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The MHD Equations

1.1
Derivation of the MHD Equations

In this book, we will treat the description of equilibrium and stability properties
of magnetically confined fusion plasmas in the framework of a fluid theory, the
so-called Magnetohydrodynamic (MHD) theory. In this chapter, we are going to
derive the MHD equations and discuss some of their basic properties and the
limitations for application of MHD to the description of fusion plasmas. The
derivation follows the treatment given in [1]. For a more in-depth discussion of
the MHD equations, the reader is referred to [2]. Non-linear aspects of MHD are
treated in [3]. A good overview of general tokamak physics can be found in [4].

1.1.1
Multispecies MHD Equations

As a magnetized plasma is a many-body system, its description cannot be done
by solving individual equations of motion that would typically be a set of, say, 1020
equations1) that are all coupled through the electromagnetic interaction. Hence,
some kind of mean field theory is needed.
Starting point of our derivation is the kinetic equation known from statistical

physics. It describes the many-body system in terms of a distribution function f𝛼
in six-dimensional space d3xd3𝑣, where

f𝛼(𝐱, 𝐯, t) d3x d3𝑣 (1.1)

is the probability to find a particle of species 𝛼 at 𝐱 with velocity 𝐯 at time t. Here,
𝐱 and 𝐯 are independent variables that, in the sense of classical mechanics, fully
describe the system.
The basic assumption of kinetic theory is that fields and forces are macroscopic

in the sense that they have already been averaged over a volume containing many
particles (say, a Debye-sphere2)) and the microscopic fields and forces at the exact

1) Here, we think of a typical fusion plasma of density 1020 particles per cubic metre.
2) The Debye length 𝜆D is the typical distance on which the electric field in a plasma is shielded so

that its action is limited to a sphere of radius 𝜆D.
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2 1 The MHD Equations

particle location can be expressed through a collision term giving rise to a change
of f𝛼 along the particle trajectories in six-dimensional space. We note that this has
reduced the microscopic problem of the 1020 interactions to the proper choice of
the collision term.
Evaluating the total change of f𝛼 along the trajectories and keeping in mind that

along these, d𝐱∕𝑑𝑡 = 𝐯 and d𝐯∕𝑑𝑡 = 𝐅𝛼∕m𝛼 , where 𝐅𝛼 is the force acting on the
particle and m𝛼 its mass, the kinetic equation can be expressed as

𝜕f𝛼
𝜕t

+ 𝐯 ⋅ 𝛁 f𝛼 +
q𝛼
m𝛼

(𝐄 + 𝐯 × 𝐁) ⋅ ∇𝑣 f𝛼 =
(
𝜕f𝛼
𝜕t

)
coll

(1.2)

where we have assumed that the only relevant force is the Lorentz force and
hence explicitly neglected gravity (which is a good approximation formagnetically
confined fusion plasmas, but generally not true in Astrophysical applications).
According to the above-mentioned description of mean field theory, the fields
𝐄 and 𝐁 will have to be calculated from Maxwells equations using the charge
density and current resulting from appropriate averaging over the distribution
function in velocity space as will be described in the following.
The kinetic equation is used to describe phenomena that arise from f𝛼 not being

a Maxwellian, which is the particle distribution in thermodynamic equilibrium to
which the system will relax through the action of collisions. In fusion plasmas,
this frequently occurs as the mean free path is often large compared to the sys-
tem length as is for example the case for turbulence dynamics in a tokamak along
field lines. Another important example is when the relevant timescales are short
compared to the collision time, such as in RF (radio frequency) wave heating and
current drive that can occur by Landau damping rather than collisional dissipa-
tion. Here, a description using the Vlasov or Fokker–Planck equation is needed.
However, in situations where f𝛼 is close to Maxwellian, one can average the

kinetic equation over velocity space to obtain hydrodynamic equations in con-
figuration space. When doing so, one encounters so-called moments of f𝛼 . The
kth moment, which is related to the velocity average of 𝐯k , is given by

∫ 𝐯kf𝛼d3𝑣 = n𝛼⟨𝐯k⟩ (1.3)

