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Introduction to Capillarity and Wetting Phenomena

The goal of electrowetting (EW) is to manipulate small amounts of liquid on
solid surfaces by tuning the wettability using electric fields. Many phenomena
encountered in EW experiments are actually not special to electro wetting and
electro capillarity. They are simply wetting and capillary phenomena that can be
observed in many circumstances with surfaces of more or less complex geometry
and more or less complex distributions of wettability. EW is rather unique in its
ability to change contact angles over a very wide range in a very fast and usually
very reproducible manner. Therefore, EW has enabled an unprecedented degree
of control of drop shapes and dynamics – and along with it a plethora of possible
applications. Nevertheless, many basic observations in EW are still variants of
classical wetting and capillary phenomena and hence subject to the general laws
of capillarity. To understand the phenomena that we encounter in EW experi-
ments and to be able to fully exploit the potential of EW technology, we therefore
need a good grasp of the physical principles of wetting and capillarity. The pur-
pose of this first chapter is to introduce the reader to these basic concepts. We
will discuss in Section 1.1 the microscopic origin of surface tension and interfa-
cial energies starting from molecular interaction forces. In Sections 1.2 and 1.3,
we introduce the two basic laws governing the mechanical equilibrium of liq-
uid microstructures, the Young–Laplace law and the Young–Dupré equation. In
Section 1.4, gravity is added as an additional external body force. Section 1.5 is
devoted to a concise but somewhat formal mathematical derivation of the fun-
damental equations that were discussed in Sections 1.2–1.4. Less mathemati-
cally interested readers can skip that section without missing important physical
results. In Section 1.6, we address aspects of wetting on the nanoscale and intro-
duce concepts such as the disjoining pressure and the effective interface potential
that are relevant, among others, in the vicinity of the three-phase contact line
and for the stability of nanometric films. In Section 1.7, we discuss some con-
sequences of surface heterogeneity such as contact angle hysteresis and super-
hydrophobicity. In order to provide the reader with an intuitive understanding
of the theoretical concepts and formulas, we will discuss a variety of classical
capillary phenomena frequently switching between force balance arguments and
considerations based on energy minimization.

A deeper discussion of many aspects addressed here can be found in the excel-
lent textbook by deGennes et al. [1] that we will refer to multiple times.

Electrowetting: Fundamental Principles and Practical Applications,
First Edition. Frieder Mugele and Jason Heikenfeld.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
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1.1 Surface Tension and Surface Free Energy

Capillary and wetting phenomena are important on small scales. Small scales
always imply large surface-to-volume ratios: the smaller the system, the larger
the fraction of atoms or molecules that is located at interfaces. This is the fun-
damental reason why interfacial effects are crucial in all branches of micro- and
nanotechnology, including micro- and nanofluidics. Being at the surface means
being within the range of molecular interaction forces of the geometric interface.
Using a typical value of, say, Δr = 1 nm we can simply estimate the fraction of
molecules in a small drop that is affected by the interface: The volume of a drop
or radius r is V = 4𝜋r3∕3. The volume of a shell of thickness Δr is Vs = 4𝜋r2Δr.
Hence the ratio is ΔVs∕V = Δr∕3r. For a millimeter-sized drop, one molecule in
three million is thus at the surface. For a micrometer-sized drop, the ratio is one
in three thousand. These surface molecules, not the ones inside the bulk of the
drop, determine the equilibrium shape of the drop.

1.1.1 The Microscopic Origin of Surface Energies

Throughout this book, we will consider liquids as continuous media character-
ized by material properties such as density, viscosity, and cohesive energy. Inter-
faces between two different phases such as liquid and vapor or liquid and solid
are characterized by an interfacial energy or tension 𝛾 . For the specific interface
between a liquid and its own vapor, it is common to speak of surface energy or
surface tension. Both expressions, interfacial energies and tensions, mean the
same thing, and we will use them interchangeably throughout this book. A sur-
face energy is an excess free energy per unit area of the surface. It is measured in
Joule per square meter or more frequently in milli Joule per square meter because
the latter turns out to be more convenient for most common liquids. A surface
tension is a tensile force per unit length acting along the surface. It is measured in
Newton per meter, or in milli Newton per meter, which is dimensionally equiva-
lent an energy per unit area. (In older books, you will sometimes find surface ten-
sions reported in dyn/cm, which is numerically equivalent to mN/m.) These two
complementary perspectives have their origin in complementary experimental
observations and conceptual approaches. As often in mechanics, a given problem
can be considered either from the perspective of energy minimization or from
the perspective of force balance. Both views are perfectly equivalent. As classical
theoretical mechanics tells us, Newton’s equations of motion are the differential
equations that any solution of a mechanical problem has to fulfill in order to mini-
mize the Lagrangian and thus, in equilibrium, the energy of the system. Whether
energy minimization or force balance is more convenient or more intuitive to
solve a specific problem depends on the problem at hand – and to some extent
on personal taste.

Why is there an excess energy associated with an interface? To understand this
point, it is convenient to deviate for once from our general continuum picture
and to instead consider the individual molecules and their mutual interaction. Let
us first look at a reference molecule somewhere in the bulk of the liquid drawn
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Figure 1.1 (a) Schematic illustration of one specific molecule (black) in the bulk liquid
interacting with neighbors (gray) within the range of interactions of the molecular forces
(dotted circle) and a second molecule close to the interface that is missing binding partners on
the opposite side. (b) Density profile at the liquid surface with a gradual transition from the
bulk liquid density to the vapor density. (c) Typical molecular interaction potential between
two molecules with a minimum close to the molecular diameter a.

in black in the bottom of Figure 1.1a. The reference molecule interacts with its
neighbors via some molecular interaction potential. The details of this potential
are characteristic for each specific liquid. While all relevant molecular interac-
tions are fundamentally electromagnetic in nature, there are different flavors such
as direct Coulomb interactions between charged ions, charge–dipole interac-
tions, dipole–dipole interaction, van der Waals interaction, etc. A detailed discus-
sion can be found in classical textbooks of surface forces, such as the ones by Butt
and Kappl [2] and by Israelachvili [3]. Notwithstanding all the details, the generic
shape of the interaction potentials usually looks as sketched in Figure 1.1c. There
is a strong repulsive barrier at short distances that prevents the molecules from
overlapping, and there is an attractive force with a range of typically a few molec-
ular diameters that depends on the specific interaction. The minimum of the
potential determines the average separation of the molecules and thus the den-
sity of the fluid. In practice liquids are very dense, and molecules continuously
bounce into the repulsive potential barrier. The target molecule interacts with all
its neighbors (drawn in gray) within the range of the interaction potential, as indi-
cated by the dashed circle in Figure 1.1a. The sum of the interaction energy with
all the neighbors within this range determines the cohesive energy Ecoh of the liq-
uid. This is the reference energy of a molecule in the bulk. If we now consider a
second molecule close to the surface, it is obvious that that molecule lacks bind-
ing partners above the liquid surface. As a consequence, it has less binding energy
than the reference molecule in the bulk. This lack of binding energy constitutes
an excess energy as compared with the reference state. If we denote the area per
molecule at the interface as a2, we obtain an estimate for the surface energy based
on a very generic atomistic picture:

𝛾 ≈
Ecoh

2a2 (1.1)

We thus expect the surface tension to scale with cohesive energy of the liquid.
Table 1.1 gives an overview of the surfaces tensions as well as other properties of
liquids commonly used in EW. Generally, more polar molecules (stronger dipole,
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Table 1.1 Physical properties of some common liquids.

Surface
tension
(mJ m−2)

Boiling
temperature
(∘C)

Density
(kg m−3)

Viscosity
(mPa s)

Vapor
pressure
(kPa)

Water (25 ∘C) 72 100 997 0.89
Water (100 ∘C) 58 100 972 0.354 (80∘) 100
Ethanol 22 78 789 1.074 6.1
Hexanol 25.7 158 814 0.1
Hexane 18.4 68 655 0.29 17.6
Decane 23.8 174 730 0.92 0.195
Hexadecane 27.5 287 770 0 < 0.01
Glycerol 64 290* 1260 < 10−4

Ethylene glycol 47.7 197 1110 0.005
Silicone oil
(MW 100–100 000)

≈ 20 ≈ 900 1–106 1–10−4

Mercury 485 357 13 540 <2 × 10−4

stronger Coulomb forces) exhibit stronger attractive forces. Hence, they typically
display a higher cohesive energy, higher boiling point, and higher surface tension.
Water with its very large dipole moment is an example of a liquid with a partic-
ularly high cohesive energy in view of its low molecular weight. Even stronger
cohesive forces are found for liquid metals, for which the cohesion is caused
metallic bonds and thus by delocalized electrons.

Our atomistic picture and the estimate of the surface energy are obviously
rather rough. Nevertheless, it illustrates a number of important points. For
instance, we see from the finite range of the molecular interaction forces that the
surface tension is not located strictly at the surface. Rather, it arises within the first
few layers of molecules at the interface. More rigorous theories for calculating
surface tensions in liquid state theory include such effects (see, e.g. [4]).

Another aspect worth noting is that the molecules in a liquid are obviously in
vigorous permanent thermal motion. Molecular neighbors change on a picosec-
ond time scale in conventional fluids. What matters for the surface tension is
the average interaction energy, which is nevertheless a well-defined sharp value
because it reflects an average over macroscopic numbers of molecules and molec-
ular collision events. The relevant type of energy under such conditions is a free
energy. It includes the effect of random thermal motion in the form of entropy.
Surface tensions are excess free energies – not pure binding energies as our sim-
plistic picture suggested. For a liquid surface, thermally activated capillary waves
carry the entropy similar to phonons in a crystal. The amplitude of these waves
is very small, typically not more than a molecular diameter. Yet, the population
and amplitude of these capillary waves increase with increasing temperature. As
a consequence, surface energies of liquids typically decrease with a temperature
coefficient of the order of −0.1 mJ m−2 K−1. For water, this means that the surface
tension decreases from 73 mJ m−2 at 25 ∘C to 58 mJ m−2 at 100 ∘C.
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Another consequence of the thermal agitation and the discreteness of the
molecules is that the position of the liquid surface is not perfectly sharp. Rather
than decreasing abruptly from the liquid density to the vapor density, the
interface is characterized by a transition that is smeared out over a small but
finite region, as sketched in Figure 1.1b. Except for the vicinity of a critical
point, the width of this transition region is of the order of one molecular
diameter. Nevertheless, this gradual decrease of the density provides us with
an intuitive way of understanding that surface energies act as tensions, i.e.
as tensile forces tangential to the surface: In the bulk, the average distance
between the molecules is given by the minimum of the interaction potential
U(r) (see Figure 1.1c). As mentioned above, this distance determines the density
of the bulk liquid. Within the transition zone from liquid to vapor, the average
distance between adjacent molecules gradually increases. For intermolecular
separations slightly larger than a in Figure 1.1c but still within the range of the
potential, adjacent molecules experience net attractive forces. Averaged over the
interfacial layer, this leads to a net tensile force within the range of the density
gradient. This force tries to reduce the surface area like the tension of a rubber
balloon.

So far, we have only been talking about surface tensions, i.e. about the inter-
face between liquid and vapor. Our reasoning can be easily extended to estimate
the interfacial energy of liquid–liquid interfaces. Assume that the vapor phase
on the top of the surface in Figure 1.1a is replaced by a second fluid phase. Within
the range of the molecular interaction potential, molecules of liquid A, lack bind-
ing partners of the same species on the opposite side of the interface. The same
applies vice versa to the B molecules on other side of the interface. The fact that
the liquid A and B don’t mix implies that A and B molecules are each more
strongly attracted to their own species than to the other one. As a consequence,
the presence of the interface gives rise to an excess energy, i.e. a positive interfa-
cial tension 𝛾AB. Now, what happens if A and B molecules attract each other more
strongly than A molecules and B molecules among themselves? In this case, the
presence of an A–B interface would actually reduce the free energy of the system,
i.e. the A–B interfacial energy would be negative. As a consequence, the system
gains energy by increasing the interfacial area; it spontaneously emulsifies and
eventually mixes on molecular scales. Such systems exist. Yet, they do not form
two thermodynamically stable separate phases.

In a similar manner, we can extend the concept of interfacial energy to inter-
faces between solids and liquids and solids and vapor. We will denote the corre-
sponding interfacial tensions by 𝛾 sl and 𝛾 sv, respectively. For liquid–vapor surface
tensions, we drop the subscript for simplicity and simply write the symbol 𝛾 . For
the remainder of this book, we will return to the continuum picture, and we will
consider interfaces between adjacent phases as perfectly sharp.

1.1.2 Macroscopic Definition of Surface Energy and Surface Tension

Thermodynamically, the macroscopic surface energy is defined as the amount of
mechanical work 𝛿W required to deform a given amount of liquid in such a way
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that the total surface area changes by dA:

𝛿W = 𝛾dA (1.2)

Given our microscopic picture of surface energy, this definition makes perfect
sense. All the molecules at the surface have an excess energy compared with ones
in the bulk. Creating more surface area while keeping the number of molecules
(and the density) constant implies transferring molecules from the bulk to the
surface. Hence, we need to perform work against the molecular interaction
forces. That mechanical work is stored as additional surface energy in the total
Gibbs free energy G of the system. Thus we can also write

𝛾 = 𝜕G
𝜕A

||||N ,P,T
(1.3)

The existence of a finite macroscopic surface tension 𝛾 also explains why drops
assume a spherical shape in the absence of gravity or other external forces: Drops
are free to adjust their shape in order to minimize their energy. Hence, they adapt
their shape such that the surface area is minimal while keeping the volume con-
stant. Since a sphere is the geometric object with the smallest surface-to-volume
ratio, it is the equilibrium shape of free drops. Obviously, this is only true for free
drops. As soon as the drop is subjected to external forces or to boundary condi-
tions, e.g. due to contact with a solid surface, the equilibrium shape is in general
no longer spherical.

The macroscopic definition of surface tension as a mechanical force per unit
length is perhaps even more intuitive. Unlike the mechanical work required to
deform a drop, the tensile forces exerted by liquid surfaces on solid objects can be
visualized and measured very easily: Consider a U-shaped solid frame, made, for
instance, of an open-bent paper clip, as sketched in Figure 1.2a. We place a straw
across the two legs to close the U and span a soap film between the three sides of
the U and the straw. As soon as we release the straw, it gets pulled toward the left
by the soap membrane (see Figure 1.2). Not surprisingly, the force that pulls the
straw is proportional to the length l of the straw. Except for this geometric factor,
the force is determined by the properties of the liquid, i.e. in this case the soap
membrane. The coefficient relating the force F to the length l of the straw is the
macroscopic surface tension:

F = 2𝛾l (1.4)

(a)

F

(b)

l

γ

γγγ

Figure 1.2 (a) Schematic of a rod placed perpendicular across a U-shaped object is pulled
toward the left by the surface tension of a thin soap membrane (gray). (b) Zoomed view of the
top and bottom surface of the soap membrane and the tensile interfacial tension forces acting
on a control volume (dashed) within the interfaces and on the solid boundary holding the
membrane.
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The factor 2 in the equation accounts for the two liquid surfaces on the top and
bottom side of the soap membrane. Both pull on the straw with the same force.
Again, we can relate the macroscopic thermodynamic definition to our atomistic
picture of the surface tension: Tensile forces are present everywhere within the
liquid surface. For an arbitrary element of the surface, tensile forces pulling from
different directions balance each other, as sketched in Figure 1.2b. Wherever the
liquid surface merges into a solid border of our U-shaped paper clip or into the
straw, these tensile stresses must be balanced by the solid surface according to
Newton’s third law. The U-shaped paper clip becomes slightly deformed, and the
mobile straw accelerates. In fact, the measurement of mechanical forces acting
on solid objects is one of the most direct and widely spread methods to deter-
mine the surface tension of liquids. Tensile forces due to surface tension form an
important part of capillary forces that hold sandcastles together or stick our wet
hair together into bundles.

1.2 Young–Laplace Equation: The Basic Law
of Capillarity

1.2.1 Laplace’s Equation and the Pressure Jump Across Liquid Surfaces

As already mentioned, the existence of surface tension has profound conse-
quences for the equilibrium shape of liquid structures. One of the most basic
consequences is the existence of a pressure jump across curved liquid surfaces
(and liquid–liquid interfaces). The origin of this pressure jump can be illustrated
by considering a drop that is connected via a thin needle to a reservoir with a
piston, as shown in Figure 1.3. If we move the piston forward and push liquid
from the reservoir into the drop, we increase the surface area of the drop. If the
drop radius is increased by dr, the surface area has increased by dA = 8𝜋R dR.

Consequently, we have increased the Gibbs free energy of the drop by increas-
ing its surface energy by dG = 𝛾 dA. To achieve this increase in surface energy,
mechanical work dW = F dx has to be performed to move the piston. Since the
force on the piston is product of the area Ap of the piston times the difference
between the ambient pressure P0 on the left and the drop pressure Pdrop on the
right (see Figure 1.3), we can equate dW = (Pdrop − P0)Apdx = ΔPLdV. Equating
mechanical work and increase in surface energy, we find

ΔPL = 𝛾
dA
dV

= 2𝛾
R

(1.5)

F

dx
P0

Pdrop
R

dA = Rdφ

γ

dφ

Figure 1.3 Illustration of the derivation of Laplace pressure.
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For the right-hand part of the equation, we made explicit use of the spheri-
cal shape of the drop by inserting dV = 4𝜋R2dR. The pressure inside the drop
thus exceeds the pressure in the ambient atmosphere by an amount that is given
by the surface tension times 2∕R = 2𝜅. 𝜅 = 1∕R is called the (mean) curvature
of the surface. (We will see below why the expression mean curvature makes
sense.) This excess pressure, which is a direct consequence of the existence of
surface tension, is generally known as Laplace pressure, paying tribute to the
French mathematician and physicist Pierre-Simon Laplace, who studied this phe-
nomenon in the early nineteenth century. In parallel Thomas Young studied the
same phenomenon in England. Equation (1.5) and its generalized version that we
will discuss below are therefore known as Young–Laplace equation.

