Contents

Series Editors' Preface XIII Preface XV Notations XVII

1 Introduction 1

2 Mechanical and Fracture Properties of Solids 7

- 2.1 Mechanical Response in Materials 8
- 2.1.1 Elastic and Plastic Regions 8
- 2.1.2 Linear Elastic Region 9
- 2.1.3 Nonlinear Plastic Region 10
- 2.2 Ductile, Quasi-brittle, and Brittle Materials *11*
- 2.3 Ductile and Brittle Fracture *11*
- 2.3.1 Macroscopic Features of Ductile and Brittle Fractures *12*
- 2.3.2 Microscopic Features of Ductile and Brittle Fractures 14

3 Crystal Defects and Disorder in Lattice Models 17

- 3.1 Point Defects 17
- 3.2 Line Defects 18
- 3.3 Planar Defects 20
- 3.4 Lattice Defects: Percolation Theory 22
- 3.5 Summary 25

4 Nucleation and Extreme Statistics in Brittle Fracture 27

- 4.1 Stress Concentration Around Defect 27
- 4.1.1 Griffith's Theory of Crack Nucleation in Brittle Fracture 30
- 4.2 Strength of Brittle Solids: Extreme Statistics 32
- 4.2.1 Weibull and Gumbel Statistics 32
- 4.3 Extreme Statistics in Fiber Bundle Models of Brittle Fracture 34
- 4.3.1 Fiber Bundle Model 34
- 4.3.1.1 Strength of the Local Load Sharing Fiber Bundles 35
- 4.3.1.2 Crossover from Extreme to Self-averaging Statistics in the Model 35

VII

VIII Contents

4.4	Extreme Statistics in Percolating Lattice Model of Brittle Fracture 37
4.5	Molecular Dynamics Simulation of Brittle Fracture 39
4.5.1	Comparisons with Griffith's Theory 39
4.5.2	Simulation of Highly Disordered Solids 41
4.6	Summary 42
	7
5	Roughness of Fracture Surfaces 45
5.1	Roughness Properties in Fracture 45
5.1.1	Self-affine Scaling of Fractured Surfaces 46
5.1.2	Out-of-plane Fracture Roughness 47
5.1.3	Distribution of Roughness: Mono- and Multi-affinity 49
5.1.3.1	Nonuniversal Cases 50
5.1.3.2	Anisotropic Scaling 54
5.1.4	In-plane Roughness of Fracture Surfaces 56
5.1.4.1	Waiting Time Distributions in Crack Propagation 60
5.1.5	Effect of Probe Size 62
5.1.6	Effect of Spatial Correlation and Anisotropy 65
5.2	Molecular Dynamics Simulation of Fractured Surface 66
5.3	Summary 68
6	Avalanche Dynamics in Fracture 69
6.1	Probing Failure with Acoustic Emissions 70
6.2	Dynamics of Fiber Bundle Model 74
6.2.1	Dynamics Around Critical Load 77
6.2.2	Dynamics at Critical Load 81
6.2.3	Avalanche Statistics of Energy Emission 81
6.2.4	Precursors of Global Failure in the Model 82
6.2.5	Burst Distribution: Crossover Behavior 84
6.2.6	Abrupt Rupture and Tricritical Point 85
6.2.7	Disorder in Elastic Modulus 87
6.3	Interpolations of Global and Local Load Sharing Fiber Bundle
	Models 88
6.3.1	Power-law Load Sharing 89
6.3.2	Mixed-mode Load Sharing 90
6.3.3	Heterogeneous Load Sharing 92
6.3.3.1	Dependence on Loading Process 93
6.3.3.2	Results in One Dimension 94
6.3.3.3	Results in Two Dimensions 96
6.3.3.4	Comparison with Mixed Load Sharing Model 101
6.4	Random Threshold Spring Model 101
6.5	Summary 107
7	Subcritical Failure of Heterogeneous Materials 111
7.1	Time of Failure Due to Creep 111

Contents IX

- 7.1.1 Fluctuating Load *112*
- 7.1.2 Failure Due to Fatigue in Fiber Bundles *119*
- 7.1.3 Creep Rupture Propagation in Rheological Fiber Bundles 122
- 7.1.3.1 Modification for Local Load Sharing Scheme 126
- 7.2 Dynamics of Strain Rate 129
- 7.3 Summary *134*

8 Dynamics of Fracture Front 135

- 8.1 Driven Fluctuating Line 135
- 8.1.1 Variation of Universality Class 140
- 8.1.2 Depinning with Constant Volume 142
- 8.1.3 Infinite-range Elastic Force with Local Fluctuations 144
- 8.2 Fracture Front Propagation in Fiber Bundle Models 146
- 8.2.1 Interfacial Crack Growth in Fiber Bundle Model 146
- 8.2.2 Crack Front Propagation in Fiber Bundle Models 149
- 8.2.3 Self-organized Dynamics in Fiber Bundle Model 151
- 8.3 Hydraulic Fracture 161
- 8.4 Summary 163