These moments are related to the hydrodynamic quantities used to describe the
plasma in configuration space. For the zeroth moment, we obtain

n𝛼(𝐱, t) = ∫ f𝛼(𝐱, 𝐯, t)d3𝑣 (1.4)

which is the number density in real space. The first moment of f𝛼 is related to the
fluid velocity in the centre of mass frame by

𝐮𝛼(𝐱, t) =
1
n𝛼

∫ 𝐯f𝛼(𝐱, 𝐯, t)d3𝑣 (1.5)

For the secondmoment, it is of advantage to separate the particle velocity into the
fluid velocity and the random thermal motion 𝐰 according to

𝐯 = 𝐮𝛼 + 𝐰 (1.6)
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It is easy to show that ⟨𝐰⟩ = 0, as expected for thermal motion, as

⟨𝐰⟩ = ⟨𝐯⟩ − ⟨𝐮𝛼⟩ = 𝐮𝛼 − 𝐮𝛼 = 0 (1.7)

However, the quadratic average is non-zero, representing the thermal energy via

1
2
m𝛼 ∫ 𝐰2f𝛼d3𝑣 = 3

2
n𝛼kBT𝛼 = 3

2
p𝛼 (1.8)

where kB is the Boltzmann constant andwe have used the definition of the thermal
energy density and its relation to the pressure p𝛼 for an ideal plasma.We note that
this definition relies on the previous assumption that f𝛼 is close to Maxwellian.
More generally, the second moment is defined as a tensor of rank 2, the pressure
tensor

𝐏𝛼 = m𝛼 ∫ 𝐰⊗ 𝐰f𝛼d3𝑣, (1.9)

where ⊗ denotes the dyadic product. The non-diagonal terms of this tensor are
related to viscosity, whereas from Eq. (1.8), it is clear that the trace of 𝐏𝛼 is equal
to 3p𝛼 , that is for an isotropic system, the diagonal elements of 𝐏𝛼 are just equal
to the scalar pressure. Therefore, the pressure tensor is also often written as

𝐏𝛼 = p𝛼1 + Π𝛼, (1.10)

where 1 is the unit tensor and Π𝛼 the anisotropic part of 𝐏𝛼 .
We now integrate the kinetic equation (Eq. 1.2) over velocity space3) to obtain

𝜕n𝛼

𝜕t
+ ∇ ⋅ (n𝛼𝐮𝛼) = 0 (1.11)

which is the equation of continuity for species 𝛼. Here, we have assumed that the
velocity space average of the collision term is zero, meaning that the total num-
ber of particles is conserved for each species. Should this not be the case (e.g. by
ionization or fusion), the right-hand side would consist of a source term S(𝐱, t).
The next moment is obtained by multiplying the kinetic equation by 𝐯 and inte-

grating over velocity space. This yields the momentum balance

m𝛼

𝜕(n𝛼𝐮𝛼)
𝜕t

= −∇ ⋅ (m𝛼n𝛼𝐮𝛼 ⊗ 𝐮𝛼 + 𝐏𝛼)

+ n𝛼q𝛼(𝐄 + 𝐮𝛼 × 𝐁) + 𝐑𝛼𝛽 , (1.12)

where the friction force 𝐑𝛼𝛽 is the first moment of the collision term for colli-
sions with species 𝛽. We note that only collision with unlike particles lead to a net
friction force while collisions within one species, which are important for ther-
malization, do not transfer net momentum to that species.This form is also called
the conservative form as, like the equation of continuity, it relates the temporal
derivative of a quantity (in this case, the momentum) to the divergence of a flux.

3) When integrating over velocity space, it is useful to remember that t, 𝐱 and 𝐯 are independent so that
the derivative with respect to t and x can be taken out of the integral. In addition, terms containing
a 𝑣 derivative are integrated partially and the surface term vanishes as f

𝛼
→ 0 faster than any power

of 𝑣 for 𝑣 → ∞.
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However, this equation can be rearranged using the continuity equation into a
form in which the dyadic product of the velocity can be absorbed in the derivative
on the left-hand side:

m𝛼n𝛼

(
𝜕𝐮𝛼
𝜕t

+ 𝐮𝛼 ⋅ ∇𝐮𝛼
)