In addition to the energy picture, it is instructive to consider the same prob-
lem from the perspective of force balance. We consider a little volume element
dV = dR dA that is enclosed by area elements dA just inside and just outside
the liquid surface spaced by a radial distance dR, as shown in Figure 1.3. The
forces acting on this volume element consist of the surface tension force that
pulls tangentially along the surface and the pressure forces on the inside and
on the outside of the liquid. The components along the 𝜙-directions cancel for
symmetry reasons as in the case of the flat surface considered in Figure 1.2b.
Due to the finite curvature of the drop, however, there is also a net surface ten-
sion force df⃗𝛾 = −𝛾 d𝜑 e⃗r oriented radially inward. (For simplicity, we consider
the system as two-dimensional.) The pressure Pdrop on the liquid side is acting
along the arc Rd𝜙 and results in a net force pushing radially outward. Similarly,
the ambient pressure P0 leads to an inward-oriented force, leading together to a
net pressure force df⃗p = (Pdrop − P0) Rd𝜙 e⃗r . Balancing pressure and surface ten-
sion forces, we recover Eq. (1.5). It is important to note that the resulting excess
pressure ΔPL = Pdrop − P0 in the fluid is a regular isotropic pressure that is felt
everywhere inside the fluid notwithstanding the fact that it arises from the direc-
tional surface tension forces, which act along the interface.

The Laplace pressure inside a drop can become quite considerable for small
drops. As a rule of thumb, it is useful to remember that a water drop with a radius
of 1 μm has a Laplace pressure of approximately 1 bar – as much as the hydrostatic
pressure due to a water column with a height of 10 m. For even smaller drops, as
they are frequently produced and handled in nanofluidic devices, Laplace pres-
sures become even higher.

The form of the Young–Laplace equation that we wrote down in Eq. (1.5)
is actually only a special form for spherical drops of the full Young–Laplace
equation. In general, liquids can assume more complex nonspherical shapes
depending on the boundary conditions that we impose. Figure 1.4a shows a drop
squeezed between two solid cylinders at two different distances. Obviously, a
single radius of curvature is not sufficient to characterize such three-dimensional
surfaces. In such cases, liquid surfaces are described by two different radii of
curvature, R1 and R2. At any given point on the surface, R1 and R2 are defined by
intersecting the liquid surface with two perpendicular planes, both containing
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Figure 1.4 Complex three-dimensional liquid microstructures. (a) Schematic of a liquid drop
squeezed between two solid cylinders at variable distance showing the two perpendicular
radii of curvature. (b) Microstructures of water condensed onto parallel (top) and
elbow-shaped (bottom) hydrophilic stripes on an otherwise hydrophobic surface. Source:
Adapted from Ref. [5]. See also Ref. [6].

the local surface normal. The resulting values of R1 and R2 will in general depend
on the azimuthal orientation of the two surfaces. As we rotate the two surfaces
around the surface normal, there will be a unique orientation, for which R1 and
R2 assume a maximum and a minimum value, respectively. These maximum and
minimum values are known as principal radii of curvature. The mean curvature,
the specific combination 𝜅 = (1∕R1 + 1∕R2)∕2, is a well-defined quantity, which
determines the pressure jump across the liquid surface. With these definitions,
the general version of the Young–Laplace law reads

ΔPL = 2𝛾𝜅 (1.6)

In this generalized version, the Young–Laplace law has somewhat deeper impli-
cations than discussed so far. Of course, it still provides the local value of the
pressure jump upon crossing a liquid surface of curvature 𝜅. But in addition, the
law also states that 𝜅 is constant everywhere along any connected liquid struc-
ture in mechanical equilibrium in the absence of other external forces. No matter
how complex it may look, every equilibrated liquid surface is a surface of con-
stant mean curvature. Any position dependence of 𝜅 along the surface would
imply pressure gradients within the fluid that would immediately set the fluid in
motion. The resulting fluid flow would continue until all initial pressure gradients
are balanced in a final state of constant mean curvature.

A few more comments are in order: First, for a sphere, R1 and R2 are obvi-
ously both equal and independent of the position by symmetry. In this case, the
expression for the mean curvature reduces to 𝜅 = 1∕R, as already stated above,
and the full Young–Laplace equation reduces to its simplified form, Eq. (1.5).
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Another important limiting case is the situation R1,R2 → ∞. This corresponds
to a flat surface. In this case, the pressures in the liquid phase and in the ambient
phase are identical, i.e. ΔPL = 0. Second, looking at the right-hand side (RHS) of
Figure 1.4a, we notice that the center of the local circle of curvature can be either
inside (R2) the liquid or outside (R1). The former corresponds to the situation of
a sphere. It gives rise to a positive excess pressure inside the drop, and hence we
assign the positive sign to R2 under these conditions. The latter corresponds to
a negative radius of curvature R1 and hence gives rise to a reduction of the pres-
sure inside the liquid as compared with the ambient phase. For liquid drops in
ambient vapor, the sign convention is thus straightforward: A radius of curva-
ture is counted positive if the center of the circle is inside the liquid phase and
it is counted negative in the opposite case. If we only know it is a mathematical
function h(x, y) describing the shape of an interface, it is not a priori clear what is
inside and outside. It is therefore always very important to verify that the sign of
the pressure drop in any calculation is in accordance with the physical problem
at hand. For two immiscible liquids such as oil and water, the situation is in fact
ambiguous, and ΔPL may either be defined as Pwater − Poil or vice versa.

As a mathematical expression, Eq. (1.6) does not look very complicated. Yet,
this changes as soon as we write down an explicit expression for the radii of cur-
vature in a specific coordinate system. Frequently, it is convenient to parameterize
the shape of a liquid surface as a function h(x, y) that specifies the local position
of the interface above some reference plane. In this case, the explicit expression
reads

ΔPL = 2𝛾 𝜅 = 𝛾
𝜕xxh(1 + (𝜕yh)2) − 2𝜕xh 𝜕yh 𝜕xyh + 𝜕yyh(1 + (𝜕xh)2)

(1 + (𝜕xh)2 + (𝜕yh)2)3∕2 (1.7)

This equation reveals that the Young–Laplace law is in fact a nonlinear
second-order partial differential equation for the surface h(x, y). Such equations
are difficult to solve and require in most cases a numerical approach. Given
this complex structure of the governing equation, it is also not surprising that
problems in capillary often lead to counterintuitive surface geometries.

Analytical solutions of the Young–Laplace equation usually only exist in case
of specific symmetries or otherwise simplifying conditions. A common simplifi-
cation that applies in many problems of thin film flows is the small slope approx-
imation. In this case, the gradients of the surface are small, i.e. ∣ 𝜕xh ∣, ∣ 𝜕yh ∣≪ 1.
As a consequence, we can neglect all the (quadratic) terms involving gradients of
h. Equation (1.7) then reduces to

ΔPL = 2𝛾 𝜅(x, y) = 𝛾 ∇2h(x, y) (1.8)

where ∇2 = 𝜕xx + 𝜕yy is the Laplace operator in two dimensions. This equation is
linear and hence much simpler to treat. Being a linear equation, any superposition
of two solutions will also be a solution of the underlying equation, allowing for a
convenient decomposition of the surface profile in Fourier modes.

Another common situation in applications is cylindrically symmetric prob-
lems, such as the one of the capillary bridges in Figure 1.4a. In this case, the
Young–Laplace equation is best considered in cylindrical rather than Cartesian
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coordinates. Since cylindrically symmetric problems do not depend on the
azimuthal angle 𝜙 by definition, the Young–Laplace equation reduces to an
ordinary differential equation. If we parameterize the surface by a function r(z),
the Young–Laplace equation becomes

ΔPL = 2𝛾
(

1
rS

−
𝜕zzr
S3

)
(1.9)

where S =
√

1 + (𝜕zr)2.

1.2.2 Applications of the Young–Laplace Equation:
The Rayleigh–Plateau Instability

The instability of a cylindrical liquid jet against breakup into a series of drops is
one of the most common examples of a process that is entirely driven by sur-
face tension. The physical principles encountered here are very generic and gov-
ern many drop formation processes in microfluidics, including, among others,
EW-driven lab-on-a-chip systems. Figure 1.5a shows a series of snapshots of a
free jet of one liquid in a second immiscible ambient liquid at different times rang-
ing from zero to the final moment when the jet is broken up completely. As the
images show, the decomposition starts with a small perturbation of a well-defined
wavelength 𝜆 of the initially perfectly cylindrical jet. This perturbation grows with
time until the jet eventually breaks up into a combination of large drops located at
the grown antinodes of the perturbation and – in this case – a number of smaller
satellite drops located at the nodes of the original perturbation. Qualitatively, it
is clear from the discussion above that the system reduces its interfacial energy
by transforming the long and slender jet with a large surface-to-volume ratio into
drops. In fact, one big drop would correspond to the absolute minimum of sur-
face energy. But it is also intuitively plausible that forming one big drop is very
unlikely because it would involve the transport of fluid over very long distances.
Why is there a characteristic finite length wavelength of the perturbation? How

A

B
R2B

R2A

R1A

R1B

(a) (b)

Figure 1.5 (a) Snapshots of a cylindrical jet breaking up into drops with increasing time from
left to right. Source: Reprinted with permission from [7]. (b) Illustration of the local curvature as
a function of the perturbation.
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does this length scale depend on the characteristic parameters of the problem?
Why are there satellite droplets?

The answers to some of these problems require a detailed full analysis of the
fluid dynamic problem. A first set of answers, however, can already be obtained by
considering the variation of either the surface energy or the pressure distribution
for small perturbations of the originally cylindrical jet. For the energy approach,
all we need to do is calculate the surface area as a function of the amplitude
and wavelength for one period of the perturbation. If it decreases with increas-
ing amplitude, the perturbation will spontaneously grow. If it increases, capillary
forces will restore the original unperturbed configuration. This very common
mathematical approach is known as linear stability analysis. We start with small a
periodic perturbation 𝛿r(z) = 𝜀 cos qz, where q = 2𝜋∕𝜆 is the wavenumber of the
perturbation and 𝜀 ≪ rcyl is the initially small amplitude. The resulting surface
profile of the jet is then given by r(z) = rcyl(𝜀) + 𝛿r(z). Here the average radius
of the cylinder rcyl is a function of 𝜀 because the total liquid volume must not
depend on the amplitude of the perturbation. Imposing volume conservation
leads to rcyl(𝜀) = (r2

0 − 𝜀2∕2)1∕2 ≈ r0(1 − (𝜀∕r0)2∕4), where r0 is the unperturbed
initial radius. To calculate the surface area, we note that the area element on the
surface is dA = rd𝜙(1 + (𝜕zr)2)1/2dz. Integrating over one full period of the per-
turbation, we find to lowest order in 𝜀

A(𝜀) = 2𝜋r0𝜆

(
1 + 𝜀2

4r2
0
(q2r2

0 − 1)

)
(1.10)

Whether A increases or decreases with increasing 𝜀 thus depends exclusively
on the term (q2r2

0 − 1). It is negative for small wavenumbers and positive for large
ones. If 𝜆 > 2𝜋r0, i.e. if the wavelength of the perturbation is longer than the cir-
cumference of the original cylinder, the perturbation reduces the energy of the
system. Vice versa, the energy increases for 𝜆 < 2𝜋r0. Qualitatively, this result
should not surprise us. If the wavelength is very short, that is, 𝜆 ≪ r0, any per-
turbation can obviously only increase the surface area. In this case, the surface is
effectively locally flat on the scale of the perturbation. Hence, introducing ripples
can only increase the surface area and energy. Conversely we already argued that a
sphere has the smallest surface-to-volume ratio. Hence, on large scales, it must be
energetically favorable for the jet to decompose into drops. From the perspective
of a linearized analysis of the energy balance, we can thus understand that pertur-
bations above a certain wavelength are favorable. The characteristic wavelength
separating the stable from the unstable regime is 2𝜋r0. This is reasonably close to
but at the same time clearly less than the length scale, as seen in Figure 1.5a.

Let us analyze the same problem from the perspective of the Young–Laplace
equation, i.e. from the perspective of local force and pressure balances. As the
radius of the cylinder becomes perturbed, the local radii of curvature R1 and
R2 both vary along the jet. At point A, the antinode of the perturbation where
r(z) is maximum, R1A is positive, and at location B, the node, R1B is negative. R2
is positive both at A and at B. Yet, R2A increases with increasing amplitude of
the perturbation, whereas R2B decreases. For small perturbations, it is easy to
show that 1∕R1A = 𝜕zzr(z) ∣A= +𝜀q2. Similarly, 1∕R1B = −𝜀q2, i.e. the local radius
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of curvature at B in that plane is negative, as it should be (see Figure 1.5b). Since
R2(z) is simply given by r(z), we can write down after some algebra the local
curvatures at A and B to lowest order in 𝜀 as 𝜅A = 1∕r0•(1 + 𝜀∕r0•(r2

0q2 − 1)) and
𝜅B = 1∕r0•(1 + 𝜀∕r0•(1 − r2

0q2)). Hence, the pressure difference between A and B is

ΔP = ΔPL,A − ΔPL,B = 2𝛾𝜀
r2

0
(r2

0q2 − 1) (1.11)

In other words, the pressure in A is larger than the pressure in B if 𝜆 < 2𝜋r0. In
this case, the pressure gradient in the fluid will drive liquid back from the bulge of
the perturbation to the neck, thus restoring the original shape. This is the stable
configuration. Vice versa, for 𝜆 > 2𝜋 r0 the pressure in B is larger than in A, and
therefore even more liquid will flow from the neck toward the bulge, thus allowing
the perturbation to grow, in agreement with our conclusions above.

Both linearized energy analysis and linearized pressure balance thus yield
the same information regarding the critical wavelength separating stable from
unstable perturbation modes. To obtain fully quantitative predictions of the
final breakup, we also need to consider dynamic aspects. To illustrate this,
let us go back to Eq. (1.11). This equation tells us that the driving pressure
difference will be larger and larger if we increase 𝜆. One might therefore expect
that the entire jet should transform into one big drop. This, however, would
require transport of fluid over very large distances, which is dynamically very
unfavorable. In fact, the quantity that drives the fluid flow is not the pressure
difference between node and antinode but the pressure gradient. The pressure
gradient, however, scales as q × ΔP and therefore vanishes for 𝜆 → ∞. The full
hydrodynamic solution of the problem obtained independently by Rayleigh and
Plateau in the nineteenth century shows that the fastest-growing perturbation
has a wavelength 𝜆max = 9.02 r0. This wavelength also sets the size of the drops
in the final state. A detailed analysis of this problem can be found in standard
textbooks of fluid dynamics [8].

1.3 Young–Dupré Equation: The Basic Law of Wetting

So far, we only considered interfaces between two fluid phases, liquid and
vapor, or two immiscible liquids. Wetting is about contact between three
different phases, in most cases a solid, a liquid, and a vapor phase. The latter
can be replaced by a second immiscible liquid phase. Furthermore, we may also
consider two immiscible liquids and vapor such as oil drops on a water surface,
or even three immiscible liquids.

1.3.1 To Spread or Not to Spread: From Solid Surface Tension to Liquid
Spreading

First of all, we note that the physical concept of a surface tension as we have intro-
duced in Section 1.1 is not limited to liquids. Also for solids, molecules or atoms at
the surface lack binding partners as compared with the bulk. Hence, solids equally
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0 < θ < π : partial wetting θ = 0 : complete wetting

θ

γ
γ

γsl γslγsv

Figure 1.6 Deposition of a liquid drop on a solid surface leads to either partial wetting (left) or
complete wetting and spreading of the liquid into a thin film (right).

display surface and interfacial energies with adjacent phases. Since the origin of
the surface energies is the same, it is also not a surprise that the order of magni-
tude of solid surface tensions is roughly the same as the one for liquids – higher
cohesive energies for solids with covalent bonds pending. However, in contrast
to liquids, solids also possess a finite elasticity that usually prevents noticeable
deformations of solid surfaces due to surface tension forces. This circumstance
makes the absolute measurement of the surface tension of solids rather difficult.

A basic wetting experiment starts with the deposition of a drop of liquid on
a solid surface, as sketched in Figure 1.6. Following drop deposition, the liquid
either spreads completely to form a liquid film that covers the entire solid sur-
face, or it spreads only partially and forms a drop with a finite contact angle 𝜃.
The former case is called complete wetting, and the latter partial wetting. If the
surface is homogeneous, we can already anticipate from our considerations in the
previous section that the drop will assume a spherical cap shape to guarantee a
constant pressure everywhere inside the liquid.

At first glance, complete wetting may seem physically less interesting and prac-
tically less relevant. Yet, this is not the case. In fact, complete wetting is very
desirable in many situations including in particular coating technology and lubri-
cation. Complete wetting with zero contact angle is a prerequisite to achieve a
thermodynamically stable films on top of a solid surface. In systems involving two
immiscible fluid phases such as water and oil in many EW experiments, complete
wetting of the continuous phase allows for keeping the dispersed drop phase sep-
arated from the solid surfaces by a thin oil film that can lubricate the motion of
the drop and reduce the fouling of solutes onto a solid substrate. Partial wetting
with a finite contact angle, on the other hand, is the generic situation scenario in
standard EW experiments.

To understand the difference between complete and partial wetting, we con-
sider the macroscopic energy of the system before and after the deposition of the
drop. As previously, the equilibrium is determined by the minimum of the free
energy of the system. If the substrate surface is very large and the drop volume is



1.3 Young–Dupré Equation: The Basic Law of Wetting 15

rather small, the energy in the initial state is essentially the solid–vapor interfa-
cial energy, i.e. Gi ≈ Asv 𝛾 sv. Here, the solid–vapor interfacial area Asv is identical
with total the surface area A of the solid. For partial wetting, total surface energy
of the system is basically not affected by the deposition of the drop because the
drop–substrate and the drop–vapor interfacial area are negligibly small com-
pared with Asv. In contrast, for complete wetting, the solid–vapor interface is
replaced by two macroscopic interfaces, namely, the solid–liquid interface and
the liquid–vapor interface. Hence, the surface energy in the final state is Gf =
𝛾 Alv + 𝛾 slAsl = A(𝛾 + 𝛾 sl). The difference between the two normalized by the sur-
face area is known as the spreading parameter:

S =
Gi − Gf

A
= 𝛾sv − (𝛾sl + 𝛾) (1.12)

If S > 0, the solid–vapor interface is energetically unfavorable compared with
the sum of solid–liquid and liquid–vapor interface. Hence, the liquid spreads to
a thin film covering the entire surface, i.e. the system displays complete wetting.
Vice versa, for S < 0, localizing the liquid in a partially wetting drop with a finite
contact angle is energetically more favorable.

