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Review of Classical Theories

A compact review of classical theories is presented, including the classical and
statistical mechanics and electromagnetism. These theories are inherently inter-
twined with quantummechanics and provide the general background fromwhich
to understand the quantum mechanics in a proper perspective.

1.1
Harmonic Oscillator

Theharmonic oscillator (HO) is one of the simplest, yet ubiquitous dynamical sys-
tems appearing in a variety of physical and chemical systems such as electromag-
netic waves and molecules. The HO is a particle attached to a spring, executing
oscillatory motion. When the spring is compressed or stretched, the spring pro-
vides a restoring force for putting the particle back to the equilibrium position
(Figure 1.1). In the process, an oscillatory motion ensues, and the motion repre-
sents a variety of important natural phenomena such as molecular vibrations and
electromagnetic waves.
Newton’s equation of motion of the HO reads as

mẍ = −kx (1.1)

where m is the mass of the oscillator, x the displacement from the equilibrium
position, and k the spring constant. The double dots denote the second-order dif-
ferentiation with respect to time, and −kx is Hook’s restoring force. The equation
can be put into a form

ẍ + 𝜔2x = 0, 𝜔2 ≡ k
m

(1.2)

where 𝜔 is the characteristic frequency. Trigonometric functions, for example,
sin𝜔t, cos𝜔t are well-known solutions of Eq. (1.2). When the oscillator is pulled
by x0 and gently released, for instance, the displacement x(t) and the velocity v(t)
are given by

x (t) = x0 cos𝜔t, v (t) ≡ ẋ (t) = −𝜔x0 sin𝜔t (1.3)

and x(t), v(t) oscillate in time in quadrature (Figure 1.2) with the periodT = 2𝜋∕𝜔.
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Figure 1.1 The harmonic oscillator, a particle of mass m attached to a spring with the
spring constant k (a); the potential energy of HO (b); a diatomic molecule as represented by
two atoms coupled via an effective spring constant (c).
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Figure 1.2 The displacement x, velocity v, and kinetic K and potential V energies versus
𝜔t, all scaled with respective maximum values. The total energy K + V is constant in time,
and HO is a conservative system.

The potential energy of the HO is obtained by integrating the work done for
displacing the HO from the equilibrium position to x against the restoring force:

V (x) ≡ −∫
x

0
dx (−kx) = 1

2
kx2 (1.4)

The total energy is often denoted by Hamiltonian H and is expressed in terms of
the linear momentum px and the displacement x as

H ≡ K + V =
p2

x

2m
+ 1

2
kx2 (1.5)

Given H , Hamilton’s equations of motion read as

ẋ ≡ ∂H
∂px

=
px

m
ṗx ≡ −∂H

∂x
= −kx (1.6)

The pair of equations in (Eq. (1.6)), when combined, reduces to Newton’s equation
of motion, and the variables x, px are known as canonically conjugate variables.
The essence of classical mechanics is to solve the equation of motion and to pre-
cisely specify the position and momentum of a particle or a system of particles.
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1.2
Boltzmann Distribution Function

The properties of macroscopic quantities are derived from the dynamics of an
ensemble of microscopic objects such as electrons, holes, atoms, and molecules.
Statistical mechanics describes such an ensemble of particles by means of the dis-
tribution function, f (r, v, t).The function represents the probability of finding the
particles in the phase space volume element drdv at r, v, and t. Thus, when multi-
plied by density n of the particle f (r, v, t) drdv represents the number of particles
in the volume element at t.
The change in time of f (r, v, t) is given from the chain rule by

df
(

r, v, t
)

dt
=

∂f
∂t

+
∂f
∂x

∂x
∂t

+ · · · +
∂f
∂vx

∂vx

∂t
+ · · · =

∂f
∂t

+ v ⋅ ∇f + a ⋅ ∇v f (1.7a)

where the operators

∇ ≡ x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

, ∇v ≡ x̂ ∂
∂vx

+ ŷ ∂
∂vy

+ ẑ ∂
∂vz

(1.7b)

are the gradient operators with respect to r, v, and a is the acceleration. The dis-
tribution function also changes in time due to collisions by which the particles are
pushed out of or pulled into the volume element. Hence, the transport equation
is given by

∂f
∂t

+ v ⋅ ∇f +
F
m

⋅ ∇v f =
𝛿f
𝛿t

||||coll, a =
F
m

(1.8)

with F denoting the force.

Equilibrium

In the thermodynamic equilibrium, the distribution function f 0 is independent
of time, that is, (∂∕∂t) f0 = 0, and the collision term should also be put to zero.
This is because every process is balanced by its inverse process in equilibrium
(detailed balancing). Consequently, the number of particles pushed out of and
pulled into the phase space volume element due to collision is the same. Thus,
the one-dimensional transport equation in equilibrium is given from Eq. (1.8) by

vx ⋅
∂f0
∂x

− 1
m

∂𝜑
∂x

∂f0
∂vx

= 0, Fx ≡ −∂𝜑
∂x

(1.9)

where the force has been expressed in terms of the potential 𝜑.
Wemay look for the solution in the form

f0
(

x, vx
)
= Ne−E(x)∕kBT , E (x) =

mv2x
2kBT

+ 𝜑 (x) (1.10)

where N is the constant of integration and kB the Boltzmann constant having the
value 1.381 × 10−23 JK−1 or 8.617 × 10−5 eVK−1, and E(x) is the total energy at x,
consisting of kinetic and potential energies. By inserting Eq. (1.10) into Eq. (1.9)
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Figure 1.3 The distribution function of an ensemble of free particles in equilibrium (a) and
under an electric field in the z-direction (b), all scaled with the maximum values; f 0(v) is
symmetric in v, while f (v) is not in the z-direction.