= −∇ ⋅ 𝐏𝛼 + n𝛼q𝛼(𝐄 + 𝐮𝛼 × 𝐁) + 𝐑𝛼𝛽 , (1.13)

which is usually called the force balance. Here, the operator
d
𝑑𝑡

= 𝜕

𝜕t
+ 𝐮𝛼 ⋅ ∇ (1.14)

is called the substantial or convective derivative andmeasures the change along the
trajectory of a fluid element in the laboratory frame. In ordinary hydrodynamics,
Eq. (1.13) is called the Euler equation while equations in the co-moving frame are
referred to as the Lagrange description.
The system of equations so far is not closed as a second moment appears in the

first moment equation, just as the velocity as first-order moment occurs in the
zeroth-order continuity equation. It is clear that this problem cannot be solved by
adding the second moment of the kinetic equation as a third moment will appear.
This is the closure problem of MHD, where at each step, an additional relation
will be required to close the system. If we want to stop here, we obviously need a
relation for the pressure, that is an equation of state. This could be the adiabatic
equation

d
𝑑𝑡

( p𝛼
𝜌𝛼

𝛾𝛼

)
= 0, (1.15)

where 𝛾𝛼 is the adiabatic coefficient and we have assumed that we only deal with
the scalar pressure in Eq. (1.13). Together with Maxwell’s equations for the fields
𝐄 and 𝐁, we now have indeed a closed system. However, we will still simplify this
system for a two-component plasma in Section 1.1.2.

1.1.2
One-Fluid Model of Magnetohydrodynamics

For the case of a two-component plasma consisting of one ion species and elec-
trons, the system of two-fluid equations can be combined to give a set of one-fluid
equations. Here, owing to the large mass difference between the two species, the
mass andmomentum aremore or less contained in the ions, whereas the electrons
guarantee quasineutrality and lead to an electrical current if their velocity is differ-
ent from that of the ions. In the following, we will assume a hydrogen plasma, that
is charge number Z = 1. Specifically, the one-fluid variables are the mass density

𝜌 = nimi + neme ≈ nmi (1.16)

where we have used charge neutrality (ne = ni = n), the centre of mass fluid
velocity

𝐯 = 1
𝜌
(mini𝐮i + neme𝐮e) ≈ 𝐮i (1.17)
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and the electrical current density

𝐣 = eni𝐮i − ene𝐮e = 𝑒𝑛(𝐮i − 𝐮e). (1.18)

The one-fluid equations are obtained by adding or subtracting the continuity and
force balance equations for the individual species and expressing them in the one-
fluid variables, neglecting terms of the orderme∕mi. In this process, addition will
give a one-fluid equation for the velocity, whereas the subtraction will yield one
for the current density.
Adding the continuity equations yields

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌𝐯) = 0 (1.19)

that is a one-fluid continuity equation while subtracting them leads to
𝜕𝜌el
𝜕t

+ ∇ ⋅ 𝐣 = 0 (1.20)

which is the continuity equation for the electrical current. As we assume the
plasma to be quasi-neutral, the electrical charge density 𝜌el = eni − ene vanishes
and the equation just reads ∇ ⋅ 𝐣 = 0.
Adding the force equations leads to

𝜌

(
𝜕𝐯
𝜕t

+ 𝐯 ⋅ ∇𝐯
)
= −∇ ⋅ 𝐏 + 𝐣 × 𝐁 (1.21)

the Euler equation, where 𝐏 = 𝐏𝐢 + 𝐏𝐞 as in an ideal plasma, the total pressure is
the sumof the partial pressures of the individual species. As pointed out earlier, the
fluid velocity is mainly the ion velocity. To determine the role that the electrons
play, we can re-write the electron equation of motion in terms of the one-fluid
velocity 𝐯 to obtain

𝐄 + 𝐯 × 𝐁 = 1
𝜎
𝐣 + 1

ene
(𝐣 × 𝐁 − ∇pe) −

me
e

d𝐮e
𝑑𝑡

(1.22)

which is Ohm’s law for a plasma. One can see that here, not all two-fluid variables
could be eliminated from the equation throughme ≪ mi. However, we will argue
in the following that the last two terms are usually small for our applications and
can be neglected so that this problem will not appear in what follows.
Assuming that we will deal with the scalar pressure only, we can use the adia-

baticity equation

d
𝑑𝑡

(
p
𝜌𝛾

)
= 0. (1.23)