A simple gedankenexperiment allows us to relate the occurrence of complete
and partial wetting to the relative strength of the various molecular interaction
forces. Let us consider a block of some material 𝛼, as sketched in Figure 1.7. We
cleave the block into two halves. From a macroscopic perspective, the difference
between the initial state and the final state is simply the existence of two addi-
tional surfaces of area A of material I, with a corresponding surface energy 𝛾 I .
Assuming that we can cleave the block without any energy losses due to dissipa-
tion, the work we performed in the process is 𝛿WI−I = 2𝛾 I A. From a microscopic
perspective, we broke the bonds between adjacent molecules everywhere along
the cleavage plane. This means that we effectively transferred molecules from the
minimum UI−I(a) of their molecular interaction potential in the bonded state to
infinity, where the molecular interaction potential vanishes, UI−I(∞) = 0. Hence,
we have 2𝛾 I = UI−I . If we repeat the same experiment with the same kind of exper-
iment for a block of two different materials I and II that are initially in contact,
cleavage eliminates an I–II interface in the initial state and creates instead an
I-surface and a II-surface. Hence, we have macroscopically 𝛿WI−II = 𝛾 I + 𝛾 II −
𝛾 I−II . Microscopically, we separated the 𝛼- and 𝛽-molecules at the interface from
their original minimum interaction energy UI−II to infinity, i.e. 𝛿WI−II = UI−II .

a
α

α
α

α

β
βα

α

Figure 1.7 Gedankenexperiment of cleaving a homogeneous block of material 𝛼 (left) and a
heterogeneous block 𝛼∕𝛽 (right) into two separate blocks.
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If we now identify 𝛼 with the solid s and 𝛽 with the liquid l in a wetting experiment,
we can express the spreading parameter in terms of the molecular interaction
energies as

S = 𝛾sv − (𝛾 + 𝛾sl) = Usl(a) − Ull(a) (1.13)

We find thus a very natural result: Complete wetting, S > 0, occurs whenever
the molecular interaction of the molecules of the solid with the molecules of the
liquid is stronger than the interaction among the molecules of the liquid. In the
opposite case, S < 0, partial wetting occurs. For the ubiquitous van der Waals
forces, we can go even one step further: van der Waals interaction between two
molecules is caused by the coupling of spontaneous fluctuations of the electron
cloud of one molecule to the induced dipole moment of the other. Hence, van
der Waals interaction is proportional to the polarizabilities 𝛼 of both molecules:
UI−II vdW ∝ 𝛼I 𝛼II . Inserting this into our expression Eq. (1.13), we find S ∝ 𝛼l
(𝛼s − 𝛼l). Hence, in the case of pure van der Waals interaction, liquids completely
wet any solid with a higher polarizability. This result leads to the conclusion
that liquid helium, the chemically most inert material that interacts only via
van der Waals interaction and displays the lowest polarizability of all materials,
should wet any solid. This was found to be generally true. (Interestingly, the
alkali metals Cs and Rb provide an exception to this rule because the specific
electronic structure of these materials leads to an initially unexpected quantum
mechanical contribution to the interaction forces that dominates over van der
Waals interaction.)

1.3.2 Partial Wetting: The Young Equation

Complete wetting systems involve three different phases. Yet, one of the phases
separates the two others completely such that there are only two types of inter-
faces. In partial wetting all three combinations of interfaces exist. Moreover, there
is a one-dimensional region, the edge of the drop, where all three phases involved
meet. For obvious reasons, this region is called the three-phase contact line, or
shorter, the contact line. Since the three interfaces meet, we can define – within
each phase – the angle between the two adjacent phases. For the generic case
of a flat surface, the angle between the sv interface and the sl interface is 180∘
by definition. For a liquid drop in ambient vapor, the angle between the sl and
the lv interface is known as the contact angle of the liquid. It is typically denoted
as Young’s angle 𝜃Y , honoring the English physicist Thomas Young (1773–1829).
The complementary angle between the sv and the lv interface is obviously 𝜋 − 𝜃Y.
Like in the case of the sign convention of the radius of curvature, we should note
that the definition is not necessarily unique. In particular for liquid–liquid sys-
tems, it is important to define properly through which phase the contact angle
is measured. For now, we will think of a liquid drop in ambient vapor and speak
about the angle measured in the liquid phase. Our primary concern is to under-
stand how the contact angle 𝜃Y is related to the three interfacial tensions in the
system. Since 𝜃Y is an equilibrium property, it is clear that it must be determined
by the minimum of the total (surface) energy for any given fixed drop volume.
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The total surface energy of a sessile drop is given by the sum of all the interfacial
energies:

Esurf [A] =
∑

i
Ai𝛾i (1.14)

Here the sum i runs over all three types of interfaces, namely, solid–liquid (sl),
solid–vapor (sv), and liquid–vapor (lv) – the index that we usually suppress. The
area of the solid–vapor interface is given by Asv = Atot − Asl, the total surface
area of the substrate minus the solid–liquid interfacial area. The former can be
neglected because it provides only a constant offset that does not depend on the
drop shape. Neglecting this irrelevant contribution, we can rewrite Eq. (1.14) as

Esurf[A] = Alv𝛾 + Asl(𝛾sl − 𝛾sv) (1.15)

Esurf is a functional of the shape A of the drop, which is determined by Alv and
Asl. A is thus the unknown function that minimizes the functional Esurf . Finding
functions that minimize functionals is the general subject of variational calculus.
We will describe this somewhat elaborate formalism in detail in Section 1.5.

Here, we focus on the vicinity of the contact line. On this local scale, the cur-
vature of the liquid–vapor interface is negligible, and hence drop surface can be
considered as flat, as shown in Figure 1.8. As we already did before, we consider
the problem first from the perspective of energy minimization and subsequently
from the perspective of local force balance. If the drop is in an equilibrium con-
figuration that minimizes the surface energy, the variation of the surface energy
𝛿Esurf upon displacing the contact line by a small amount must vanish. If we dis-
place the contact line by dx, say, to the left, as sketched in Figure 1.8a, we convert
sv interface into sl interface along dx. Moreover, we generate a little extra piece
of liquid–vapor interface with the length dx cos 𝜃. The resulting variation of the
interfacial energy is given by

𝛿Esurf = dx (𝛾sl − 𝛾sv + 𝛾 cos 𝜃) (1.16)

Table 1.2 Geometric functions characterizing spherical caps and circles.

3D V (R, 𝜃) = 𝜋

3
R3(1 − cos 𝜃)2(2 + cos 𝜃)

rsl(R, 𝜃) = R sin 𝜃
Asl(R, 𝜃) = 𝜋R2sin2𝜃

Alv(R, 𝜃) = 2𝜋R2(1 − cos 𝜃)
h(R, 𝜃) = R (1 − cos 𝜃)

R

h
Alv

θ

2D A = R2

2
(2𝜃 − sin 2𝜃)

Lsl = 2R sin 𝜃
Llv = 2R 𝜃

h = R(1 − cos 𝜃) R
Lsl

Llv

θ

h
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Figure 1.8 (a) Illustration of the variation in interfacial areas upon displacing the contact line
by dx. (b) Force balance at the contact line.

Equating 𝛿Esurf to zero we find the desired relation between the equilib-
rium contact angle 𝜃Y and the three interfacial tensions in the system, the
Young–Dupré equation:

cos 𝜃Y =
𝛾sv − 𝛾sl

𝛾
(1.17)

Upon inspecting the Young–Dupré equation, or simply Young’s equation, we
can immediately make a couple of simple observations: First of all, for 𝛾sl = 𝛾 sv, we
find 𝜃Y = 90∘ . This is natural because the creation of solid–liquid and solid–vapor
interfacial area is equally costly under these conditions. That is, the solid has no
preference for either of the two phases. If solid–vapor interface is more costly
than solid–liquid interface, 𝜃Y is smaller than 90∘ and vice versa. Note also that
the value of cos𝜃Y is bounded between −1 and +1, whereas the value of the RHS
of Eq. (1.17) is not. This is not a problem. We derived Eq. (1.17) under the explicit
assumption that the system is in the partial wetting regime. If 𝜃Y reaches a value
of either 0∘ or 180∘, the basic assumption underlying the derivation no longer
holds. This simply means that the system undergoes a transition from partial
wetting to complete wetting of one of the two phases.

As we discussed in the preceding sections, we can equivalently interpret inter-
facial tensions as tensile forces per unit length within the interface. When we
discussed the force-based macroscopic definition of the interfacial tensions in
the context of Figure 1.2, we already noticed what happens when a liquid sur-
face with a surface tension ends on a solid surface: The tension is transmitted as
a force per unit length of the contact line. Likewise, the liquid–vapor interface
along the edge of our drop pulls on the three-phase contact line with its tension
tangential to the liquid–vapor interface, as sketched in Figure 1.8b. In the same
fashion, the solid–liquid and the solid–vapor interfacial tension pull on the con-
tact line along their respective directions. In mechanical equilibrium, all forces
must balance. Otherwise the contact line would start to move along the surface.
Projecting 𝛾 onto the horizontal direction and adding the two other interfacial
tensions, we recover Young’s equation, Eq. (1.17), from the balance of the hori-
zontal components of the interfacial tensions at the contact line.

In the force balance picture, we can easily understand the transition from par-
tial wetting to complete wetting. Suppose we gradually increase 𝛾 sv by some pro-
cess or 𝛾 sl decreases as it effectively does in EW upon applying a voltage. In this
case the contact angle has to decrease to align the direction of 𝛾 better with



1.4 Wetting in the Presence of Gravity 19

Figure 1.9 Schematic
illustration of the force
balance at contact line of an
oil drop floating on water.
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solid–liquid interface in order to preserve force balance. Eventually, 𝜃Y will have
decreased to zero and even the fully aligned 𝛾 sl and 𝛾 together are no longer
able to balance the tension of the solid–vapor interface. This is the critical con-
dition when the spreading parameter S (see Eq. (1.12)) vanishes and the liquid
undergoes the transition from partial to complete wetting. Such a transition is
known as wetting transition. Wetting transitions are thermodynamic phase tran-
sitions. They are typically driven by gradual variations of interfacial tensions with
an external control parameter such as temperature of the chemical composition
of one of the phases.

The reader may also wonder about the force balance in the direction normal
to the solid surface. Obviously, the surface tension of the liquid also pulls in that
direction with a force per unit length of f⟂ = 𝛾 sin 𝜃. This component is balanced
by elastic restoring forces of the solid substrate. Under normal circumstances, i.e.
with typical hard substrate materials such as glass, this deformation is extremely
small and for all practical purposes negligible. The characteristic length scale
of these deformations is given the ratio of the surface tension divided by the
elastic modulus G of the solid. For typical hard solids G is of the order of several
gigapascal. Dividing a typical surface tension of 0.1 J m−2 by, say, 10 GPa, we
obtain a characteristic length of 10−11 m. For softer substrates, such as weakly
cross-linked polymers (e.g. polydimethylsiloxane (PDMS)) with G ≈ 105 Pa,
recent experiments showed that the surface tension-induced deformation of the
substrate can indeed be finite [9]. The most extreme example of a soft substrate
is another liquid. Indeed, everyday kitchen experience tells us that small oil
drops floating on water pull the water surface upward around the contact line.
In this case, the oil–water (ow) interface, the water–air (wa) interface, and the
oil–air (oa) interface are all deformable. Balancing all three surface tension
forces at the contact line leads to the so-called Neumann triangle relating the
three characteristic angles to the three interfacial tensions involved:

𝛾oa

sin 𝜃w
=

𝛾wa

sin 𝜃o
=

𝛾ow

sin 𝜃a
(1.18)

Here, the subscripts of the angles indicate the phase in which the angle is mea-
sured. See Figure 1.9 for an illustration of the definitions. Useful geometric rela-
tions of spherical caps are given in Table 1.2.

1.4 Wetting in the Presence of Gravity

So far, we discussed wetting systems in the presence of surface tension forces
only. In practice, other forces such as gravity and in EW electrostatic forces are
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Figure 1.10 (a) Sessile water drops of variable size on a polymer substrate. (b) Schematic of
sessile drop illustrating inward- and outward-oriented forces on a surface element dA.

omnipresent. From daily experience, we are familiar with the effect of gravity.
While small sessile drops assume spherical cap shapes on homogeneous surfaces
as discussed above, larger drops assume the shape of puddles that are flat on
the top; see Figure 1.10. Daily experience tells us that the transition from the
capillarity-dominated regime of spherical caps to the gravity-dominated regime
of flattened puddles takes place on a characteristic length scale of a few millime-
ters, which is known as capillary length 𝜆c. The exact value of 𝜆c depends on the
properties of the liquid. Yet, it turns out that the order of magnitude of a few
millimeters actually holds for the majority of common liquids. In this section we
demonstrate how external forces can be incorporated into the laws of wetting and
capillarity as we have discussed them so far. Specifically, we want to understand
the origin of the capillary length, and we want to derive a quantitative formalism
that allows us to calculate equilibrium drop surface profiles h(x) in the presence
of gravity, as shown in Figure 1.10a.

To understand heuristically the effect of gravity on the equilibrium shape
of drops, we return to our discussion of the derivation of the Young–Laplace
equation based on force balance. A key element in our derivation was the point
that the pressure p within the drop is constant and equal to the pressure drop
ΔPL = 𝛾𝜅 across the surface. In the presence of gravity, however, the pressure
within the liquid is no longer constant but increases with increasing depth below
the surface due to the hydrostatic pressure. Every volume element dV of liquid
experiences a gravitational body force df⃗g = −𝜌gdV e⃗z. At a depth Δh = h0 − z
below surface, this directional gravitational force gives rise to an isotropic hydro-
static pressure p(z) = p0 − 𝜌gz. (h0 and p0 denote the highest position of the
liquid surface and the reference pressure at that height.) (In Appendix 1.A to this
chapter, we provide a somewhat more formal discussion of these considerations
introducing a description in terms of the stress tensor that is also relevant for
electric fields in EW.) Qualitatively, any surface element dA experiences an
outward-oriented force p(z)dA that is balanced by the inward-oriented surface
tension force 𝜅𝛾 dA, as illustrated in Figure 1.10b. In the presence of gravity, the
original Young–Laplace equation in three-dimensional space is thus replaced by

2𝛾𝜅 = p0 − 𝜌gz (1.19)

(The factor 2 applies for three-dimensional systems.) If we write the equation
in this manner, we assume that the density in the ambient phase is negligible. If
this is not the case, the hydrostatic pressure in the ambient phase also varies with
z according to the density 𝜌a of the ambient fluid. In this case, 𝜌 in Eq. (1.19) has
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to be replaced by Δ𝜌 = 𝜌 − 𝜌a. Note that Δ𝜌 can be either positive or negative,
depending on the relative densities of the drop phase and the ambient liquid.

The gravitational body force thus appears as an additional term in the
Young–Laplace equation. As we will demonstrate explicitly in a more formal
derivation in Section 1.5, gravity does not appear in the balance of forces at the
contact line. Gravity thus distorts the surface of the drop but does not affect the
contact angle. In Chapter 5, we will see that the same applies for electric fields in
the context of EW if we look sufficiently closely in the vicinity of the contact line.

1.4.1 Bond Number and Capillary Length

Before analyzing the specific problem of the shape of the puddle in some detail,
we estimate the relative importance of the three terms in Eq. (1.19). To do so,
we need to identify the characteristic parameters of the problem and rewrite the
equation in nondimensional units. The radius R of the drop is obviously a char-
acteristic length scale. If necessary, we can define R based on the cube root of the
liquid volume. Hence, we can use R to define a nondimensional height z̃ = z∕R.
Since the curvature has the dimension of an inverse length, we have 𝜅̃ = R𝜅. The
characteristic value of the capillary pressure is 𝛾∕R. This leads to a nondimen-
sional pressure p̃ = p R∕𝛾 . With these definitions and after rearrangement of the
terms, the nondimensional version of Eq. (1.19) becomes

p̃ = 2𝜅̃ +
𝜌gR2

𝛾
z̃ = 2𝜅̃ + Bo z̃ (1.20)

Since z̃ and 𝜅̃ have numerical values of order unity, we see immediately that the
gravity term dominates if Bo = 𝜌gR2∕𝛾 , the Bond number, is large compared with
unity and vice versa capillary forces dominate for Bo≪ 1. For Bo = 1, gravity and
capillarity are equally important. Since Bo scales as R2, we find what we expected:
Gravity is negligible on small scales and dominates on large scales. Using the def-
inition of Bo, we can identify a characteristic length scale, the capillary length

𝜆c =
√

𝛾

𝜌 g
(1.21)

𝜆c is the characteristic length in any problem involving capillary forces and
gravity. It defines the transition from the capillarity-dominated small scales to the
gravity-dominated large scales. Inserting numbers for water, we find 𝜆c = 2.3mm.
Since 𝜆c depends only on the square root of the ratio of surface tension and den-
sity, it turns out that 𝜆c almost universally adopts a value of order 1 mm for all
common liquids, as can be verified by inserting the surface tensions and densities
tabulated in Table 1.1. Much larger values are realized in space. For this reason
many fundamental experiments to test the laws of capillary have actually been
carried out in space. On Earth, the easiest manner to achieve large values of the
capillary length is to use liquid–liquid systems with matched densities of the two
phases. (In this case, the density 𝜌 in the expression for 𝜆c is again replaced by Δ𝜌,
as noted above.) Taking specific care, e.g. by tuning using mixtures of solvent or
by adding solutes densities of oil and water, can be matched up to a precision of
Δ𝜌 ≈ 10−3𝜌. This leads to values of 𝜆c of several centimeters. This is, for instance,
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crucial for optimizing the design of (e.g. EW-driven) optofluidic devices such as
tunable lenses and beam deflectors that we will discuss in Chapter 8. Note that
matching the densities of liquids not only reduces the effect of gravity, but it also
reduces the effect of inertial forces. As a consequence density-matched optoflu-
idic devices are particularly insensitive to mechanical shocks and vibrations.