9 Dislocation Dynamics and Ductile Fracture 165

- 9.1 Nonlinearity in Materials 165
- 9.2 Deformation by Slip 165
- 9.2.1 Critical Stress to Create Slip in Perfect Lattice 166
- 9.3 Slip by Dislocation Motion 167
- 9.4 Plastic Strain due to Dislocation Motion 169
- 9.5 When Does a Dislocation Move? 170
- 9.5.1 Dislocation Width 170
- 9.5.2 Dependence on Grain Boundaries in Crystals 171
- 9.5.3 Role of Temperature 171
- 9.5.4 Effect of Applied Stress *172*
- 9.6 Ductile–Brittle Transition 172
- 9.6.1 Role of Confining Pressure 172
- 9.6.2 Role of Temperature 173
- 9.7 Theoretical Work on Ductile Brittle Transition 174

10 Electrical Breakdown Analogy of Fracture 177

- 10.1 Disordered Fuse Network 178
- 10.1.1 Dilute Limit $(p \rightarrow 1)$ 179
- 10.1.2 Critical Behavior $(p \rightarrow p_c)$ 180
- 10.1.3 Influence of the Sample Size 181
- 10.1.4 Distribution of the Failure Current *182*
- 10.1.4.1 Dilute Limit $(p \rightarrow 1)$ 182
- 10.1.4.2 At Critical Region $(p \rightarrow p_c)$ 183
- 10.1.5 Continuum Model 183
- 10.1.6 Electromigration 184

X Contents

10.2	Numerical Simulations of Random Fuse Network 185
10.2.1	Disorders in Failure Thresholds 187
10.2.2	Avalanche Size Distribution 188
10.2.3	Roughness of Fracture Surfaces in RFM 191
10.2.4	Effect of High Disorder 193
10.2.5	Size Effect 196
10.3	Dielectric Breakdown Problem 197
10.3.1	Dilute Limit $(p \rightarrow 1)$ 198
10.3.2	Close to Critical Point $(p \rightarrow p_c)$ 199
10.3.3	Influence of Sample Size 199
10.3.4	Distribution of Breakdown Field 200
10.3.5	Continuum Model 200
10.3.6	Shortest Path 201
10.3.7	Numerical Simulations in Dielectric Breakdown 201
10.3.7.1	Stochastic Models 201
10.3.7.2	Deterministic Models 202
10.4	Summary 205
11	Farthquake as Failure Dynamics 207
11 1	Earthquake Statistics: Empirical Laws 207
11.1	Universal Scaling Laws 209
11.2	Spring-block Models of Farthquakes 214
11.2	Computer Simulation of the Burridge – Knopoff
11.4.1	Model 215
11.2.2	Train Model of Earthquake 219
11.2.3	Mapping of Train Model to Sandpile 221
11.2.3.1	Mapping to Sandpile Model 222
11.2.4	Two-fractal Overlap Models 223
11.2.4.1	Model Description 224
11.2.4.2	GR and Omori Laws 225
11.3	Cellular Automata Models of Earthquakes 227
11.3.1	Bak Tang Wiesenfeld (BTW) Model 228
11.3.2	Zhang Model 232
11.3.3	Manna Model 234
11.3.4	Common Failure Precursor for BTW and Manna Models and
	FBM 237
11.3.4.1	Precursor in BTW Model 238
11.3.4.2	Precursor in Manna Model 240
11.3.4.3	Precursor in Fiber Bundle Model 240
11.3.5	Olami–Feder–Christensen (OFC) Model 240
11.3.5.1	Moving Boundary 242
11.4	Equivalence of Interface and Train Models 246
11.4.1	Model 248
11.4.2	Avalanche Statistics in Modified Train Model 250
11.4.3	Equivalence with Interface Depinning 253

- 11.4.4 Interface Propagation and Fluctuation in Bulk 255
- 11.5 Summary 261
- 12 Overview and Outlook 265

A Percolation 269

- A.1 Critical Exponent: General Examples 269
- A.1.1 Scaling Behavior 270
- A.2 Percolation Transition 270
- A.2.1 Critical Exponents of Percolation Transition 272
- A.2.2 Scaling Theory of Percolation Transition 273
- A.3 Renormalization Group (RG) Scheme 274
- A.3.1 RG for Site Percolation in One Dimension 276
- A.3.2 RG for Site Percolation in Two-dimensional Triangular Lattice 278
- A.3.3 RG for Bond Percolation in Two-dimensional Square Lattice 279

B Real-space RG for Rigidity Percolation 281

C Fiber Bundle Model 285

- C.1 Universality Class of the Model 285
- C.1.1 Linearly Increasing Density of Fiber Strength 285
- C.1.2 Linearly Decreasing Density of Fiber Strength 286
- C.1.3 Nonlinear Stress-Strain Relationship 288
- C.2 Brittle to Quasi-brittle Transition and Tricritical Point 290
- C.2.1 Abrupt Failure and Tricritical Point 292
- D Quantum Breakdown 293
- E Fractals 295

F Two-fractal Overlap Model 297

- F.1 Renormalization Group Study: Continuum Limit 297
- F.2 Discrete Limit 299
- F.2.1 Gutenberg-Richter Law 299
- F.2.2 Omori Law 300

G Microscopic Theories of Friction 303

- G.1 Frenkel-Kontorova Model 303
- G.2 Two-chain Model 304
- G.2.1 Effect of Fractal Disorder 305

References 309

Index 323