In ordinary hydrodynamics, neglecting the viscous part of the pressure tensor cor-
responds to infinite Reynolds number and hence the use of the Euler instead of
the Navier Stokes equation that rules out a proper description of fluid turbulence.
However, if we keep finite conductivity inOhm’s law, there is still dissipation in the
system and the relevant dimensionless number becomes the magnetic Reynolds
number (Chapter 8).
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Finally, we use Maxwell’s equations for 𝐄 and 𝐁

∇ ⋅ 𝐁 = 0, (1.24)
∇ × 𝐁 = 𝜇0𝐣, (1.25)

∇ × 𝐄 = −𝜕𝐁
𝜕t

(1.26)

and we have a closed system of equations to describe a plasma as a single fluid.We
note that we have neglected the polarization current in Ampere’s law, eliminating
phenomena with (phase) velocity close to that of the speed of light, such as elec-
tromagnetic waves that arise from this term. In addition, we do not need to solve
explicitly an equation for ∇ ⋅ 𝐄 in the quasi-neutral plasma. Finally, counting the
number of variables and equations reveals that one scalar equation seems obso-
lete; this is related to the fact that any solution that satisfies∇ ⋅ 𝐁 in the beginning
will always do so and hence this is rather a boundary condition than a separate
equation.

1.1.3
Validity of the One-Fluid Model of Magnetohydrodynamics

The system of equations derived earlier relies on a number of assumptions that
have been made during the derivation. Here, we briefly review them and point
out the restrictions arising.

• By assuming that we can use a continuum description, we think of the plasma
described as fluid elements that are infinitesimally small such that individual
particles are not distinguished. This means that the typical ‘extension’ of the
particle orbit, that is the Larmor radius rL, is small compared to a typical system
length L:

r𝐿𝑖 =
√

mikTi

𝑒𝐵
≪ L. (1.27)

This is also known as the condition for amagnetized plasma and is usually very
well fulfilled in the fusion plasmas under study here where typical ion Larmor
radii are of the order of millimetres and the electron Larmor radius is even
smaller by a factor

√
me∕mi, which is the reason why we have used the ion Lar-

mor radius earlier. For theMHD instabilities treated in this book, it is important
to remember that the validity of our results will break down for very small scales,
and finite Larmor radius (FLR) effects set the limit to the applicability in the limit
L → 0.

• Defining a local temperature requires that f𝛼 is close to aMaxwellian.This relies
on considering timescales that are long compared to the collision time

𝜏 𝑐𝑜𝑙𝑙 ∼ T3∕2∕n ≪ 𝜏

or, in terms of spatial scales, the mean free path 𝜆mfp being small compared to
the system length:

𝜆mfp ∼ T2∕n ≪ L.
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These conditions are usually not well fulfilled in typical hot fusion plasmas, at
least parallel to the magnetic field, as typical values for 𝜆mfp can easily reach the
order of kilometres while L is usually of the order of metres such that the parti-
cles pass through the system many times before equilibrating. Hence, a kinetic
description is often needed to describe the dynamics along field lines, as is the
case for example in gyrokinetic description of turbulence. On the other hand,
perpendicular to the field, the typical mean free path is the Larmor radius and
the validity condition is fulfilled if Eq. (1.27) is fulfilled.

• In Ohm’s law (Eq. (1.22)), the ratio of the ‘Hall term’ (𝐣 × 𝐁 − ∇pe)∕(ene) to the
term 𝐯 × 𝐁 can be estimated using the force balance 𝐣 × 𝐁 − ∇pe ≈ ∇pi ≈ pi∕L
to be small if the typical velocity 𝑣 fulfills the condition 𝑣 ≫ r𝐿𝑖∕L𝑣th,i. As we
have already assumed r𝐿𝑖∕L ≪ 1 (Eq. (1.27)), this condition is usually well ful-
filled for the fast (𝑣 of the order of 𝑣th,i)MHDphenomena treated in our context.
However, it breaks down for phenomena that are slow enough that the differ-
ence between ion and electron fluidmatters, such as drift waves.Then, two-fluid
theory will have to be used and diamagnetic effects will become important.