1.4.2 Case Studies

1.4.2.1 The Shape of a Liquid Puddle
What is the equilibrium shape of the liquid puddles shown in Figure 1.10, and
what is their height h∞ far away from the contact line? Let us assume that the
puddle is very large (i.e. R ≫ 𝜆c) such that it becomes completely flat far away
from the contact line. In this limit it is reasonable to consider the one-dimensional
version of Eq. (1.19), i.e.

−𝛾 h′′

(1 + h′2)
3
2

= p0 − 𝜌g h (1.22)

where the prime indicates a derivative with respect to x (cf. Eq. (1.7)). Note the
minus sign on the left-hand side (LHS) that ensures a positive pressure inside the
drop. Since we assume the puddle to become flat far away from the contact line,
we know that h

′′
(x), h

′
(x) → 0 for x → ∞, while h(x) → h∞. From this boundary

condition, we can infer immediately that p0 = 𝜌gh∞. Furthermore, we know that
the slope of the surface at the contact line must correspond to Young’s angle, i.e.
h

′
(0) = tan 𝜃Y . Equation (1.22) is an ordinary nonlinear second-order differential

equation for the surface profile h(x). Noting that h
′′
∕(1 + h

′2)3/2 = d∕dx(h
′
∕(1 +

h
′2)1/2), we can integrate Eq. (1.22) once to obtain

(cos𝜙(x) − cos 𝜃Y ) =
h(x)

(
h∞ − h(x)

2

)
𝜆2

c
(1.23)

Here, 𝜙(x) with cos𝜙 = 1∕
√

1 + h′2 is the local slope angle of h(x), as indicated
in Figure 1.11. Equation (1.23) is now a first-order differential equation for h(x).
It can be integrated numerically to obtain the full profile.

While there is no analytical solution for h(x), we can nevertheless deduce some
useful information from Eq. (1.23). In particular, we can calculate the height h∞
of a puddle without calculating the full profile by considering the limit x → ∞. In
this limit 𝜙 → 0 and h → h∞. Inserting these boundary conditions in Eq. (1.23),
we obtain after a little algebra

h∞ = 2𝜆c sin
𝜃Y

2
(1.24)

The thickness of a liquid puddle is thus independent of its size, in agreement
with daily experience. Moreover, we find that h∞ is given by a combination
of the wettability of the surface and 𝜆c. Thus, 𝜆c appears prominently in this
capillarity-/gravity-dominated problem, as anticipated above.

Next to the formal manner of solving the Young–Laplace equation discussed
above, we can also arrive at Eq. (1.23) directly by balancing the horizontal com-
ponent of all external forces acting on the various control volumes shaded in gray
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Figure 1.11 Surface profile of a puddle of liquid. (a) Global view indicating the
height-dependent pressure. (b) Two alternative selections of the control volume with the
bottom just above (top) and just below (bottom) the solid–liquid interface.

in Figure 1.11. In mechanical equilibrium, the sum of all forces acting on a control
volume must obviously add up to zero. The details of the calculation depend on
our specific choice of the control volume. Let us first consider the gray-shaded
control volume in the bottom of Figure 1.11b, which is a zoomed view of the one
shown in Figure 1.11a. The lower boundary is chosen inside the solid substrate
just below the solid–liquid interface, and the curved boundary follows the sur-
face profile just outside the liquid. The right vertical boundary connects the ends
of the two other sections. With this choice, the boundary of the control volume
crosses the solid–liquid, the liquid–vapor, and the solid–vapor interface. At every
intersection with an interface, the corresponding interfacial tension pulls tangen-
tially along the direction of the interface, as indicated in the figure. In addition to
the surface tension forces, the liquid experiences the hydrostatic pressure force
from the liquid column along the right boundary of the control volume. This force
is given by

fh = ∫
h(x)

0
(Δp − 𝜌g z) dz = 𝜌g h(x) (h∞ − h(x)∕2)

Balancing horizontal components of all forces, we arrive at the equation

𝛾sl + 𝛾 cos𝜙(x) = 𝛾sv + 𝜌gh(x)(h∞ − h∕2) (1.25)

Using Young’s equation to eliminate 𝛾 sl and 𝛾 sv, we recover Eq. (1.23). Alter-
natively, we could have chosen the bottom edge of the control volume in
the liquid phase, just above the solid–liquid interface, as shown in the top of
Figure 1.11b. In this case, the surface of the control volume intersects neither
with the solid–liquid nor with the solid–vapor interface. Instead, there is a
second intersection with the liquid–vapor interface close to the contact line,
where the slope of the surface profile corresponds to Young’s angle. Inserting
this boundary condition, we find that the net surface tension force acting on the
control volume is f𝛾 (x) = 𝛾(cos𝜙(h(x)) − cos 𝜃Y ). Balancing this expression with
the pressure force fh, we recover again Eq. (1.23).
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1.4.2.2 The Pendant Drop Method: Measuring Surface Tension by Balancing
Capillary and Gravity Forces

r

z

φ
γ

n
→

Figure 1.12 Pendant
drop hanging from a
needle deformed under
the influence of gravity. n⃗
is the surface normal unit
vector.

The competition between gravity and capillary forces
provides us with a very convenient and accurate
method to measure the surface tension of a liquid or the
interfacial tensions between two liquids. In principle, 𝛾
can be obtained by fitting the numerical solution of Eq.
(1.23) to the shape of a puddle. If the density of the liquid
is known, 𝛾 and 𝜃Y are the only free parameters. In prac-
tice, this approach is not very convenient because pud-
dles need to be rather large in diameter, and they tend to
display rather small curvatures, in particular if the con-
tact angle is small. Additional uncertainties arise if the
solid surface is not perfectly homogeneous. These prob-
lems can be avoided if we simply hang a drop of liquid
from the needle of a syringe, as shown in Figure 1.12. If
the drop radius R is small compared with 𝜆c, the drop is
perfectly spherical. Upon gradually increasing the vol-
ume, the drop gets more and more deformed under the
influence of gravity as R becomes comparable to 𝜆c. At
some point, the drop becomes too heavy and falls off the
needle. This simple experiment offers two possibilities
to measure surface tension. First of all, the falling drop
has a well-defined volume that is determined by the maximum capillary force at
the interface between the needle and the drop. The capillary force holding the
drop on the needle is given by f𝛾 = 2𝜋r𝛾 cos𝜙, as illustrated in Figure 1.12. Obvi-
ously, this force has a maximum value of f𝛾 = 2𝜋r𝛾 for 𝜙 = 0. Since the weight
of the drop is f𝛾 = 4∕3𝜋R3𝜌g, balancing the two forces yields a drop radius of
R* = 𝜆c(3r∕2𝜆c)1/3, where r is the radius of the needle. By measuring the weight
of the falling drops, we can thus determine the surface tension. In principle, this
sounds very easy. Yet, the problem is that only a part of the originally unstable
drop ends up falling. A finite fraction – up to 40% – remains stuck on the needle.
The exact value depends on the details of the detachment dynamics and on the
viscous properties of the liquid. This limits the accuracy of the measurements.

The second much more reliable method is to determine the equilibrium shape
of the drop under static conditions before it falls off the needle. In this case, we
can fit the numerical solution of the capillary equation in cylindrical coordinates
(Eq. (1.19)) to the measured shape of the drop. Knowing the needle radius r and
the liquid density, 𝛾 is the only fit parameter in this procedure. Since both the
acquisition of digital images and numerical fitting are nowadays performed on
computers very easily and accurately, this so-called pendant drop method is one
of the most popular methods for interfacial tension measurements. A practical
added value is that the measurement can be done conveniently in the same instru-
ment as a contact angle measurement.
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Figure 1.13 Capillary rise in thin tube.
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1.4.2.3 Capillary Rise
The final example to be discussed is capillary rise. Capillary rise describes the
phenomenon of liquid that is pulled upward into a thin capillary against the direc-
tion of gravity as sketched in Figure 1.13. The thinner the capillary, the higher the
liquid rises. This is only true if the contact angle of the liquid on the surface is
less than 90∘. For 𝜃Y > 90∘ , the opposite phenomenon, capillary depression, is
observed. A substantial height of rise (or depression) is only important for cap-
illary diameters 2R ≪ 𝜆c. The problem of calculating the equilibrium height can
be analyzed in many ways.

First, we analyze the variation of the pressure along the path indicated by the
dashed lines and the points A–E in Figure 1.13. The pressure in the ambient air at
point A is p(A) = p0. If we neglect the density of the air, the pressure at point B
is the same, i.e. p(B) = p(A). As we cross the air–water interface between B and
C, the pressure jumps due to the curvature of the interface. For a circular tube
of radius R and contact angle 𝜃Y < 90∘, we have p(C) = p(B) − 2𝛾 cos 𝜃∕R. Here,
we implicitly assumed that the liquid meniscus is spherical. This is justified as
long as 2R ≪ 𝜆c. Moving from point C to D, the pressure increases due to the
hydrostatic pressure: p(D) = p(C) + 𝜌gh. D and E are at the same level. Hence,
p(D)= p(E). Since the surface of the liquid bath is flat, there is no pressure jump
at that interface: i.e. p(E)= p(A). Combining all these expressions, we find the
height of capillary rise

h =
2𝛾 cos 𝜃Y

𝜌gR
(1.26)

This equation is known as Jurin’s law.
This derivation is very easy. Yet, it tends to hide the true physical driving forces

of the process. The pressure jump across the meniscus is merely a consequence
of the boundary condition 𝜃Y that we imposed on the liquid along the edge of
the meniscus. The actual microscopic force driving the process is the difference
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between 𝛾 sv and 𝛾 sl. Since 𝜃Y < 90∘ , the capillary prefers to be wetted by water
rather than by the ambient air. The role of this actual driving force appears more
explicitly if we derive Jurin’s law by considering the sum of all the forces acting
on the liquid column inside the capillary from the level of the bath up to the
meniscus. Along the three-phase contact line at the meniscus, the solid–vapor
interfacial tension pulls upward with a total force fsv = 2𝜋R𝛾 sv. Along the edge
of the lower end of the control volume at the level of the bath, the solid–liquid
interfacial tension pulls downward with a force fsl = −2𝜋R𝛾 sl. Finally, there is the
body force −𝜌gdV that pulls on each volume element of liquid. Integrating over
the entire column, this leads to fg = −𝜋R2h𝜌g. Adding up all the terms yields

2𝜋R𝛾sv = 2𝜋R𝛾sl + 𝜋R2h𝜌g (1.27)

Using Young’s equation to replace 𝛾 sv − 𝛾 sl by 𝛾 cos 𝜃Y , we recover Jurin’s law.
From this derivation it is very clear that the actual driving force is the difference
of the interfacial tensions 𝛾 sv and 𝛾 sl. This observation has an important conse-
quence. It implies that the actual force pulling in the liquid does not depend on the
curvature of the meniscus. Even if the liquid were frozen such that the meniscus
would remain flat, it would still be pulled upward by the same force. If there were
no friction, we would expect the same height of rise. In this sense, the fact that
the liquid meniscus becomes curved is merely a consequence of the characteris-
tic response of liquids to interfacial tension forces and to the specific geometry.
The same argument has played an important role in early discussions of the ori-
gin of the ponderomotive forces responsible for the actuation of drops in EW
and its relation to the variations of the contact angle. We will come back to this
discussion in Chapter 5.

It is worth noting that wetting as a driving force for the penetration of confined
spaces is important in a much broader context than capillary rise. Capillary forces
also suck liquids into porous media, such as rock, paper, and textiles if the liquid
wets the walls. The narrower the pores, the stronger the suction pressures. This
phenomenon is known as wicking. The same process also gives rise to liquid fin-
gers spreading in the corners of rectangular microfluidic channels. Conversely,
very large pressures are needed to force liquid into narrow pores with contact
angles on the walls exceeding 90∘.

1.5 Variational Derivation of the Young–Laplace
and the Young–Dupré Equation

As mentioned above, the two basic laws of wetting, Laplace’s law and Youngs
law, can both be derived in a consistent manner from the principle of energy
minimization. The conceptual approach is similar to the minimization of some
ordinary function of a set of variables, say, f(x, y, z). A necessary condition to
have a minimum (or maximum) some point (x0, y0, z0) is the requirement that
the gradient of f vanishes, i.e. ∇f(x0, y0, z0) = 0. To find extrema of functions, we
therefore generally solve this condition for (x0, y0, z0). The minimization prob-
lem of the surface energy is similar, except that Esurf is not simply a function
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of a set of variables, but it depends on the shape A of the liquid surface. For
instance, we can parameterize A by a function h(x, y). Esurf a function of the func-
tion h(x, y), is called a functional. The analogue of our criterion ∇f(x0, y0, z0) = 0
is a differential equation that the equilibrium shape, the function h0(x, y), has to
fulfill for Esurf [h0(x, y)] to be minimum. This equation is given by equating the
first functional or variational derivative to zero, i.e. 𝛿Esurf = 0. As we will see
in the end, there are in fact two equations that h(x, y) has to fulfill, namely, the
Young–Laplace and the Young–Dupré equations, Eqs. (1.6) and (1.17). Both basic
equations thus arise directly from the same energy minimization procedure. Like
in the case of an ordinary function, solving a specific problem then implies solv-
ing Laplace’s equation and Young’s equation for the equilibrium function h0(x, y)
subject to specific boundary conditions. This is the general concept. The remain-
der of this section is somewhat technical and may be skipped by readers who are
satisfied with understanding the general background.

In Eq. (1.15) we already noted that the surface energy of a sessile drop with
a finite contact angle can be written as Esurf [A] = Alv𝛾 + Asl(𝛾 sl − 𝛾 sv). We can
rewrite this expression in an integral form as

Esurf[A] = ∫ 𝛾 dAlv + ∫ (𝛾sl − 𝛾sv)dAsl (1.28)

We seek the minimum of this functional for a fixed volume V of the drop. This
constraint is included by minimizing the functional

G[A] = Esurf[A] − 𝜆V (1.29)

Here,𝜆 is a so-called Lagrange parameter, which turns out to be the pressureΔp
in the liquid. G[A] is the Gibbs free energy functional of the system. In addition to
surface energies, we want to include gravitational body forces as well. The energy
density of the gravitational energy is 𝜌gz. Hence, the total functional that we aim
to minimize is

G[A] = Esurf[A] + Eg[A] − ΔpV = ∫ 𝛾dAlv + ∫ (𝛾sl − 𝛾sv)dAsl

+ ∫ (𝜌gz − Δp)dV (1.30)

We assume that the solid–liquid interface is flat and choose to make it coincide
with the (x, y)-plane of our coordinate system. To proceed, we rewrite the first
and the last integral in Eq. (1.30) as integrals over the drop–substrate interfacial
area Asl like the second one. Furthermore, we rewrite the integrand as a function
of h(x, y) and h

′
(x, y), our explicit parameterization of the drop shape. To do so,

we note that dAlv = (1 + (𝜕xh)2 + (𝜕yh)2)1/2dx dy and dAsl = dx dy. Furthermore,
we can write dV = dx dy dz in the third integral and carry out the z-integration
from 0 to h(x, y). Using these expressions, we find

G[h(xy), 𝜕xh, 𝜕yh] = ∫ ∫Asl

dx dy{
𝛾
√

1 + (𝜕xh)2 + (𝜕yh)2 + 𝛾sl − 𝛾sv +
1
2
𝜌g h2 − Δp h

}
(1.31)
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Figure 1.14 Illustration of a
sessile drop with equilibrium
surface profile h0(x) and
arbitrary variation 𝛿h(x).

To minimize notational effort, we will restrict ourselves in the following to a
two-dimensional problem such that the interface position is a function of one
spatial coordinate x only as sketched in Figure 1.14.

In this case, the integration domain on the substrate extends from the left con-
tact line position at x=A to the right one at x=B. The surface profile is given by
a function h(x). Dropping all y-dependencies and writing h

′
= 𝜕xh, the variation

of Eq. (1.31) becomes

𝛿G = 𝛿 ∫
B

A

[
𝛾
√

1 + h′2 + 𝛾sl − 𝛾sv +
1
2
𝜌gh2 − Δp h

]
dx = 0 (1.32)

To carry out the variational minimization, we write h(x) = h0(x) + 𝛿h(x) =
h0(x) + 𝛼𝜂(x), where h0(x) is the equilibrium shape that we seek and 𝜂(x) is an
arbitrary variation around that equilibrium. 𝛼 is a small parameter. We denote
the integrand of Eq. (1.32) as g̃(h, h′). The variational derivative then reads

𝛿G = 𝛿b g̃(B) − 𝛿a g̃(A) + ∫
B

A

[
𝜕g̃
𝜕h

𝜕h
𝜕𝛼

d𝛼 +
𝜕g̃
𝜕h́

𝜕h́

𝜕𝛼
d𝛼

]
dx (1.33)

where the first two terms arise from the variations 𝛿a and 𝛿b of the contact line
positions. The integral can be further simplified by partial integration of the sec-
ond term

∫
B

A

𝜕g̃
𝜕h′

𝜕h′

𝜕𝛼
d𝛼dx =

𝜕g̃
𝜕h′

𝜕h
𝜕𝛼

d𝛼
||||

B

A
− ∫

B

A

d
dx

(
𝜕g̃
𝜕h′

)
𝜕h
𝜕𝛼

d𝛼dx (1.34)

Inserting into Eq. (1.33) we find

𝛿G = 𝛿b g̃(B) − 𝛿a g̃(A) +
𝜕g̃
𝜕h́ 𝛿h

||||
B

A
+ ∫

B

A

(
𝜕g̃
𝜕h

− d
dx

(
𝜕g̃
𝜕h́

))
𝛿hdx (1.35)

Here, the variations of the contact line positions 𝛿a and 𝛿b are not indepen-
dent of the variation of 𝛿h(A) and 𝛿h(B). Rather, we have 𝛿h(A) = −h

′
(A) 𝛿a and

𝛿h(B) = −h
′
(B)𝛿b by geometry. Inserting this yields

𝛿G = 𝛿b
(

g̃(B) −
𝜕g̃
𝜕h′ h′

)
− 𝛿a

(
g̃(A) −

𝜕g̃
𝜕h′ h′

)
+ ∫

B

A

(
𝜕g̃
𝜕h

− d
dx

(
𝜕g̃
𝜕h′

))
𝛿h(x)dx = 0 (1.36)

Since 𝛿G has to vanish for arbitrary variations 𝛿h, 𝛿a, and 𝛿b, all the expressions
in the parentheses in Eq. (1.36) must vanish independently. The expression under
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the integral in the third term is the Euler–Lagrange equation for the g̃(h, h′).
Inserting the definition for g̃ from Eq. (1.32) yields

𝛾 𝜅(x) = Δp − 𝜌 g h(x)

where we used 𝜅 = −h
′ ′
∕(1 + h

′2)3/2 to take into account the proper sign conven-
tion for the radius of curvature. Hence, we recover the Young–Laplace equation
including the gravitational term as the Euler–Lagrange equation of our minimiza-
tion procedure. Inserting the definition of g̃ into the conditions that arise from the
variations 𝛿a and 𝛿b, and taking into account g̃(xA) = 𝛾(1 + h′(xA)2)1∕2 = 𝛾∕ cos 𝜃,
we recover Young’s equation, Eq. (1.17). As we already mentioned in our heuris-
tic considerations in Section 1.4, we thus find from the general formalism of
variational energy minimization that gravity does indeed not affect the contact
angle – only the shape of the drop away from the contact line.

