J cycle−1m−3) (1.2.4.2)

where Hp = Jca is the field for which the slab is fully penetrated. The loss density
increases rapidly (proportionally to H3

a ) for Ha <Hp and more slowly (propor-
tionally to Ha) for Ha >Hp. Norris [23] derived the formulas for the transport AC
losses of superconductors with elliptical and infinitely thin cross-sections carrying

2) Here and in the following expressions for AC losses, amplitude is intended as the peak value of a
sinusoidal oscillation; this explains the slight difference between formulas (1.2.4.2) and the formulas
given in Ref. [8], which are written in terms of the peak-to-peak amplitude.
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current i= I/Ic:

QT =
I2c 𝜇0
π

{
(1 − i) ln(1 − i) + (2 − i) i

2
ellipse

(1 − i) ln(1 − i) + (1 + i) ln(1 + i) − i2 thin strip
(J cycle−1m−1)

(1.2.4.3)

Formulas for magnetization losses of a thin strip of width 2a and sheet current
density jc in a field of amplitude Ha perpendicular to the strip’s surface were inde-
pendently derived by Brandt and Indenbom [24] and Zeldov et al. [25]3):

QM = 4𝜇0a2jcHag
(Ha

Hc

)
(J cycle−1m−1) (1.2.4.4)

with g(x)= (2/x)ln cosh x− tanh x and Hc = jc/π.The losses are proportional to the
square of the width, whichmeans that a practical way of reducing them is by mak-
ing narrower conductors: a strip cut into N filaments has losses N times lower,
provided that the filaments are electromagnetically uncoupled, for example, by
means of twisting or transposition. In addition, similarly to the case of an infi-
nite slab, the curve of the magnetization losses of a thin strip presents a change of
slope: from QM ∼H4

a at low fields to QM ∼Ha at high fields. A similar change of
slope, related to the full penetration of the field in the superconductor, is observed
in other geometries too.
Owing to their simplicity and applicability to conductor geometries found in

practice, formulas (1.2.4.2)–(1.2.4.4) are very often used to estimate the losses of
superconducting tapes and wires. Other analytical expressions have been derived
for certain tape arrangements, like tape arrays and stacks. An exhaustive review
of the analytical models for superconductors can be found in [26].
While useful for a quick estimation of AC losses, analytical models suffer from

a number of limitations that affect their accuracy and applicability. For example,
most analytical models are based on the critical state approach and as a conse-
quence they cannot take into account the intrinsic frequency dependence of hys-
teresis losses nor current densities exceeding Jc, see for example, the expression of
Eq. (1.2.4.3), which diverges for I = Ic. Also taking into account nonuniform fields
and currents with arbitrary temporal evolution is a very difficult task to perform
analytically. These and other limitations can be overcome by numerical methods,
which can account for virtually any arbitrary geometry and excitation.

1.2.4.4.2 Numerical Computation
Many approaches exist for computing AC losses numerically, most of them sum-
marized in the open-access review article [27]. We can divide them in two broad
categories: differential methods, based on partial differential equations (PDEs),
such as the finite-element method (FEM), and integral methods, based on the use
of Green’s function to transform the PDEs into integral equations. Each approach

3) Owing to the different utilized notation and approach, the expression for the losses has a different
form in the two original papers, but they are in fact equivalent. Here, we utilize the one from [24].
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Figure 1.2.4.4 (a) Model of a two-conductor arrangement carrying antiparallel transport
currents; (b) discretization in triangular mesh of a 2D cross-section of the geometric model;
(c) plot of a typical solution (gray scale: Jz/Jc; arrows: Hx and Hy).

has advantages and drawbacks. In what follows, only the principles common to
most numerical techniques are presented.
The first step for numerically computing AC losses consists in building a

geometric model that represents the device under consideration, and then in dis-
cretizing it in a mesh of elements (i.e., domains of simple geometrical shape, typ-
ically triangles or quadrilaterals) that are compatible with the numerical method
to be used (see, for example, Figure 1.2.4.4a,b). By using an integral method, the
meshing of nonconducting regions can be avoided, although at the expense of
a computational cost that grows approximately with the cube of the number of
elements, as opposed to a roughly linear increase with differential methods [28].
Once geometry and mesh are created, one must choose a numerical method

and a formulation, the latter being based on the variable one wants to solve for.
There are many possible choices for electromagnetic variables: H , E, A–V , T–Ω,
J , and variants or combinations of these. Campbell reviewed many of the possible
formulations in [29].
Regardless of the choice, the formulation must satisfy Maxwell’s equations