• Applying a similar argument to the term (me∕e)(d𝐮e∕𝑑𝑡) shows that it can be
neglected whenever the typical length scale L is long compared to the electron
Larmor radius rL,e, which, as pointed out earlier, is fulfilled whenever Eq. (1.27)
is fulfilled.

• Finally, while the remaining terms in Ohm’s law are already true one-fluid
terms, another important simplification can often be made considering that
a hot plasma is a very good electrical conductor, meaning that the typical
timescale for current diffusion

𝜏R = L2𝜇0𝜎 ∼ L2T3∕2 ≫ 𝜏 (1.28)

can be of the order of seconds while typicalMHD instabilities growmuch faster.
Hence, one can often also neglect the finite conductivity effects in Eq. (1.22),
which formally corresponds to the limit 𝜎 → ∞. The resulting Ohm’s law

𝐄 + 𝐯 × 𝐁 = 0 (1.29)

is the fundamental ingredient of what is called ideal MHD, and its conse-
quences will be discussed in Section 1.1.2.Wewill come back to finite resistivity
in Chapter 8.

We mention here that for toroidal confinement systems, dimensionless vari-
ables are often used for scaling arguments in a way comparable to the wind tunnel
approach in ordinary hydrodynamics. It can be shown that, if the plasma can
be assumed to be quasi-neutral4), a consistent set of dimensionless variables is
given by normalizing energy, length and time scales as follows: the kinetic plasma
energy can be normalized by the magnetic field energy, a parameter known as 𝛽
(Eq. (1.46)). For a typical length scale, we define the ratio between Larmor radius
and system length as 𝜌∗ = rL∕L. Finally, if we want to relate the time to the time
between collisions, a convenient definition for a toroidal system is the so-called

4) This corresponds to the assumption of small Debye length, 𝜆D∕L → 0.
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collisionality 𝜈∗, which is the inverse ratio of the above-mentioned collision time
to the time a particle takes to complete a characteristic orbit in a toroidal con-
finement system, the so-called banana transit time5). According to the discussion
earlier, MHD corresponds to the limits 𝜌∗ → 0 and 𝜈∗ → ∞, with the caveat that
in ideal MHD, the electrical conductivity is still high enough that the condition
described by Eq. (1.28) holds. In this case, the typical time scale is not given by
the collision time, but rather by the inertia of the plasma. This so-called Alfvén
timescale is discussed in Section 1.2.

1.2
Consequences of the MHD Equations

The system of equations derived earlier describes a magnetized plasma as a
one-component fluid. Before applying the equations to specific magnetic con-
finement schemes, we will point out some general consequences arising from the
equations.

1.2.1
Magnetic Flux Conservation

An important consequence of the ideal Ohm’s law is the fact that magnetic flux is
conserved when moving with the plasma. To prove this statement, we consider a
contour C moving through the plasma with velocity 𝐮𝐂. The geometry is shown
in Figure 1.1a. The change of magnetic flux Ψ = ∫ 𝐁 ⋅ d𝐒 through this contour is
given by

C

B B

(a) (b)

dξ

Figure 1.1 Geometry used for the derivation of flux conservation (a) and visualization of
the concept of flux tubes (b).

5) In a toroidal system, there is a population of particles that bounce back and forth in the magnetic
mirror created by the inhomogeneous B-field.
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dΨ
𝑑𝑡

= ∫
𝜕𝐁
𝜕t

⋅ d𝐒 − ∮ 𝐮𝐂 × 𝐁𝐝𝓁, (1.30)

where the first term accounts for explicit change of 𝐁 with time and the second
term comes from the fact that the change of surface of C can be calculated by
integrating the vector product of the curve’s tangent 𝐝𝓁 and the displacement d𝛏
(where d𝛏∕𝑑𝑡 = 𝐮𝐂) along the contour C.
Using Faraday’s law (Eq. (1.26)) in combination with Ohm’s law (Eq. (1.22)), in

the first integral of Eq. (1.30) and applying Stokes’ theorem, leads to

dΨ
𝑑𝑡

= ∮
(
𝐯 − 𝐣

ene
− 𝐮𝐂

)
× 𝐁 ⋅ d𝓁 (1.31)

where we have assumed the plasma to be an ideal conductor, 𝜎 → ∞. In deriving
Eq. (1.31), we have made use of the fact that the curl of a gradient vanishes, elim-
inating the ∇pe∕(nee) term which is true as long as ∇pe∕ne = ∇(pe∕ne), that is for
polytropic equations of state6).This means that the magnetic flux is constant if the
contour is moved with the electron velocity7)