In summary, we have now seen how both basic equations of capillarity arise
from one calculation based on the general principle of energy minimization. Note
that the procedure to include the gravitational body force as an energy density in
Eq. (1.30) is rather general. The same strategy can be applied to include molecular
interaction forces in thin films (see Section 1.6) as well as the electrostatic body
forces that are responsible for EW and dielectrophoresis.

1.6 Wetting at the Nanoscale

So far, we considered wetting problems from a macroscopic perspective. How-
ever, we know from our brief discussion in Section 1.1 that interfacial tensions
arise from molecular interaction forces and that these forces typically have a
range of a few molecular diameters. Therefore, the question arises, how these
molecular forces affect the wetting behavior on scales that are comparable to
the range of the interaction forces. From an applied perspective, this question
may seem somewhat academic at first glance since drop dimensions of inter-
est are typically much larger. Yet, nanoscale wetting properties are important for
the macroscopic behavior of drops for several reasons: First of all, liquids with a
finite vapor pressure tend to adsorb from the vapor phase onto solid surfaces. In
daily life, this leads to the formation of molecularly thin films of water on almost
any surface. Depending on the ambient humidity and the nature of the molecu-
lar interaction forces (hydrophilicity/hydrophobicity of the surface), these films
can become several nanometers thick. Since sessile drops of liquid generate their
own atmosphere of saturated vapor around them, the solid surface next to a par-
tially wetting drop is in general also covered by such a thin film, as sketched in
the inset of Figure 1.15. Conceptually, this is quite a dramatic observation by
itself: An equilibrated solid–vapor interface is not the same as a perfectly dry
solid–vacuum interface. Similarly, the equilibrium solid–vapor interfacial ten-
sion 𝛾 sv is not the same as the solid–vacuum interfacial tension: The spontaneous
adsorption of the thin film always reduces the interfacial tension. In practice, the
presence or absence of such films can also have important macroscopic conse-
quences, e.g. for the friction and lubrication of solid surfaces and for electrostatic
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Figure 1.15 Relevance of molecular interaction forces for the surface energy of thin liquid
films. Illustration of necessity of a correction term for h ≈ ri . The numbers on the far right
indicate the media 1 (solid), 2 (ambient), and 3 (film). Inset: illustration of a partially wetting
drop accompanied by molecularly thin wetting films.

charging of surfaces, which is a key concern when handling sensitive electronic
devices in dry environments. In fact, it turns out that the existence of such thin
films is not limited to volatile liquids. Even drops of partially wetting nonvolatile
fluids are usually surrounded by such films if given enough time to equilibrate.
Their thickness h0 is particularly large if one of two liquid phases wets a solid
much better than the other. A typical example is oils used as ambient medium in
EW devices that wet hydrophobic polymer surfaces much better than water.

1.6.1 The Effective Interface Potential

To develop a quantitative description of the thin wetting films, we consider the
free energy of a solid surface covered by a liquid film with a homogeneous thick-
ness h. If h is large compared with the range ri of the molecular interaction forces,
the solid–liquid interface and the liquid–vapor interface are both well defined
and separated from each other, as illustrated on the left of Figure 1.15. The free
energy per unit area is then simply given by the sum of the interfacial energies
of the solid–liquid and the liquid–vapor interface, i.e. G ≡ 𝛾 sl + 𝛾 independent
of the exact value of h. If h ≈ ri, however, both interfaces are within the range of
interactions of the molecules in the film. Hence, there are no longer two sepa-
rate interfaces. There is only one composite interface that includes the thin liquid
film. A very convenient manner to describe this situation is to introduce a new
quantity, the so-called effective interface potential Φ(h). Φ is an excess quantity
that takes into account all necessary corrections due to the molecular forces with
respect to the reference state of two separate interfaces. Before discussing an
explicit expression for Φ in terms of some specific molecular interaction force, let
us use this general definition to re-express the thickness-dependent free energy
of the interface as

G(h) = 𝛾sl + 𝛾 + Φ(h) (1.37)

We can readily infer a few necessary properties of Φ(h) from the limiting cases
without knowing any details about the specific type of molecular interactions.
First, the absolute value of Φ should be of the same order of magnitude as the
interfacial tensions, because both have the same physical origin. Since the effect
of molecular interactions vanishes for h > ri, we know that Φ(h) → 0 for h ≫ ri.
Furthermore, we know that G(h) → 𝛾 sv for h → h0. (Note that we include the thin
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Figure 1.16 Effective interface
potential versus film thickness for
generic cases of complete wetting
(top), pseudopartial wetting (middle),
and partial wetting (bottom).
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liquid film explicitly in the definition of 𝛾 sv.) Comparing Eqs. (1.12) and (1.37), we
find Φ(h0) = S. For complete wetting systems, where the spreading parameter S
is positive, Φ is typically a function that decays monotonically from 𝛾 sv to zero
within the range h = 0,… , ri; see top curve in Figure 1.16. This shape of Φ(h)
implies that reducing h to values of the order of ri or less increases the surface
energy of the system and is thus unfavorable. The minimum of the interfacial
energy corresponds to an infinitely thick liquid film – exactly as expected for a
completely wetting system. (Infinite in this context means ≫ ri.) This explains
the name effective interface potential: Φ(h) is the interaction potential per unit
area between the solid–liquid and the liquid–vapor interface. Correspondingly,
we can define a pressure, the so-called disjoining pressure Π(h), as the negative
gradient of the potential

Π(h) = −dΦ
dh

(1.38)

For partial wetting systems we know that S = Φ(h0) < 0. This means that the
system gains energy by reducing the film thickness once it comes within the range
of the interface potential. In partial wetting conditions, the interfacial tensions are
related to the contact angle by Young’s equation. Eliminating 𝛾 sl and 𝛾 sv, we find

Φ(h0) = S = 𝛾(cos 𝜃Y − 1) (for partial wetting) (1.39)

This is a remarkable equation. It states that Young’s angle is completely
determined by the value of the minimum of Φ(h). The actual functional form
of Φ is irrelevant for the macroscopic angle that is observed in conventional
contact angle goniometry measurements. The middle and the bottom curves
in Figure 1.16 both show examples of interface potentials for partially wetting
systems. The bottom curve shows a pure partial wetting case, for which the
thickness of the equilibrium film strictly vanishes. The middle curve illustrates
the more common case with a finite value of h0. Sometimes, this regime is
denoted as pseudopartial wetting. It is characterized by a combination of an
attractive molecular interaction force at long distances and a sharply increasing
repulsive contribution at short distance. This short-range part of the effective
interface potential is typically related to the same short-range chemical forces as
the repulsive part of the molecular interaction potential shown in Figure 1.1c.
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1.6.2 Case Studies

1.6.2.1 The Effective Interface Potential for van der Waals Interaction
We already inferred quite a few general properties of the effective interface
potential without specifying the microscopic molecular interactions. Never-
theless it is very instructive to derive a quantitative expression for Φ(h) for a
specific type of molecular interaction. We will choose van der Waals interactions
as an example because of their ubiquity and because they give rise to a simple
functional form of Φ. (The case of screened Coulomb interactions, which is
important for the electrolytes typically used in EW, will be addressed separately
in Chapter 4.) Fundamentally, van der Waals interaction arises from quantum
mechanical fluctuations of the electron cloud of molecules that give rise to
fluctuating dipole moments. These fluctuating dipole moments generate electric
fields that polarize other molecules. In the end, this leads to an interaction that
is always attractive between two isolated atoms or molecules and that decays as
function of the distance r with r−6. This gives rise to the attractive part of the
molecular interaction potential in Figure 1.1. To first approximation, the van
der Waals interaction energy of a system of many interaction molecules can
be considered as pairwise additive. Hence, if we want to know the interaction
energy of a liquid film of a certain thickness h covering a solid substrate, we
need to add the van der Waals interaction energy of each molecule in the liquid
with each molecule in the substrate and with the rest of the adsorbed liquid
film. Details of this calculation as well as a discussion of the more advanced
quantum mechanical derivations of the van der Waals interaction can be found
in References [2, 3]. For a system consisting of a substrate (medium 1) interacting
through a thin film (medium 3) with a second immiscible phase (ambient air, oil,
etc.; medium 2) with parallel interfaces, as shown on the RHS of Figure 1.15, the
resulting effective interface potential is

Φ(h) =
AH

12𝜋h2 (1.40)

The corresponding disjoining pressure is given by

Π(h) = −dΦ
dh

=
AH

6𝜋h3 (1.41)

Here, AH is the so-called Hamaker constant. It is characteristic for the spe-
cific three-phase system. Note that Φ decays rather slowly as h−2 with increasing
film thickness, much slower than the r−6-dependence of the underlying molecular
interaction potential suggests. This weaker exponent arises from the summation
over all the interacting pairs of molecules in the substrate and in the thin film. This
makes van der Waals interaction a long-range force in the terminology of wetting
science. Still, long range typically means no more than several nanometers.

The complete theory of van der Waals interaction has been worked out by Lif-
shitz using a quantum mechanical analysis that takes into account the response
of the materials to electromagnetic fields integrated over all possible frequencies.
The result is that the Hamaker constant AH = A132 for three materials interacting
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with each other can be written as

A132 = −C1
𝜀1 − 𝜀3
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(1.42)

Here, C1 = 3kBT
4

≈ 3.5 × 10−21 J and C2 = 3ℏ𝜔∕16
√

2 ≈ 1.40 × 10−20 J, where ℏ
is Planck’s constant and 𝜔 ≈ 1015 s−1 is a typical optical frequency. (We choose
the sign of A132 here consistent with the wetting literature; see, e.g. [1], which is
opposite to [2, 3].) The order of the subscripts in A123 indicates that medium 1
interacts with medium 2 through the ambient medium 3 according to the con-
ventional notation. The first term in Eq. (1.42) involves the static polarizability
of the materials quantified in terms of the dielectric permeabilities 𝜀i (i = 1, 2, 3).
The second term describes the response at optical frequencies and is expressed
in terms of the refractive indices ni. Upon inserting numbers, one finds that the
high frequency optical term involving the refractive indices usually dominates.
Exceptions occur in case of index matching, i.e. when the refractive index of the
ambient medium 3 equals the refractive index of one of the two other materi-
als. In that case, the high frequency part obviously vanishes. Furthermore, Eq.
(1.42) also shows that nature likes to arrange phases in the order of their polar-
izabilities. That is, complete wetting with A132 > 0 is found for n1 > n2 > n3 or
r n1 < n2 < n3 (and analogue for the low frequency permittivities). Vice versa, if
medium 3 has either the highest or the lowest polarizability, the system displays
partial wetting with A132 < 0. In this case, a film of medium 3 on the substrate is
unstable and transforms into a drop with a finite contact angle. That is, medium
3 is expelled from the space in between mediums 1 and 2 (except for a possible
thin film that is stabilized by a short-range chemical force).

In EW experiments, the substrates are frequently made of fluoropolymers such
as Teflon AF with a very low refractive index n1 = 1.31 in the visible range and
a dielectric constant of 𝜀1 = 1.93. If we perform an experiment with aqueous
drops in ambient oil, the water is medium 2 with a refractive index of n2 = 1.33
and a very large dielectric constant of 𝜀2 = 81. Typical alkane or silicone oils
have a refractive index of n3 = 1.4–1.45 and a dielectric constant of 𝜀3 = 2–3.
These values imply that the optical contribution favors partial wetting, whereas
the static contribution favors complete wetting. Due to the large value of the
dielectric constant of water, the balance is actually very subtle. Using 𝜀3 = 2 and
n3 = 1.43 (hexadecane) yields a value of A132 = −2.7 × 10−23 J. That is, the sys-
tem is expected to display partial oil wetting, albeit with a rather small value of
the Hamaker constant. Using 𝜀3 = 2.5 and n3 = 1.4 (for some specific silicone
oils) yields a value of A132 = +3.8 × 10−22 J. That is, the system is expected to dis-
play complete oil wetting and thus a stable oil film in between the water drop and
the underlying fluoropolymer substrate. While additional molecular interactions
may modify the details of the picture, the calculation shows that a proper choice
of materials has important consequences for the microscopic wetting behavior
that can affect the outcome of experiments – and the reliability of devices.
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1.6.2.2 Equilibrium Surface Profile Near the Three-Phase Contact Line
The disjoining pressure appears as an additional contribution in the Young–
Laplace equation if the thickness of a liquid film is of the order ri. For a two-
dimensional system, the corrected form of the equation reads

𝛾
h′′

(1 + h′2)3∕2 = dΦ
dh

− Δp (1.43)

Equation (1.43) can be derived formally by variational minimization of the
Gibbs free energy in analogy with our calculation for gravity as an external
force in Section 1.5. Replacing the latter by the contribution due to the interface
potential, we can rewrite Eq. (1.31) in two dimensions as

G[h, h′] = ∫ dx {𝛾
√

1 + h′2 + 𝛾sl − 𝛾sv + Φ(h)} (1.44)

Functional minimization of this expression along the lines of Section 1.5 leads
to Eq. (1.43). (Note that we can setΔp = 0 because the surface of the macroscopic
drop is local flat on the very small scale that is affected by the molecular forces.)
Hence, the thickness profile of molecularly thin films is governed by the balance
of capillary pressure and disjoining pressure alone.

This has major consequences for the local surface profile: Far away from the
contact line, the disjoining pressure is negligible. Hence, the liquid surface is flat,
and the balance of all interfacial tensions acting on the gray-shaded control vol-
ume in Figure 1.17 yields Young’s angle as a macroscopic contact angle. Note that
we included explicitly the molecularly thin wetting film with a finite thickness
h0 corresponding to a pseudopartial wetting condition. Within the range of the
molecular interactions, Φ is non-negligible, and the disjoining pressure distorts
the surface profile h(x), leading a position-dependent local slope angle 𝜙(x). Very
much like the case of a drop in the presence of gravity, we can obtain this profile
by integrating Eq. (1.43). We find

cos𝜙(x) = cos 𝜃Y − Φ(h(x))
𝛾

(1.45)

Since cos𝜙(x) = 1∕
√

1 + h′2, Eq. (1.45) is still a first-order differential equation
for h(x). Yet, we can already read from the equation that positive values of Φ(h)
give rise to local slope angles 𝜙 > 𝜃Y and vice versa. Because of the short range of
the molecular interaction forces, such disjoining pressure-induced deformations

h0

γsv

γsl

γ

φ(x)
θY

Figure 1.17 Profile of a liquid surface in the vicinity of a three-phase contact line. Note that 𝛾 sv
includes the contribution from the thin film, i.e. 𝛾 sv = 𝛾 + 𝛾 sl + Φ(h0).
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of liquid surfaces are extremely difficult to observe. As mentioned above, optical
imaging of drops does not allow to access these scales and therefore always shows
Young’s angle. In Chapter 5, we will use a very similar approach as discussed here
to calculate the surface profile in the vicinity of the contact line in EW. In that case,
electrical stresses will take over the role of the disjoining pressure. In contrast
to the molecular interaction forces, the electrostatic forces have a much larger
range. Therefore, deformations of the surface due to local electric fields close to
the contact line can be visualized optically for suitable conditions.

1.7 Wetting of Heterogeneous Surfaces

All our considerations so far dealt with perfectly homogeneous and flat surfaces.
The contact angle and the drop shape were completely determined by the inter-
facial tensions of the three phases and the desire of the system to minimize its
free energy in equilibrium. In contrast to this idealized situation, real surfaces
are never perfectly flat and homogeneous. They display heterogeneity, usually of
both topographic and chemical nature. Such heterogeneities occur on various
length scales with defect sizes ranging from atomic to macroscopic dimensions.
Wetting on real surfaces is always wetting of heterogeneous surfaces. If we are
interested in the wetting behavior of drops of some finite size, it is useful to
distinguish between heterogeneity on scales that are either much smaller than
the drop size or comparable to it. Small-scale heterogeneities are unavoidable.
They give rise to usually invisible microscopic deformations of the drop along
the three-phase contact line. Their most important macroscopic consequence is
contact angle hysteresis. Large-scale heterogeneity gives rise to macroscopically
visible deformations of the drops. In a technological context, macroscopic hetero-
geneities are frequently imprinted onto the surface to achieve certain properties.
Examples include superhydrophobicity caused by small-scale heterogeneity as
well as EW-based lab-on-a-chip devices, in which actively switchable large-scale
heterogeneity is used to deform and transport drops. In this section, we will
analyze the physical principles governing the wetting of heterogeneous surfaces
in static conditions. Most basic aspects will be established for two-dimensional
systems. Toward the end of the chapter, we address contributions arising from
deformations of the liquid surface in three dimensions.

