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Book Series: Statistical Physics of Fracture and Breakdown
Editors: Bikas K. Chakrabarti and Purusattam Ray

Why does a bridge collapse, an aircraft or a ship break apart? When does a
dielectric insulation fail or a circuit fuse, even in microelectronic systems? How
does an earthquake occur? Are there precursors to these failures? These remain
important questions, even more so as our civilization depends increasingly
on structures and services where such failure can be catastrophic. How can
we predict and prevent such failures? Can we analyze the precursory signals
sufficiently in advance to take appropriate measures, such as the timely evacua-
tion of structures or localities, or the shutdown of facilities such as nuclear power
plants?
Whilst these questions have long been the subject of research, the study of

fracture and breakdown processes has now gone beyond simply designing safe
and reliable machines, vehicles and structures. From the fracture of a wood block
or the tearing of a sheet of paper in the laboratory, the breakdown of an electrical
network on an engineering scale, to an earthquake on a geological scale, one
finds common threads and universal features in failure processes. The ideas and
observations of material scientists, engineers, technologists, geologists, chemists
and physicists have all played a pivotal role in the development of modern
fracture science.
Over the last three decades, considerable progress has been made in modeling

and analyzing failure and fracture processes. The physics of nonlinear dynamic,
many-bodied and non-equilibrium statistical mechanical systems, the exact
solutions of fibre bundle models, solutions of earthquake models, numerical
studies of random resistor and random spring networks, and laboratory-scale
innovative experimental verifications have all opened up broad vistas of the
processes underlying fracture. These have provided a unifying picture of failure
over a wide range of length, energy and time scales.
This series of books introduces readers –in particular, graduate students and

researchers in mechanical and electrical engineering, earth sciences, material
science, and statistical physics –to these exciting recent developments in our
understanding of the dynamics of fracture, breakdown and earthquakes.