𝐮C = 𝐯 − 𝐣
ene

= 𝐯e (1.32)

Consequently, one can imagine the plasma consisting of ‘flux tubes’ that are small
cylinders with their mantle defined by the magnetic field lines as depicted in
Figure 1.1b. As the flux is constant in these cylinders, the flux tubes are convected
with 𝑣e. In some sense, magnetic field lines thus become real objects in an ideal
plasma. Sometimes, the field lines are also said to be ‘frozen into the plasma’8).
An important consequence for the motion of flux tubes in ideal MHD is that
they cannot intersect as this would change the flux within the individual tubes.
Hence, the motion is constrained to not change the topology of the flux tubes.
Such topological changes are only possible invoking additional terms in Ohms
law outside of the ideal MHD model, such as finite resistivity or finite electron
inertia. Resistive effects are treated in Chapter 8.
For the MHD instabilities treated in this book, it means that they are expected

to move with 𝑣e, which has to be determined from the force balance equation of
the electrons and will in general consist of a combination of fluid velocity and
diamagnetic velocity as we have

𝐯e,⊥ = 𝐄 × 𝐁
B2 +

∇pe × 𝐁
eneB2 = 𝐯E×B + 𝐯e,dia (1.33)

6) Note that this argument does in general not hold for the 𝐣 × 𝐁 term as it is only equal to ∇p in
stationary force equilibriumwhile here, we are concernedwith dynamic changes of the equilibrium.

7) We note that using the ideal Ohm’s law (Eq. 1.29), the field lines are found to be frozen into the
fluid velocity rather than the electron velocity, since then, no current, that is no difference between
electron and ion velocity is considered.

8) This terminology is slightly misleading as the effect is due to the high electrical conductivity that
comes from the plasma being quite hot!
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R1, B1 R2, B2

Figure 1.2 Schematic visualization
of the consequence of flux conservation
for the collapse of a neutron star: owing to
the decrease of the equatorial surface, the

magnetic field has to increase accordingly
(remember that the density of field lines is
representative for the field strength).

which follows from the vector product of Eq. (1.13) for the electrons with 𝐁. Note
that 𝐯E×B is the same for each species 𝛼 and hence, the frame where 𝐄 = 0 is often
referred to as the rest frame of the plasma.
An interesting illustration of the consequences of flux conservation is the col-

lapse of a star of mass exceeding the critical mass for formation of a neutron star:
during this process, the radius changes from R1 ≈ 106 to R2 ≈ 10 km while con-
serving magnetic flux, schematically shown in Figure 1.2. If we assume that we
start with a dipole field of 10−5 T (roughly the Earth’s magnetic field), we arrive at
a final field of 105 T as flux conservation yields B2 = B1(R1∕R2)2. Such enormous
magnetic field strengths can indeed be inferred from measuring the electromag-
netic radiation coming fromneutron stars, giving proof of the applicability of ideal
MHD even under these extreme conditions.

1.2.2
MHD Equilibrium

A common application is the calculation of an equilibrium configuration using
the MHD force balance (Eq. (1.21)). An equilibrium state is characterized by sta-
tionarity, that is 𝜕∕𝜕t → 0. If we are interested in equilibria where the dynamic
pressure coming from the term (𝐯 ⋅ ∇)𝐯 can be neglected, the force balance reads

∇p = 𝐣 × 𝐁 (1.34)

stating that a pressure gradient can be sustained by currents possessing a compo-
nent perpendicular tomagnetic fields. Using Ampère’s law for the current density,
we can re-write the equilibrium force balance:

∇p = 1
𝜇0

(∇ × 𝐁) × 𝐁 = −∇ B2

2𝜇0
+ 1

𝜇0
(𝐁 ⋅ ∇)𝐁 = −∇ B2

2𝜇0
+ B2

𝜇0
𝛋, (1.35)
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where the curvature 𝛋 has been introduced according to

𝛋 = 𝐁
B
⋅ ∇

(𝐁
B

)
, with |𝛋| = 1

Rc
, (1.36)

where Rc is the local radius of curvature of the field line. Hence, there are two
contributions by which the magnetic field can exert a force on the plasma. The
magnetic pressure B2∕(2𝜇0) produces a restoring force when the field lines are
compressed, whereas the field line tension B2∕𝜇0𝛋 exerts a force in order to
straighten out a field line once it is bent.
Using Eq. (1.35), we can also evaluate the condition under which the dynamic

pressure can be neglected in the force balance. Obviously, the magnetic field
mainly balances the kinetic pressure as long as

∇p ≫ 𝜌𝐯 ⋅ ∇𝐯 →
p
L
≫ 𝜌

𝑣2

L
→

√
p
𝜌
≫ 𝑣 (1.37)

which states that the flow velocity should be much smaller than roughly the speed
of sound.

1.2.3
Magnetohydrodynamic Waves

In this section, we address a particular point of the dynamics of idealMHD.When
deriving the set of MHD equations, we neglected the displacement current in
Ampère’s law, thus eliminating electromagnetic waves from the solutions. How-
ever, in the preceding section, we saw that MHD provides two kinds of restoring
forces to displacement of a field line, magnetic pressure and field line tension.
These give rise to MHD waves, the so-called Alfvén waves, which exist within the
system of equations derived earlier. Figure 1.3 shows these two situations.
As a starting point, we linearize the force equation, assuming that all quantities

can be written as a zeroth-order term that is constant in time and space and a
small first-order perturbation that may vary in time and space. In addition, we set
𝐯0 = 0, assuming that flow does not play a role in the zeroth-order force balance.

→

Compressional Alfven wave(a) (b) Shear Alfven wave

B0
→
B0

Figure 1.3 (a,b) Geometry for the derivation of compressional (a) and shear (b) Alfvén
waves. The small arrows represent the perturbation of the system giving rise to an
oscillation.
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Linearizing (1.21), writing the right-hand side in the form (1.35) and differenti-
ating with respect to time, we obtain

𝜌0
𝜕2𝐯1
𝜕t2

= −∇
𝜕p1
𝜕t

+ 1
𝜇0

(
𝐁0 ⋅ ∇

𝜕𝐁1
𝜕t

− ∇
(
𝐁0 ⋅

𝜕𝐁1
𝜕t

))
, (1.38)

where the last two terms represent field line tension and pressure, respectively.
In the following, we will hence distinguish two cases, namely pure compression
(where the restoring force is given by magnetic pressure) and incompressible dis-
placement (where the restoring force is due to field line tension). In reality, there
will be waves that are a mixture of these two limiting cases.

1.2.3.1 Compressional AlfvénWaves
In this section, we assume that the plasma is compressed homogeneously in the
direction perpendicular to the equilibrium magnetic field lines that are straight
as we assumed 𝐁0 = const.. This corresponds to Figure 1.3a and 𝐁0 ⋅ ∇ → 0 in
Eq. (1.38). In ordinary hydrodynamics, this wave is the sound wave, propagating
in the longitudinal direction due to the restoring force of kinetic pressure.
In order to re-write Eq. (1.38) in terms of 𝐯1, we express the first term on the

right-hand side using the adiabatic law:

d
𝑑𝑡

(
p
𝜌𝛾

)
= 0 →

𝜕

𝜕t
(𝜌0p1 − 𝛾p0𝜌1) = 0 (1.39)

Using the linearized continuity equation, we obtain

𝜕p1
𝜕t

= −𝛾p0∇ ⋅ 𝐯1 (1.40)

stating that the change of pressure comes from the compression of a fluid element.
Next, we obtain an equation for 𝐁1 by combining Faraday’s law and Ohm’s law.