1.7.1 Young–Laplace and Young–Dupré Equation for Heterogeneous
Surfaces

The first question to wonder is whether the basic laws of capillarity still apply
for heterogeneous surfaces. Let us consider a sessile drop on a heterogeneous
surface in two dimensions, as sketched in Figure 1.18. The free energy of the drop
is formally given by a similar integral as before:

G = ∫ dsx[𝛾
√

1 + (𝜕xh)2 + 𝛾sl(x) − 𝛾sv(x) − Δp h] (1.46)
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θA

θB

Figure 1.18 Sessile drop on topographically and chemically heterogeneous surface (bold
lines on surface: material A – small contact angle 𝜃A; thin lines: material B with 𝜃B > 𝜃A).

Compared with Eq. (1.31), there are two differences caused by the topographic
roughness and the chemical heterogeneity, respectively: First, the integral
extends along the contour of the actual rough solid–liquid interface (denoted as
dsx) rather than simply along x. Following all the ups and downs on the rough
surfaces gives rise to an enhancement of the true solid–liquid interfacial area
as compared with the projected area. Second, the chemical heterogeneity is
reflected in position-dependent values 𝛾 sl(x) and 𝛾 sv(x).

Variational minimization of Eq. (1.46) along the formalism described in
Section 1.5 shows that the Laplace equation remains unaffected by the surface
heterogeneity, i.e. the pressure drop across the liquid surface is still given by
ΔPL = 𝛾𝜅. This should not surprise us. The drop surface itself is not directly
affected by the presence of the heterogeneity on the substrate surface. The influ-
ence is only indirect, via the boundary condition at the solid–liquid interface.
Hence, it is Young’s equation that is affected by the presence of heterogeneity.
And even for Young’s equation, the modification is – in some sense – minor:
If the contact line is located somewhere within a locally homogeneous region
on the surface, i.e. away from boundaries between patches of different chemical
composition or surface orientation, the principle of the local variation of the
contact line position still holds. Hence, Young’s equation simply applies locally
with the position-dependent local Young angle 𝜃Y (x) according to the local
composition and orientation of the surface, i.e. cos𝜃Y (x) = (𝛾 sv(x) − 𝛾 sl(x))∕𝛾 . As
illustrated in Figure 1.18, the local contact angle 𝜃Y (x) is to be measured relative
to the local orientation of the surface.

The range of the molecular interactions provides a good estimate for the mini-
mum size of patches of well-defined local properties. If two types of atoms A and
B with different interaction potentials are arranged on a surface in patches with a
size of a few times the molecular interaction range, well-defined A and B regions
arise (Figure 1.19a). On these patches, local contact angles 𝜃A and 𝜃B assume the
same values as on macroscopic homogeneous surfaces. In contrast, placing A and
B atoms next to each other in an alternating fashion produces an energetically
more or less homogeneous surface with mixed properties. While the observa-
tion of surface heterogeneity is in practice often limited by the resolution of the

(a) (b)

Figure 1.19 Schematic of a surface consisting of two different types of molecules A and B
patched in groups of 5 (a) and alternating (b).
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instruments that are used to characterize the surfaces, the range of the molecular
interactions provides a fundamental lower limit.

The existence of chemical domains with surface areas of a few nanometers
raises another important problem: Since the balance of surface energies on a
lyophobic (liquid-repelling) patch is less favorable for wetting, such a patch rep-
resents an energy barrier for the spreading liquid. The height of such an energy
barrier is of the order of ΔE ≈ 𝛾 Δcos 𝜃Y • l2, where l is the size of the patch. For
l = 5 nm and a typical wettability contrast 𝛾Δcos𝜃 = 0.01 J∕m−2, we find ΔE ≈
2.5 × 10−19 J. This value is much larger than the thermal energy at room temper-
ature, which is kBT ≈ 4 × 10−21 J. Hence, the contact line is unable to overcome
such a wetting defect by thermal activation. As a consequence, it gets trapped
in some metastable nonequilibrium position: The drop is unable to explore the
surface to reach the energetically most favorable configuration. The existence of a
large number of such metastable states is characteristic for the wetting on hetero-
geneous surfaces. As in many other fields of physics, the existence of metastable
states implies hysteresis and history dependence of the actual configuration of
the system. This is arguably the most important physical consequence of surface
heterogeneity.

1.7.2 Gibbs Criterion for Contact Line Pinning at Domain Boundaries

On surfaces with sufficiently large patches (i.e. l ≥ several nm) of well-defined
chemical composition and orientation, the contact angle on each patch is well
defined, as illustrated in Figure 1.20. If the contact line is located at the bound-
ary between two adjacent domains, however, this is no longer true. In this case,
it is not clear whether the more lyophilic or the more lyophobic angle should be
chosen for a surface with chemical patches A and B. Similarly, for a topograph-
ically patterned surface, it is not clear with respect to which facet of the surface
the contact angle should be measured.

(a)

θA

θB

θY
α

Δθ

Δθ

(b)

Figure 1.20 Local contact angle on heterogeneous surfaces and Gibbs pinning at domain
boundaries for chemically heterogeneous flat surfaces ((a); thick lines, philic regions; thin lines,
phobic regions) and chemically homogeneous rough surfaces (b).
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Figure 1.21 Force balance for a contact line upon approaching a domain boundaries for
chemical heterogeneity (a) and a topographic corner (b).

We gain some more physical insight if we consider the local force balance
as a contact line is approaching an A–B domain boundary as illustrated in
Figure 1.21a. Let us assume 𝜃A < 90∘ and 𝜃B > 90∘ . When the contact line is on
the more lyophilic side of the boundary, the contact angle is 𝜃A such that the
projection of the surface tension 𝛾 cos 𝜃A balances the net force Δ𝛾A = 𝛾A

sv − 𝛾A
sl

exerted on the liquid by the solid substrate. Δ𝛾A is thus pointing toward the
right, i.e. toward the domain boundary. Conversely, if the contact line is on the
more lyophobic side of the boundary, the corresponding force Δ𝛾B exerted by
the substrate points toward left – i.e. again toward the domain boundary. In
equilibrium this force is of course balanced by the liquid assuming a contact
angle 𝜃B. If the contact line is exactly at domain boundary, it will experience a
force toward pushing it toward the domain boundary for any contact angle 𝜃

satisfying

𝜃A < 𝜃 < 𝜃B (1.47)

Any slight perturbation that tries to move the contact line away from the
domain boundary is restored by the surface tension force. Hence, the contact line
is stably pinned to the domain boundary for any value of 𝜃 within this interval.
Note that this reasoning only holds for domain boundaries where the liquid
occupies the more lyophilic side of the domain boundary. The same reasoning
for the opposite situation where the liquid occupies the more lyophobic side
of the boundary shows that this configuration is unstable and the contact
line is always driven away from the boundary. The analogue reasoning for a
topographically patterned substrate with well-defined inclination angles leads
to pinned configurations at the tops of the pattern for contact angles with the
respect to the horizontal within the range

𝜃Y − 𝛼 < 𝜃 < 𝜃Y + 𝛼 (1.48)

as illustrated in Figure 1.21b. Equations (1.47) and (1.48) are generally known as
Gibbs criterion for contact line pinning at domain boundaries.

1.7.3 From Discrete Morphology Transitions to Contact Angle
Hysteresis

The consequences of Gibbs pinning for the morphologies of drops on hetero-
geneous surfaces and for the occurrence of contact angle hysteresis were investi-
gated in great detail in the 1960s and 1970s for macroscopically patterned surface,
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(a) (b)

θadv ≈ θB θrec ≈ θA

l

(c) (d)

Figure 1.22 Evolution of the drop shape upon increasing and decreasing the drop volume on
a surface with alternating lyophilic (𝜃A) and lyophobic (𝜃B) domains of width l. (a) and (b) for
drop size R ≈ l, (c) and (d) for R ≫ l.

e.g. in seminar contributions by Johnson and Dettre [10] and Huh and coworkers
[11].

Let us consider a drop on a surface with alternating lyophilic and lyophobic
stripes. The drop is gradually inflated and deflated by pumping liquid in and out
through a hole in the substrate in the center of a lyophilic domain, as sketched in
Figure 1.22. For very small volumes V the drop only wets the central lyophilic
domain (smallest drop in Figure 1.22a). The contact angle 𝜃 = 𝜃A is constant
as the volume and the drop radius increase as shown in Figure 1.23. The drop
spreads until the contact line reaches the first domain boundary with the lyopho-
bic domains at V=V 1. At that moment, the contact line gets pinned. Subse-
quently, the drop accommodates the increasing volume by increasing its contact
angle until 𝜃 reaches the contact angle 𝜃B of the lyophobic domain for V = V2.
At that moment, the contact line gets depinned, and the drop spreads further
at constant 𝜃 = 𝜃B until it reaches the next domain boundary at V = V3. Since
the contact line reaches that boundary from the lyophobic side, it is unstable and
experiences at force pulling it onto the next lyophilic domain. This gives rise to an
abrupt transition from the shape indicated by the dotted line in Figure 1.22a with
𝜃 = 𝜃B to the outermost one drawn as solid arc with 𝜃 = 𝜃A. Simultaneously, rsl
increases by some geometry-dependent amount that is dictated by volume con-
servation.

If we reverse the pumping direction, the contact line recedes again,
and the drop shrinks at constant 𝜃 = 𝜃A. As the contact line reaches the
lyophilic–lyophobic domain (dotted circle in Figure 1.22b), it becomes unstable
again. Another abrupt transition in the morphology of the drop occurs in this
case toward a small drop radius with 𝜃 = 𝜃B, as indicated by the arrows. From
there on, the shrinking drop volume can be accommodated again by reducing
the drop diameter on the lyophobic domain at constant 𝜃 = 𝜃B until the next
boundary with the innermost lyophilic domain is reached. There, the contact
line gets pinned in a stable configuration until 𝜃 has decreased down to 𝜃A. From
that moment on, the drop only wets the inner lyophilic domain and shrinks again
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Figure 1.23 Contact angle and drop base radius versus square root of the drop volume (in two
dimensions).

with constant 𝜃 = 𝜃A. For volumes V3 > V > V4, there are thus two mechanically
stable drop morphologies with different drop radius and contact angle. The
actually realized morphology depends on the history of the drop. Upon cycling
the volume up and down, the drop follows a hysteresis loop. We denote the
abrupt transition between two distinct drop shapes wetting a different number of
stripes as a morphology transition. Morphology transitions take place whenever
a variation of a control parameter, i.e. the drop volume in the present example,
renders the initial morphology unstable. In the present case this happens due to
a violation of the Gibbs pinning criterion.

So far, we discussed a situation in which the stripe width, i.e. the characteristic
length scale of the heterogeneity, is a sizeable fraction of the drop radius. In this
case, a morphology transition affects the drop shape on a global scale. If we repeat
our reasoning for l ≪ rsl, the scenario sketched above still holds. Yet, there is one
important difference: The increase in rsl required to decrease the contact angle
from 𝜃B to 𝜃A is now larger than l. Since 𝜃 is a monotonously decreasing func-
tion of rsl, however, the jumping contact line becomes trapped again at the next
lyophobic domain boundary, while 𝜃 has only decreased by a small amount, as
illustrated in Figure 1.22c. In the limit of microscopic roughness with l∕rsl → 0,
the amount of contact angle relaxation per transition becomes negligible. As a
consequence, we observed a constant advancing contact angle 𝜃a while the drop
volume is increased. For the two-dimensional system of alternating stripes, this
advancing contact angle is given by the contact angle of the lyophobic domain,
i.e. 𝜃a = 𝜃B. The analogue reasoning for decreasing drop volumes shows that the
contact angle of the then receding contact line also assumes a constant value, the
receding contact angle 𝜃r , which is given by the contact angle 𝜃A of the lyophilic
domain. Depending on whether the contact line advances or recedes, we thus
observe 𝜃a or 𝜃r . A sessile drop, for which the contact line is neither advancing nor
receding 𝜃, can assume any value between 𝜃a and 𝜃r , depending on the history.
The difference between advancing and receding contact angle is the contact angle
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hysteresis Δ𝜃 = 𝜃a − 𝜃r = 𝜃B − 𝜃A. This equation also implies that. Δ𝜃 is a direct
measure of the degree of heterogeneity of the surface.

The simple example of a model heterogeneity of alternating lyophilic and
lyophobic stripes thus illustrates two important general aspects of wetting of
heterogeneous substrates: First, it shows how surface heterogeneity gives rise
to competing metastable drop configurations. Second, it illustrates that the
existence of these metastable drop configurations causes both macroscopic mor-
phology transitions between different drop shapes and contact angle hysteresis.
The difference between global morphology transitions and local relaxations of
the contact line is not a fundamental one, but rather of practical nature related
to the resolution at which we investigate the system. The principle of destabi-
lization due to a local violation of Gibbs pinning criterion (see Figure 1.21) is the
same in both cases.

The specific type of surface heterogeneity is obviously idealized. For instance,
we assumed infinitely sharp transitions between adjacent domains of low and
high contact angle. In practice, the boundaries between adjacent domains
will always be smeared out to some degree. As discussed in the context of
Figure 1.19, the finite range of the molecular interaction forces always gives rise
to some degree of smoothing even for atomically sharp domain boundaries. The
continuous character of domain boundaries (or topographic corners) introduces
two new aspects. On the atomic scale, we notice that the contact line position
is usually not perfectly pinned at one position. It is actually free to adjust its
microscopic position depending on external constraints. Contact line pinning
at a continuous domain boundary should be considered as localization of the
contact line within the transition zone between adjacent domains. This finite
rigidity of contact line pinning has a second consequence that is arguably even
more fundamental: It allows for a competition between pinning and deformation
of the drop shape. In our discussion above, we focused completely on the
contact line and neglected the fact that competing drop configurations, say, in
Figure 1.22, also have different liquid–vapor interfacial areas. This is indeed
justified for perfectly sharp domain boundaries. For domain boundaries with a
gradual variation of the wettability, however, the stiffness of the boundary com-
petes with the stiffness of the liquid–vapor interface. If the latter is stronger, the
metastability disappears and the uniqueness of the equilibrium drop morphology
is reestablished. This gives rise to the notion of strong defects versus weak defects
that was introduced in the seminal paper on wetting of heterogeneous surfaces
by Joanny and deGennes [12].

The difference between strong and weak defects is easily illustrated by a
two-dimensional drop of liquid filling the space between a solid block of finite
length and a flat solid surface that contains a wetting defect, as sketched in
Figure 1.24. The free liquid surface is pinned to the bottom right corner of
the block at point X. The pressure in the liquid is kept at zero such that the
liquid–vapor interface is flat. The contact line position xeq adjusts itself accord-
ing to the local Young angle on the substrate. At the contact line, the liquid
surface tension pulls toward the left (for the situation sketched with 𝜃Y < 90∘ )
with a force f𝛾 = 𝛾 cos 𝜃(x) = x̃∕

√
1 + x̃2, where x̃ = x∕H is the normalized
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Figure 1.24 Strong defect versus weak defect. (a) Illustration of geometry with liquid filling
the gap between a solid block and the solid surface with a wetting defect at x = xd with a
width 2w. (b) Force balance at the contact line versus normalized contact line position. Thick
solid line: surface tension force according to left-hand side (LHS) of Eq. (1.49). RHS: defect force
according to right-hand side of Eq. (1.49) for Gaussian wetting defects of variable strength and
position (Δcos𝜃1, 2 = 0.6; Δcos𝜃3 = 0.2; x̃d;1,3 = 1.5; x̃d;2 = 0.75; w̃1,2,3 = 0.25).

position of the contact line. The solid surface pulls toward the right with a force
fsurf = 𝛾 sv(x) − 𝛾 sl(x) = 𝛾 cos 𝜃Y (x). The forces are balanced if

x̃√
1 + x̃2

= cos 𝜃Y (x̃) (1.49)

This is an implicit equation for the contact line position x̃ with the obvious solu-
tion cos𝜃(x) = cos 𝜃Y (x). Yet, this solution is not always unique. To be specific, we
consider a specific wetting defect at x = xd where the local contact angle is lower
than on the rest of the surface. To be specific, we choose a Gaussian variation of
the surface energy such that

cos 𝜃Y (x) = cos 𝜃∞Y + Δcos𝜃Y exp(−(x − xd)2∕2w2) (1.50)

The equilibrium position of the contact line can be obtained most easily by a
graphical solution of Eq. (1.49). Figure 1.24b shows the LHS (thick line) and the
RHS (thin line) of Eq. (1.49) for a strong and for a weak defect with large and
small amplitude, respectively. If the defect is sufficiently far away from the origin,
there is only one unique contact line position given by the intersection point of
the two curves. If we shift the center of the defect further toward the left, how-
ever, there appear at some point three intersection points, as indicated by the
arrows in Figure 1.24b. While the middle one is unstable, the two others rep-
resent two competing mechanically stable configurations of the contact line. As
usual, the existence of such metastable states implies pinning the appearance of
a hysteresis loop of the contact line position upon moving the defect from right
to left and back. Abrupt depinning events occur whenever the physically realized
contact line position becomes unstable, i.e. whenever the corresponding inter-
section point in Figure 1.24b disappears. Assuming that the contact line posi-
tion is initially given by the leftmost arrow, this happens if we shift the Gaussian
defect a little further toward the left. At some point, the leftmost and the middle
intersection points merge into one. Subsequently, this solution disappears. This is
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characteristic for a strong defect. For a weak defect such as the one characterized
by the dashed defect force in Figure 1.24b, there is always only one single stable
solution for the contact line position, for all values of xd. This leads a very clear
criterion to distinguish between weak and strong defects: A defect is strong, i.e.
stiffer than the liquid–vapor interface, if the maximum slope of the defect force
(RHS in Figure 1.24b) exceeds the maximum slope of the surface tension force
(LHS). Vice versa, if the slope is lower, the defect is weak. The reader is invited to
analyze this problem in more detail (see Problem 1.5). Wetting defects with tun-
able strength are easy to fabricate using EW. Experiments showed the appearance
and disappearance of contact line pinning and trapping of drops [13, 14].

1.7.4 Optimum Contact Angle on Heterogeneous Surfaces: The Laws
of Wenzel and Cassie

Even if a drop can in general not reach its true equilibrium contact angle on a
heterogeneous surface by means of thermal excitation, there is nevertheless a
specific contact angle that minimizes the total surface energy, both for rough and
for chemically heterogeneous surfaces.