∇⋅B= 0, ∇×E =−∂B/∂t, and ∇ × H = J (displacement current term −∂D/∂t
neglected), with the constitutive relationships E = 𝜌(J)J and B = 𝜇(H)H , where
𝜌(J) and 𝜇(H) are, in the general case, nonlinear tensors, but very often they can
be taken as scalars, especially in 2D problems where the H and J components are
perpendicular.
Note that by neglecting the displacement current term, we obtain a diffusion-

like equation, which is in principle simpler to solve than the classical “wave
equation,” characterized by the presence of a second-order time derivative. This
approximation is well justified in most practical cases, especially near power
frequencies. It also explains why we can ignore the ∇⋅D Maxwell equation.
However, the resulting diffusion problem is highly nonlinear because of the 𝜌(J)
and 𝜇(H) terms. The former represents the nonlinearity of the superconductor
(for which one usually takes 𝜇 = 𝜇0 even near Hc1 , which is usually lower than
the fields of practical interest), and the latter generally accounts for the nonlinear
behavior of ferromagnetic parts, 𝜌 being generally taken as constant in this
case.
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In the simplified 2D case with Jz perpendicular to Hx and Hy (see Figure 1.2.4.4a
for axis definition), one can use an empirical power-lawmodel to describe the E–J
constitutive relationship near the critical current density, that is,

E = 𝜌(J)J = E0

(|J|
Jc

)n

sign(J) ⇒ 𝜌 =
E0
Jc

(|J|
Jc

)n−1

(1.2.4.5)

where n is the power law exponent and Jc is the critical current density of the
material. Both Jc and n depend in general on the local field B, the temperature T ,
and possibly also on the position. Whether to consider these model refinements
depends on the operating conditions of the considered problem. In addition, other
E–J constitutive equations can be used.
Once the problem is fully defined, it has to be discretized according to the cho-

sen numerical method. In all cases, this operation results in a generally large sys-
tem of equations to be solved numerically. The numerical solution obtained is a
piecewise approximation of the continuous problem, and this approximation con-
verges toward the exact solution as the discretization is refined. Figure 1.2.4.4c
shows an example of a solution obtained with the FEM.
The numerical solution of the problem is not straightforward though. Since

the problem is systematically nonlinear, static or time harmonic solutions are not
possible, and a time transient simulation must be performed, which is usually del-
icate and may result in divergence of the solver if the time-stepping algorithm is
not robust enough. An adaptive time solver able to handle differential algebraic
equation systems is typically preferred over simple basic methods, although it
is possible to succeed with any methods if one is willing to use small time steps
and thus wait long times. One can avoid these problems by using methods based
on the critical state model instead of the smooth current–voltage characteristics
shown in Eq. (1.2.4.5) [30, 31]; these methods are computationally faster and can
be preferable when flux creep is not a concern.
The final step for numerically computing AC losses simply consists in perform-

ing post-processing operations on the obtained numerical solution. The funda-
mental quantity to retrieve is J (see Figure 1.2.4.4c for instance), from which one
can compute the electric field E and the local power density p(t) = ∫Ω

E ⋅ J dΩ,
whereΩ is the cross-section (2D) or volume (3D) of the superconducting domain
in which one wants to compute AC losses. For example, in a 2D case like that illus-
trated in Figure 1.2.4.4, one has J = Jz (x, y, t), and using Eq. (1.2.4.5) to express E
in terms of J , one obtains:

Q = ∫
t0+Tp

t0
𝑑t∫Ω

𝜌(J)J2dΩ (J cycle−1) (1.2.4.6)

where Tp is the period of the AC signal (Tp = 1/f ), and t0 is an initial time for
starting the integration, chosen in a region where the 𝜌(J)J2 waveform has reached
a steady state. Additional post-processing computations might be required if Jc or
n is a function of B or any other parameter.
Expression (1.2.4.6) is very general and includes all losses in the domainΩ. How-

ever, other approaches are possible for computing the AC losses, namely using
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global quantities such as the current and voltage in each conductor, or using mag-
netic quantities (see Ref. [27] for details).
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