𝜕𝐁1
𝜕t

= −∇ × 𝐄1 = ∇ × (𝐯1 × 𝐁0). (1.41)

This can be rewritten using a vector theorem

∇ × (𝐯1 × 𝐁0) = (𝐁0 ⋅ ∇)𝐯1 − (𝐯1 ⋅ ∇)𝐁0 + 𝐯1(∇ ⋅ 𝐁1) − 𝐁0(∇ ⋅ 𝐯1). (1.42)

In the case of pure compression, the first term on the right-hand side vanishes due
to geometry (no change along the equilibrium field). The second term vanishes
due to 𝐁0 = const. As ∇ ⋅ 𝐁 = 0 to each order, the third term generally vanishes.
Hence, we arrive at

𝜕𝐁1
𝜕t

= −𝐁0(∇ ⋅ 𝐯1). (1.43)

Now, we can express (Eq. (1.38)) as follows:

𝜕2𝐯1
𝜕t2

=

(
𝛾
p0
𝜌0

+
B2
0

𝜇0𝜌0

)
Δ𝐯1, (1.44)
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where we have used the fact that the perturbation does not introduce any vor-
tices, that is ∇ × 𝐯1 = 0, which leads to ∇(∇ ⋅ 𝐯1) = Δ𝐯1. Equation (1.44) is a wave
equation with phase velocity

𝑣ph =

√
𝛾p0
𝜌0

+
B2
0

𝜇0𝜌0
. (1.45)

There are two contributions, namely the contribution of kinetic pressure and that
of magnetic pressure. Depending on their ratio, which in plasma physics is known
as the plasma beta

𝛽 =
2𝜇0p
B2 (1.46)

the wavewill propagate at the speed of sound cs =
√
𝛾p0∕𝜌0 for 𝛽 ≫ 1 or, at 𝛽 ≪ 1,

with the Alfvén speed

𝑣A =
B0√
𝜇0𝜌0

. (1.47)

More generally, the wave speed will be a combination of both and we call the wave
a magneto-aoustic wave.

1.2.3.2 Shear AlfvénWaves
Now,we turn to the second case, depicted in Figure 1.3b, wherewe assume that the
only restoring force is due to field line tension, that is the plasma is perturbed in
an incompressible way, meaning ∇ ⋅ 𝐯 = 0. In this case, the pressure perturbation
vanishes (Eq. (1.40)) and in Eq. (1.42), the last term is zero while now, the first term
on the right-hand side is non-zero as the plasma is perturbed along the field lines.
Hence, Eq. (1.38) becomes

𝜕2𝐯1
𝜕t2

=
B2
0

𝜇0𝜌0
∇||2𝐯1 (1.48)

which again is awave equation, this time forwaves travelling along the equilibrium
field lines, that is a transverse wave, analogous to the oscillation of for example a
guitar string. The phase velocity is the Alfvén velocity 𝑣A, this time without any
contribution of the kinetic pressure as we have assumed the motion to be incom-
pressible.
The Alfvén velocity is quite important for the dynamics of ideal MHD as it sets

the ‘natural’ timescale limited by inertia. Estimating the Alfvén timescale as

𝜏A = L∕𝑣A (1.49)

and inserting typical parameters of magnetically confined fusion plasmas, it is of
the order of 1–10 𝜇s, that is quite fast, because of the small mass of the very low
density plasma. Consequently, ideal MHD instabilities in tokamaks often grow so
fast that they have to be slowed downby passive structures such as conductingwall
elements in order to be accessible for magnetic feedback control. An example for
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this is the vertical displacement event (VDE) treated in Section 4.4 or the Resistive
Wall Mode (RWM) treated in Section 7.4.
In ideal MHD, Alfvén waves will normally appear as a damping term for insta-

bilites as their excitation is a sink of free energy. In a toroidal confinement system,
the Alfvén spectrum usually is a continuum, that is there are no resonances at
discrete frequencies that extend in radial direction and hence they lead to strong
damping. However, owing to toroidicity, there also exists a kind of discrete Alfvén
waves that can be excited under certain circumstances, for example by a popula-
tion of fast particles. These can be quite important for future reactor grade fusion
plasmas in which a large population of fast particles is expected, but their detailed
treatment is beyond the scope of this book.