For flat surfaces with variable heterogeneity as shown in Figure 1.22c,d, we can
rewrite Eq. (1.46) as

G = 𝛾

[
Llv − ∫

xB

xA

dx cos 𝜃Y [x]
]

(1.51)

where the width of the drop L = xB − xA and the drop surface arc length Llv are
connected by the constraint of constant volume. Figure 1.25 shows a typical result
plotted as a function of the macroscopic apparent contact angle 𝜃 for L ≫ l. The
thick vertical arrow indicates the position of the absolute energy minimum. Sim-
ilarly looking curves can be generated for topographically structured surfaces.
While any local minimum in Figure 1.25 is mechanically stable, drops can never-
theless be brought close to the absolute minimum by a suitable, e.g. mechanical
or electrical excitation that allows them to cross energetic barriers between adja-
cent minima. The value of the optimum apparent contact angle can be derived in
the same way as in our energy-based derivation of Young’s law. Let us consider a
surface consisting of a random distribution of lyophilic patches with area fraction

Figure 1.25 Free energy of
a sessile drop on a surface
with alternating stripes of
high and low contact angle
leading to a variety of locally
stable drop configurations
in the vicinity of the
absolute energy minimum.
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Figure 1.26 Virtual contact line displacement dx and derivation of optimum apparent contact
angle 𝜃* on chemically heterogeneous (a) and rough (b) surface.

fA and of lyophobic patches B with an area fraction fB = 1 − fA (Figure 1.26a). If
we assume that the drop has enough energy to explore all possible configurations
and if we assume further that any virtual displacement dx comprises a surface
area sufficiently large to represent the average composition of the surface, the
variation of the surface energy upon a contact line displacement dx reads

𝛿Esurf = dx [fA(𝛾A
sl − 𝛾A

sv) + fB(𝛾B
sl − 𝛾B

sv) + 𝛾 cos 𝜃] (1.52)

Equating this expression to zero yields the optimum apparent contact angle 𝜃*

on the heterogeneous surface with

cos 𝜃∗ = fA cos 𝜃A
Y + fB cos 𝜃B

Y (1.53)

This expression is known as Cassie’s law for the contact angle on heterogeneous
surfaces. If the surface becomes homogeneous, i.e. if either fA → 1 and fB → 0 or
vice versa, we recover Young’s contact angle of the corresponding homogeneous
surface, as it should be.

An analogue expression for topographically rough surfaces was derived by
Wenzel along the same spirit. Wenzel noticed that omnipresent microscopic
roughness enhances the actual surface area of the solid as compared with the
apparent projected surface area A (Figure 1.26b). To characterize the topographic
roughness, he introduced the parameter r = Am∕A, which specifies the ratio
between the true microscopic surface area Am and the apparent projected one.
As a consequence of this enhancement of the interfacial area, the weight of the
contributions of 𝛾 sl and 𝛾 sv in the variation of the surface energy increases:

𝛿Esurf = dx(r•(𝛾sl − 𝛾sv) + 𝛾 cos 𝜃) (1.54)

Equating this expression to zero yields Wenzel’s equation for the optimum
apparent contact angle on a rough surface:

cos 𝜃∗ = r cos 𝜃Y (1.55)

Since r > 1 by definition, Wenzel’s law implies that roughness drives the con-
tact angle away from 90∘: For 𝜃Y > 90∘ , 𝜃* becomes even larger than 𝜃Y with
increasing r, and conversely, for 𝜃Y < 90∘ , we have 𝜃⋆ < 𝜃Y . This is exactly what
we should expect given the enhanced weight of the drop–substrate interface due
to the larger absolute interfacial area.
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Note, however, that both derivations are based on the rather strong assump-
tions that the contact line is able to explore the representative fraction of the
surface. This is in contrast to our earlier observation that energy barriers due to
surface heterogeneities larger than a few nanometer are much higher than ther-
mal energy. Equations (1.53) and (1.55) thus describe equilibrium states that often
cannot be reached in practice. It is therefore not surprising that measurements
of contact angles on heterogeneous surfaces frequently deviate from these pre-
dictions.

1.7.5 Superhydrophobic Surfaces

Wetting of rough hydrophobic surfaces leads to the well-known phenomenon of
superhydrophobicity, which has attracted increasing attention since novel micro-
and nanofabrication technologies have enabled the production of increasingly
complex surface patterns. Superhydrophobicity arises for very rough hydropho-
bic surfaces. Figure 1.27 shows a generic geometry of simple superhydrophobic
surfaces consisting of an array of regularly spaced pillars. According to our
discussion of Wenzel’s law in the preceding section, roughness increases the
contact angle of hydrophobic surfaces because it increases the area of the
energetically unfavorable solid–liquid interface. The optimum contact angle
𝜃∗W in the so-called Wenzel state, in which liquid fills the cavities of the surface
roughness as sketched in Figure 1.27a, is readily calculated by inserting the
roughness factor r into Wenzel’s equation. For a simple array of pillars with
height h and periodicity 𝜆 as shown in Figure 1.27, we find r = 1 + 2h∕𝜆.

It turns out, however, that the actual contact angle observed on superhy-
drophobic surfaces is often substantially higher than predicted by Wenzel’s law,
Eq. (1.55). The reason is that the drop does not necessarily fill the cavities of
the rough surface topography. Provided that the surface is sufficiently rough,
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Figure 1.27 Wetting of rough hydrophobic surface and derivation of optimum contact angle
𝜃*. (a) Wenzel state with liquid filling the cavities between the pillars. (b) Superhydrophobic
Cassie–Baxter state with air entrapped in the cavities. (c,d) Microscopic views near the contact
line for Wenzel and Cassie–Baxter state, respectively.
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the drop can instead assume a configuration, in which it rests on the tops of
the pillars while the space in between remains filled with air, as sketched in
Figure 1.27b. This is the superhydrophobic or Cassie–Baxter state. It is charac-
terized by a massively reduced solid–liquid interfacial area as compared with a
flat surface. This reduction of the solid–liquid interfacial area is the basis of many
advantageous properties of the superhydrophobic state, including the very high
contact angle 𝜃*, the very low contact angle hysteresis, the self-cleaning proper-
ties, hydrodynamic slip, etc. The drop–substrate interface in the Cassie–Baxter
state consists of a series of alternating domains of solid–liquid interface and
liquid–vapor interface (see Figure 1.27d). Hence, we can calculate the optimum
value of 𝜃* using Cassie’s equation, Eq. (1.52), using air with a contact angle of
180∘ as one of the two materials of this chemically heterogeneous substrate. If we
denote the area fraction of the pillars as f = b∕𝜆, the corresponding one of air is
1 − f = a∕𝜆. Inserting these ingredients in Eq. (1.53), we find that the optimum
contact angle 𝜃∗CB in the Cassie–Baxter state is determined by

cos 𝜃∗CB = f (cos 𝜃Y + 1) − 1 (1.56)

Here, 𝜃Y is Youngs angle on a flat surface made of the material of the pillars.
The Cassie–Baxter state is stabilized by the fact that the contact line is pinned
at the edges of the pillars, as illustrated in Figure 1.27c,d. 𝜃Y obviously needs to
be larger than 90∘ to support a Cassie–Baxter state. Otherwise, the contact line
would not remain pinned, and the liquid would be sucked into the cavities by
the then negative Laplace pressure. 𝜃∗CB approaches 180∘ upon minimizing the
area fraction f of the pillars. This is qualitatively plausible: For f → 0, the drop
essentially rests on a layer of air – with few pillars in between to support it. Yet, it
is also plausible that such a state is not very stable and prone to collapse into the
Wenzel state.

It is worthwhile to reiterate an important aspect form our discussion in
the preceding section: Drops can assume many locally mechanically stable
configurations on superhydrophobic surfaces. The energy barriers between
these states are large compared with thermal energies. There is a family of
Wenzel-like morphologies covering a variable number of pillars, and likewise,
there is a family of Cassie–Baxter-like morphologies covering a variable number
of pillars. Depending on the surface geometry, even mixed configurations
with partially liquid-filled and partially air-filled cavities can be stable. The
configurations with the optimum contact angles 𝜃∗W and 𝜃∗CB, respectively, are
thus the states that minimize to total surface energy in the spirit of Figure 1.25.
Because the solid–liquid interfacial area is very small in the superhydrophobic
Cassie–Baxter state, it turns out that the energy barriers are also rather low,
and hence the practically realized contact angles are close to 𝜃∗CB. This is also
reflected in the low contact angle hysteresis in the superhydrophobic state.
The barrier between the Cassie–Baxter-like and the Wenzel-like morphologies
is often very high. The morphology of the drop thus always depends on the
history, e.g. the manner of depositing the drop on the surface. In that sense,
the expression superhydrophobic surface is misleading. Superhydrophobicity
characterizes a specific state of wetting of a drop on a rough hydrophobic surface



1.7 Wetting of Heterogeneous Surfaces 47

rather than an intrinsic property of the surface. Almost all surfaces denoted as
superhydrophobic support drops both in the superhydrophobic Cassie–Baxter
state and in the Wenzel state.

Figure 1.28a illustrates the transition of a drop from the Cassie–Baxter state to
the Wenzel state upon evaporation. While the drop volume gradually decreases
without noticeable variation of the contact angle in the top row of images, a
sudden dramatic reduction of the contact angle takes place between the first
two images of the second row (see arrow). This reduction of the contact angle
is caused by sudden transition from the Cassie–Baxter state to the Wenzel state:
The Cassie–Baxter morphology became unstable due to the reduction of the drop
size. To understand the origin of this transition, we note first that the pressure
inside the drop has to be constant in mechanical equilibrium. (We assume that
the drop is small compared with the capillary length.) Hence, Laplace’s law tells
us that the curvature 𝜅 = 1∕R of all the liquid micromenisci spanning the gaps
between adjacent pillars at the drop–substrate interface has to be the same as the
macroscopic curvature of the drop. The latter increases as the radius of the drop
decreases during the evaporation. As a consequence, the micromenisci bend and
deflect more and more as the drop shrinks. From our discussion of Gibbs pinning
criterion, we can immediately identify a limit of this process: If the deflection Δh
of the menisci becomes too large, the angle 𝛼 in Figure 1.28b exceeds the contact
angle on the vertical sidewall of the pillar. As a consequence, the contact line is
no longer pinned, and the liquid invades the cavity: The drop undergoes a transi-
tion to the Wenzel state. Evaluating elementary geometric relations, we find that
the critical drop radius Rc at the transition is given by Rc = −a∕2 cos 𝜃Y . Since
cos𝜃Y ≈ −0.5 for typical hydrophobic materials, contact line depinning only takes
place when Rc has decreased to a value of the order of the pillar spacing. Note,
however, that this scenario only takes place if the pillars are not too sparsely
spaced on the surface. If the aspect ratio h∕𝜆 is very low, as it is desirable to max-
imize 𝜃∗CB, contact line depinning is preceded by the micromenisci touching the
bottom of the cavity, i.e. when the deflection Δh reaches the height of the pillars,

(a) (c)

(b)

Δh
α

Figure 1.28 Cassie-to-Wenzel transition on superhydrophobic surfaces. (a) Video snapshots.
Source: Reproduced with permission from [15]. (b) Stability limit for surface pattern with large
aspect ratio. (c) For low aspect ratio.
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Figure 1.29 Stability limits of structured surfaces with overhangs leading to superoleophobic
behavior. (a) Depinning according to Gibbs criterion. (b) Destabilization due to negative
pressure gradient criterion.

as sketched in Figure 1.28c. Geometric considerations show that the critical drop
radius in this case is given by Rc = a2∕8h for a ≪ R.

In the examples given above, the Cassie–Baxter configuration is destabilized
because the decreasing drop volume increases the pressure. In other situations,
the pressure in the liquid phase may be controlled by some parameters such as
the hydrostatic pressure for superhydrophobic surfaces completely submerged
under water or the impact speed for drops impinging onto a superhydrophobic
surface. In all cases, the stability of superhydrophobic surfaces can be enhanced
by decreasing the spacing between the pillars. Since the width of the pillars has
to be scaled down simultaneously to maintain a high contact angle, superhy-
drophobic surfaces that combine high contact angles and good stability against
pressure typically require surface patterns on the nanometer scale. Particularly
stable surfaces can be achieved by creating surface patterns with overhangs, as
shown in Figure 1.29. A surface with overhangs can sustain a Cassie–Baxter
state – meaning a state with entrapped air underneath the drop – even if the
liquid displays a contact angle 𝜃Y < 90∘ . As long as the pressure is not too high,
the angle 𝛼 in Figure 1.29a remains smaller than 𝜃Y , and the contact line remains
pinned at the bottom edge of the overhang. This principle allows to design not
only superhydrophobic but also superoleophobic surfaces, i.e. surfaces that
display a very large contact angle and very low hysteresis for low surface tension
liquids. Upon exposure to liquid at enhanced pressure, these surfaces display
another instability mechanism in addition to the ones explained above: By
geometry the radius of curvature of the meniscus in Figure 1.29 is r = a∕2 sin 𝛼,
and the corresponding pressure drop across the interface is Δp = 𝛾∕r. Δp
has a maximum for 𝛼 = 90∘ , where r = a∕2, as sketched in Figure 1.29b. For
larger deflections of the meniscus, dΔp∕dV becomes negative. In this case, the
Cassie–Baxter state becomes unstable, and the meniscus spontaneously expands
and displaces the air in the cavities of the superhydrophobic surface.

1.7.6 Wetting of Heterogeneous Surfaces in Three Dimensions

Our considerations so far were limited to two-dimensional systems. While
illustrating many important aspects, wetting of heterogeneous surfaces in three
dimensions involves one important additional aspect: Any local displacement
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of the contact line entails a distortion of the adjacent free liquid surface. Such
deformations give rise to an additional interfacial area and thus an excess energy.
This results in a wavevector-dependent stiffness of the interface that tends to
restore the average shape of the surface away from the contact line.

We will limit our discussion to the case of small deformations, for which we can
calculate the response of the liquid surface and hence its stiffness analytically. We
consider the specific problem a liquid surface parameterized by some function
h(x, y). On average, we assume that the surface is flat with h ≡ h0. Let us now
introduce a periodic distortion of the surface in one direction, i.e. we impose
a constraint h(x = 0, y) = h0 + Δh cos qy with a wavevector q = 2𝜋∕𝜆. Such as
situation can arise, for instance, if a plate with a suitable wettability pattern is
immersed into a liquid bath, as sketched in Figure 1.30. (Note that we do not
specify the actual wettability pattern; we simply assume that there is a wettability
pattern that ensures a sinusoidal variation of the contact line. From the previous
discussions, it should be plausible that this is enough to calculate the response of
the liquid surface.)

The question is how the amplitude of the corrugation decays as a function of the
distance from the (y, z) plain. With these specifications, the problem is actually
rather simple: All we need to do is solve the Young–Laplace equation with the
specific boundary conditions that the surface follows the imposed perturbation
at x = 0 and that it is flat for x → ∞. The latter implies ΔPL = 𝛾𝜅 = 0. If we also
assume that the amplitude of the imposed perturbation is small, i.e. Δh q ≪ 1,
we simply need to solve the homogeneous Laplace equation ∇2h(x, y) = 0. Using
separation of variables, i.e. writing h(x, y) = f(x)g(y), the reader can quickly find
the solution for the surface profile:

h(x, y) = Δh cos qy e−qx (1.57)

Hence, we find that the amplitude of the corrugation decays exponentially with
increasing distance from the imposed perturbation with a decay constant that is
given by the wavevector q of the perturbation. Perturbations with a high spatial

Figure 1.30 Decay of a
modulation imposed on a
liquid surface.
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frequency thus decay quickly, and vice versa, long wavelength perturbations
affect the surface profile over longer distances. We obtained this result here in
a linearized model. The linearization implies that the superposition principle
applies. To the extent that the amplitude is sufficiently small, we can thus
calculate the deformation of the surface for arbitrary imposed perturbations.
As usual, many qualitative aspects of the linearized model survive for larger
perturbations.

Knowing the full solution of the surface profile, it is easy to show that the result-
ing excess surface energy scales as 𝛾q Δh2, corresponding to a surface with an
effective stiffness k(q) = 𝛾q∕2; see Problem 1.6.

1.7.7 Wetting of Complex Surfaces in Three Dimensions: Morphology
Transitions, Instabilities, and Symmetry Breaking

The discrete transitions between competing wetting morphologies discussed in
the context of Figures 1.22 and 1.23 and for the superhydrophobic surfaces in
Figures 1.28 and 1.29 were somewhat simplified because we limited ourselves
to two-dimensional problems. Neglecting gravity, this implied that any section
of a free liquid surface had the shape of a circular arc in order to guarantee a
constant pressure within the fluid. In three dimensions, the constant mean cur-
vature requirement expressed in the Young–Laplace equation allows for a much
broader class of liquid morphologies. As already discussed the resulting surface
shapes can be quite complex and at times counterintuitive to predict, in particu-
lar in the presence of complex boundary conditions imposed by structured solid
surfaces. For instance, one of the goals of the experiments shown in Figure 1.4b
was to explore the use of surfaces with wettability patterns to control the flow
of fluids for microfluidic applications in an open configuration without restric-
tive solid channel walls. However, as the fluid volume on the hydrophilic ducts
was increased, the initial fluid configuration consisting of sections of cylinders
with a translationally invariant cross section became unstable, and thick localized
bulges of liquid appeared. While perhaps disappointing from an applied perspec-
tive, it turns out that this kind of spontaneous transition between different types
of liquid morphologies with a different symmetry is an important intrinsic char-
acteristic that needs to be taken into account whenever designing fluidic devices
involving free liquid surfaces. Such transitions can occur upon variations of many
different control parameters, including the liquid volume, pressure, the geome-
try, and – in particular for EW – the contact angle. In view of the freedom of the
liquid surface to adjust its shape in three dimensions, a quantitative analysis of
the possible equilibrium configurations and the transitions among them generally
requires a detailed numerical analysis.

Figure 1.31a shows the result of a numerical minimization of the surface energy
of a drop of liquid of fixed volume deposited onto a lyophilic patch (see top figure)
with 𝜃Y = 10∘ . Most of the liquid accumulates in an elongated drop on the wide
section of the patch with a rather small curvature. Only a small fraction of the
fluid wets the narrower horizontal lyophilic stripe. For the same liquid volume
but a slightly larger contact angle of 30∘ on the patch, the narrow section remains
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Figure 1.31 Examples of wetting morphologies on structured surfaces. (a) Calculated wetting
morphology of a drop on a rotated-T-shaped lyophilic patch (top panel) on a hydrophobic
surface. Middle and lower panels: top view and side view of the equilibrated fluid shape.
Source: Darhuber et al. 2000 [16]. Adapted with permission of AIP Publishing. (b) Competing
wetting morphologies on a surface with a rectangular groove of variable aspect ratio and
contact angle. Top panels: cross-sectional views; bottom panels: 3D views of a series of
morphologies. Source: Seemann et al. 2005 [17]. Adapted with permission of PNAS.

completely bare of fluid. Figure 1.31b shows a series of liquid configurations for a
drop deposited onto a solid surface with a rectangular groove. Depending on the
contact angle and on the aspect ratio X of the groove, an amazing variety of liquid
morphologies appears, including localized drops, drops in coexistence with liq-
uid filaments that can have positive or negative curvature with their edges being
pinned or not being pinned to the upper corner of the groove. These examples
illustrate the richness of possible morphologies encountered upon wetting struc-
tured surfaces.

Despite the richness there are a couple of generic phenomena that are fre-
quently observed in the context of morphology transitions in complex geome-
tries. One of them is spontaneous symmetry breaking at a morphology transition.
Figure 1.32a,b shows two examples, a pair of two communicating liquid menisci
and a drop confined between a flat surface and a sphere. The first example can
either be considered as a two-dimensional system with liquid confined between
two parallel solid surfaces or as a cross section through a short cylindrically sym-
metric tube with a spherical cap-shaped meniscus on each side. In both cases,
the liquid assumes a mirror-symmetric configuration with two menisci of equal
radius if the liquid volume is below a certain critical volume Vc. For larger vol-
umes, the liquid assumes an asymmetric configuration as shown in the right panel
of Figure 1.32a. In this case, the two menisci are complementary spherical caps
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Figure 1.32 (a) Schematic illustration of spontaneous symmetry breaking of communicating
drops upon increasing the liquid volume V along the arrow. (b) Snapshots of
symmetry-breaking expulsion of a drop confined between a sphere and a flat surface upon
increasing the contact angle from 𝜃 < 90∘ to 𝜃 > 90∘ . Source: Experimental data taken from de
Ruiter et al. [18]. (c) Schematic of the energy landscape for the morphology transitions in
(a) and (b). Control parameters V or 𝜃 increase along the arrow. (d) Pitchfork diagram of the
equilibrium value of the asymmetry parameter versus the control parameter. The critical value
of Vc and 𝜃c was set to 1. Solid lines, stable solutions; dashed line, unstable solution branch;
arrows indicate direction of evolution toward equilibrium upon perturbation.

of one sphere (or circle) to ensure that the Laplace pressure is the same on both
sides. The stability of this configuration can be assessed in the same manner as
our analysis of the Rayleigh–Plateau instability of a liquid jet; see Figure 1.5. The
symmetric configuration is stable as long as the transfer of a small volume of liq-
uid 𝛿V from the left meniscus to the right generates a pressure difference between
the two menisci that counteracts the perturbation. This analysis, which the reader
is invited to carry out in Problem 1.7, shows that Vc corresponds to the volume
for which the radius of the two protruding menisci equals the radius of the tube
(or half the distance between the plates). The nature of the symmetry-breaking
instability is closely related to the maximum drop pressure criterion controlling
the collapse of reentrant superhydrophobic surfaces discussed in Figure 1.29b.

Mathematically, symmetry-breaking morphology transitions can be described
in the language of bifurcations of dynamic systems theory. In the vicinity of the
critical volume, we can expand the surface energy of the system in even powers
of an asymmetry parameter ΔV = Vleft − Vright :

Esurf (ΔV ) = 𝛼 (Vc − V ) ΔV 2 + 𝛽 ΔV 4 (1.58)

where 𝛼 and 𝛽 are positive coefficients. For V < Vc the prefactor in front of the
quadratic term is positive. As a consequence, Esurf has a unique minimum at
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ΔV = 0 as shown in Figure 1.32c,d. As V is increased beyond Vc, the prefactor in
front of the quadratic term changes sign, and hence the energy landscape assumes
a double-well character with two equivalent minima at symmetric values:

ΔVeq = ±
√
𝛼(V − Vc)∕2𝛽 (1.59)

(Physicists will notice the analogy of this description with Landau’s mean field
theory of second-order phase transitions in thermodynamics.) If the system
is driven into the symmetry-broken state by increasing the control parameter
beyond its critical value, it spontaneously chooses one of the two in principal
equivalent local minima. Upon increasing the control parameter further, the
absolute value of the asymmetry parameter increases further in a continuous
manner as specified in Eq. (1.59).

The same type of analysis applies to a large variety of morphology transitions
involving symmetries. The drop confined between a sphere and a plate shown in
Figure 1.32b is such an example, where the contact angle rather than the drop
volume is the control parameter and the radial coordinate rcm of the center of
mass of the drop is the asymmetry parameter. The drop is in a cylindrically sym-
metric state at rcm = 0 if the contact angle is below a certain critical angle 𝜃c.
Upon increasing 𝜃 beyond 𝜃c, e.g. by means of EW [18], the symmetry is sponta-
neously broken, and the drop moves away from the symmetry axis in a continuous
manner analogue to Eq. (1.59). In this case, breaking the symmetry involves the
spontaneous selection of an arbitrary azimuthal angle out of a continuum of pos-
sible states.

For the cases discussed above, the asymmetry parameter evolves continuously
and reversibly as a function of the control parameter. This is different from the
morphology transitions discussed earlier that involved an abrupt depinning of
contact lines from pinning sites (Figures 1.22, 1.23, and 1.29) and thus abrupt and
irreversible variations of the drop shape beyond a critical of some control param-
eter. The latter transitions are discontinuous. General criteria for the occurrence
of continuous versus discontinuous transitions are described on an abstract level
in mathematical textbooks on bifurcation theory [19].

An important example that introduces additional aspects to the phenomenol-
ogy of morphology transitions is the wetting of curved solid surfaces such as
fibers. The finite curvature of the fibers introduces the peculiar phenomenon that
any coating film of constant thickness is intrinsically unstable even if the liquid
completely wets the fiber. This aspect causes important practical challenges in
coating technology, e.g. for textile fibers and for insulating coatings on electrical
wires. Physically, the origin of this instability is perfectly plausible. If we review
our discussion of the Rayleigh–Plateau instability of liquid jets (see Figure 1.5),
we can see that the exact same analysis of the underlying linear instability applies
to thin liquid layers on a fiber as well as long as the amplitude of the perturba-
tion does not exceed the film thickness. As a consequence, even for 𝜃Y = 0, the
liquid is localized in a drop on the fiber. Qualitatively, there are two different mor-
phologies for wetting a fiber, a cylindrically symmetric barrel morphology and a
symmetry-broken clamshell morphology, in which the drop is attached to the side
of the fiber, as can be observed, e.g. for dew drops on spider webs (see Figure 1.33).
There are two control parameters governing the wetting of such structures, the
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Figure 1.33 Fiber wetting. (a) Cylindrically symmetric, topologically multiply connected barrel
morphology (solid) versus symmetry-broken singly connected clamshell morphology
(dashed). (b) Experimental snapshots of competing morphologies including hysteresis upon
varying 𝜃. (c) Morphology diagram indicating the ranges of stability of the competing
morphologies. Solid lines, numerical stability limits; dashed, equal absolute energy of both
barrel and clamshell morphology. Symbols, experimental data. (d) Numerically calculated
energy landscape of barrel-like and clamshell-like morphologies versus radial position of
center of mass of the fluid for variable contact angle. Source: Eral et al. 2011 [20]. Reproduced
with permission of Royal Society of Chemistry.

contact angle 𝜃Y on the fiber and the ratio between the drop size and the fiber
radius r. For the latter, it is convenient to think in terms of the dimensionless
drop volume V∕r3. For certain values of the parameters, the limiting wetting
behavior is easy to determine: For 𝜃 → 0, the system will try to maximize the
fiber–drop interfacial area, thus favoring the barrel state. Similarly, the clamshell
state will be preferred for high contact angles. Furthermore, it is clear that the
clamshell state is preferred for Ṽ = V∕r3 → 0 because the curvature of the fiber
becomes negligible in this limit on the scale of the drop (see Figure 1.33c). Away
from these limits, the competition between the two morphologies is more com-
plex. Clamshells are essentially somewhat distorted sessile drops with a single
three-phase contact line. The barrel morphology is qualitatively different. The
solid fiber effectively pierces a hole through the liquid, giving rise to two sepa-
rate contact lines at each end. Topologically speaking, a clamshell drop is simply
connected, whereas a barrel drop is not. As a consequence of this fundamen-
tal topological distinction between the two competing morphologies, a simple
continuous evolution from the symmetrical to the symmetry-broken morphol-
ogy is not possible. Instead, there is a wide region in the morphology diagram
for which both morphologies are mechanically stable. This gives rise to a pro-
nounced hysteresis if, for instance, the contact angle of a drop of fixed volume
is decreased from a large to a small value and subsequently increased again, as
illustrated in Figure 1.33b. Correspondingly, the energy diagram as a function of
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the asymmetry parameter, illustrated in Figure 1.33d, looks qualitatively different
from Figure 1.32c. While the barrel morphology undergoes a linear instability
as the contact angle exceeds a certain critical value similar to the symmetric state
in the examples given above, its energy curve is intercepted by the energy curve of
the clamshell state, which has a minimum at some finite contact angle-dependent
radial coordinate. As a consequence, the center of mass of the drop undergoes an
abrupt and discontinuous transition to the clamshell state. In the opposite direc-
tion, the clamshell state becomes unstable when the drop starts to engulf the fiber
at decreasing contact angle. At some point, two opposing sections of the con-
tact line merge on the opposite side from the drop (see bottom right snapshot in
Figure 1.33b) to induce the abrupt transition to the barrel state.

From a practical perspective, the discontinuity of this type of morphology tran-
sitions involves energy dissipation upon switching, which may be undesirable in
certain applications. On the other hand, bistability may be attractive in applica-
tions that require digital switching between two discrete states of the system with
very distinct properties. Depending on the requirements of a specific application,
clever engineering will allow the reader to identify suitable combinations of sur-
face geometries and wettabilities to develop systems with more analogue or more
digital response characteristics.

1.A Mechanical Equilibrium and Stress Tensor

To analyze force balance in continuum mechanics, it is frequently useful to
consider certain control volumes and all the forces acting on them, as we
discussed in Section 1.4 in the context of drops under the influence of gravity.
In this appendix, we take a step back and consider first a small control volume
dV = dx dy dz around a point (x0, y0, z0) in the absence of gravity. dV is bounded
by six surface elements dS⃗j = dS n⃗j with normal vectors n⃗j. Each surface element
experiences forces due to the stresses Tij within the fluid (Figure 1.A.1). The
stress tensor Tij indicates the stress in the coordinate direction e⃗i acting on a
surface element with the surface normal along e⃗j. The total force acting on dV is
therefore

dFi =
∑

k
TikdSk (A.1)

In mechanical equilibrium the stress tensor is isotropic, because finite shear
stresses would generate fluid motion. Hence, we know that Tij = 𝛿ijTij, where 𝛿ij
is the Kronecker delta symbol. Equation (A.1) then reduces to

dFi =
[

Tix

(
x0 −

dx
2

)
− Tix

(
x0 +

dx
2

)]
dS e⃗x

+
[

Tiy

(
y0 −

dy
2

)
− Tiy

(
y0 +

dy
2

)]
dS e⃗y

+
[

Tiz

(
z0 −

dz
2

)
− Tiz

(
z0 +

dz
2

)]
dS e⃗z

= −𝜕xTixdx dydz e⃗x − 𝜕yTiydy dxdz e⃗y − 𝜕zTizdz dxdy e⃗z = 0 (A.2)
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Figure 1.A.1 (a) Illustration of a control volume within a fluid. (b) Decomposition of a force
acting on the top facet of the control volume into components of the stress tensor.

This implies that 𝜕xTix = 𝜕yTiy = 𝜕zTiz = 0. That is, Tij is constant in space.
Because all spatial directions are equal, symmetry reasons allow us to conclude
that all three diagonal components are equal. (If the stress in one direction would
be larger than in another one, the volume element dV would deform and stretch
along the direction(s) of lower pressure, which would contradict our assump-
tion of mechanical equilibrium.) The common value is denoted as the (isotropic)
hydrostatic pressure p = Txx = Tyy = Tzz. That is, we can write the stress tensor as
Tij = p 𝛿ij. In this manner, the Laplace pressure caused by the directional surface
tension forces at a liquid surface translates into an isotropic hydrostatic pressure
p0 = ΔPL.

In the presence of gravity, the liquid inside the control volume experience the
body force df⃗g = −𝜌gdV e⃗z. Making use of Eq. (A.2), the force balance of all forces
acting on dV is then given by

dF⃗ = −∇p + df⃗g = 0
= −𝜕xpdx dydz e⃗x − 𝜕ypdy dxdz e⃗y − (𝜕zpdz dxdy − 𝜌gdV) e⃗z

(A.3)
This implies 𝜕xp = 𝜕yp = 0 and 𝜕zp = 𝜌g. Because of the isotropy of the pres-

sure, we find a hydrostatic pressure
p = p0 − 𝜌gz (A.4)

where p0 is again a suitably chosen reference pressure. Again, the directional
gravitational body force translates into an isotropic pressure acting equally in all
directions within the fluid.

Problems

1.1 Young’s angle minimizes the surface energy of a spherical cap. For spherical
caps, the values of Asl and Alv as well as the drop volume V are known
geometrical functions of R and 𝜃Y (see Table 1.2). Hence we can rewrite
Eq. (1.14) as Esurf (R, 𝜃) = Alv(R, 𝜃)𝛾 + Asl(R, 𝜃)(𝛾 sl − 𝛾 sv). (a) Rewrite this
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equation as a function of 𝜃 alone using volume conservation and plot
Esurf (𝜃). (b) Show that the angle 𝜃* that minimizes Esurf (𝜃) is given by
cos𝜃* = (𝛾 sv − 𝛾 sl)∕𝛾 , i.e. 𝜃* = 𝜃Y .

1.2 Coffee mug. Consider the shape of a meniscus wetting a vertically immersed
solid surface. An example from daily life would be the profile of the liquid
surface in our coffee mugs. The coffee has a contact angle 𝜃Y on the wall
of the coffee mug, which will be close to zero. In the center of the mug, the
surface of the coffee is flat. Describe qualitatively the shape of the coffee sur-
face upon approaching the wall. At which distance from the surface do you
expect noticeable deformations of the surface? How high will the contact
line rise above the flat reference level in the middle of the mug?

1.3 Force balance on a sessile drop. Consider a sessile drop in two dimensions,
i.e. a segment of a circle, with contact angle 𝜃Y and height h in the absence
of gravity. Show that the sum of all external forces on the right half of the
drop vanishes.

1.4 Capillary rise. Derive Jurin’s law, Eq. (1.26), by minimizing the total energy
of the system, i.e. surface plus gravitational energy.

1.5 Strong versus weak wetting defects. Consider a Gaussian wetting defect of
variable strength similar to the one sketched in Figure 1.24 with a wettabil-
ity profile as given in Eq. (1.50) with 𝜃∞Y = 120∘ , Δcos𝜃Y = 1, and w̃ = 0.025.
(a) Draw a graphical representation of the force balance equation analogue
to Eq. (1.50). Is this defect strong or weak? (b) If applicable, draw the force
balance curves for all the defect positions corresponding to depinning
transitions. (c) Write a computer program to track numerically the position
of the contact line upon varying the defect position from x̃d = 2 to −2
and back.

1.6 Restoration of a perturbed liquid surface. (a) Consider a liquid surface with
an imposed surface perturbation as shown in Figure 1.30. Show that the
restoring force of the free surface can be interpreted as a harmonic spring
with a wavevector-dependent spring constant keff = 𝛾q∕2. (b) Assume that
the imposed contact line position is given by a superposition of sine func-
tions approximating a square wave. Use the first five Fourier coefficients of
the harmonic expansion with a global amplitude factor 0.1. Calculate and
plot h(x, y) for y = 0, 1∕2q, 1∕q, 2∕q. Discuss the relation between the sur-
face shape and keff (q).

1.7 Instability of two communicating liquid menisci. (a) Consider the geomet-
ric configuration shown in Figure 1.32a with two menisci connected by a
slit pore. Assume that the system is two-dimensional. Show that the equilib-
rium configuration of the liquid is symmetric liquid volumes V below a criti-
cal liquid volume Vc and that it is unstable for V > Vc. If L is the length of the
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slit pore and 2a the spacing between the solid walls, show that Vc = 2aL +
𝜋a2. (b) Discuss possible analogies between this symmetry-breaking mor-
phology transition and the bulging transition shown in Figure 1.4b. Source:
The reader may want to consult Lenz and Lipowsky [21] for inspiration.

1.8 Wetting of wedges in two dimensions. (a) Determine the equilibrium shape
and position of a drop in a wedge with an opening angle 𝛼 and a contact
angle 𝜃Y on the solid walls. Calculate in particular the forces between
the drop and the solid surfaces in the tangential and normal direction.

α
θY

Source: See also Baratian et al. [22] for inspiration.

1.9 Wetting in a sphere–plate geometry. (a) Argue that the equilibrium
shape and radial position rc of a drop confined between a sphere of
radius R and a plate at distance s are given by a truncated sphere at a
position rc displaying Young’s angle 𝜃Y on both surfaces. (b) Show that
r̃c =

√
r̃2sin2𝜃Y − (2 + s̃)(2r̃ cos 𝜃Y + s̃), where all length scales are given

in units of R. r̃ is the position-dependent radius of the drop. (c) Show
particular the critical contact angle 𝜃c below which r̃c(𝜃) ≡ 0 coincides with
the onset of an attractive capillary force between the plate and the sphere.

S

rc

r

R

Source: See also de Ruiter et al. [18].
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