and carrying out the differentiation with respect to x and vx, we find that Eq. (1.10)
is indeed the solution. Also N can be used for normalizing f 0(x, vx). For a system
of free particles in which 𝜑 = 0, the normalized equilibrium distribution function
is given by

f0
(

vx
)
=
(

m
2𝜋kBT

)1∕2

e−mv2x∕2kBT (1.11)

where N has been found from the normalization condition,

N∫
∞

−∞
dvxe−mv2x∕2kBT = N

(2𝜋kBT
m

)1∕2

= 1

Naturally, f 0(vx) can be generalized to three dimensions as

f0
(

v
)
=
(

m
2𝜋kBT

)3∕2

e−mv2∕2kBT , v2 = v2x + v2y + v2z (1.12)

The function f 0 is the celebrated Boltzmann distribution function for a system of
free particles, and the exponential factor appearing therein is called theBoltzmann
probability factor. Clearly, f 0(v) is symmetric in v and represents the fact that there
is no preferred direction, a well-known property of the equilibrium (Figure 1.3).

Equipartition Theorem

In equilibrium, the probability of a particle moving from left to right is the same
as that of moving from right to left (Eq. (1.11)). Therefore, the average velocity is
zero, but the average value of v2x is not zero and can be found as

⟨
v2x
⟩ ≡

(
m

2𝜋kBT

)3∕2

∫
∞

−∞
dvxv2xe−mv2x∕2kBT∫

∞

−∞
dvye−mv2y∕2kBT∫

∞

−∞
dvze−mv2z∕2kBT

=
kBT
m

(1.13)
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By inspection, we can write

⟨
v2x
⟩
=
⟨

v2y
⟩
=
⟨

v2z
⟩
=

kBT
m

(1.14)

Hence, the total average kinetic equation is given by

1
2

m
⟨

v2
⟩
= 1

2
m
(⟨

v2x
⟩
+
⟨

v2y
⟩
+
⟨

v2z
⟩)

= 3
2

kBT (1.15)

which represents the equipartition theorem, namely, that the average kinetic
energy of a free particle is equally divided into x-, y-, and z-directions, respectively,
in equilibrium.

Nonequilibrium Distribution Function

Let us next consider an ensemble of electrons uniformly distributed in space and
subjected to an electric field in the z-direction, ẑE0. In this case, f is independent
of r and at the steady state ∂f ∕∂t = 0; hence, Eq. (1.8) reads in relaxation approach
as (

−qE0
)

mn

∂f
∂vz

= −
f − f0
𝜏

;
𝛿f
𝛿t

||||coll = −
f − f0
𝜏

(1.16)

where −qE0 is the force acting on an electron with charge −q and mass mn. The
collision term used describes the system relaxing back to the equilibrium in a time
scale determined by 𝜏 called the longitudinal relaxation time, and f 0 and f are
the equilibrium and nonequilibrium distribution functions, respectively. Let us
assume for simplicity that f does not depart very much from f0, that is, f − f0 ≪
f , f0. In this case, we can find f iteratively by putting f = f0 on the left-hand side,
obtaining

f ≈ f0 +
qE0𝜏

mn

∂f0
∂vz

= f0
(
1 −

qE0𝜏vz

kBT

)
(1.17)

where Eq. (1.12) has been used for f 0. Clearly, f is asymmetric in vz due to the
electric field applied, while symmetric in vx, vy as shown in Figure 1.3.

Mobility and Conductivity

Once f is found, the physical quantities of interest can be specified explicitly. For
example, consider the average velocity of electrons. As f is still symmetric with
respect to vx, vy,

⟨
vx
⟩
=
⟨

vy
⟩
= 0 but

⟨
vz
⟩
is not zero and is given by

⟨
vz
⟩ ≡ ∫

∞

−∞
dvx∫

∞

−∞
dvy∫

∞

−∞
dvzvz f0

(
1 − qE0𝜏(v)vz

kBT

)

∫
∞

−∞
dvx∫

∞

−∞
dvy∫

∞

−∞
dvz f0

(
1 − qE0𝜏(v)vz

kBT

) = −
qE0
mn

⟨
𝜏n
⟩

(1.18a)
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where⟨
𝜏n
⟩ ≡ mn

kBT ∫
∞

−∞
dvx∫

∞

−∞
dvy∫

∞

−∞
dvzv2z𝜏 (v) f (1.18b)

denotes the effective relaxation time. Note in Eq. (1.18) that the first integral in
the numerator and the second integral in the denominator vanish because the
integrands therein are odd functions of vz. This renders the denominator equal to
unity because f 0 is a normalized distribution function (Eq. (1.12)). The relaxation
time depends in general on the velocity v and has been averaged over.
The average velocity

⟨
vz
⟩
derived in Eq. (1.18) represents the drift velocity with

which all electrons move uniformly on top of their random thermal motion. The
drift velocity is driven by E0 exerting force on the electrons and can be viewed as
the output of E0:

vdn ≡ ⟨
vz
⟩
= −

qE0
⟨
𝜏n
⟩

mn
≡ −𝜇nE0, 𝜇n ≡ q

⟨
𝜏n
⟩

mn
(1.19)

The response function𝜇n connecting the input field and the output drift velocity is
called the mobility. The current density of electrons due to drift is therefore given
from Eq. (1.19) by

JD ≡ −q
n∑

j=1
(vjth + vdn) = −𝜎nE0, 𝜎n ≡ q𝜇nn (1.20)

where n is the electron density, and the random thermal velocities vjth sum up
to zero. The quantity 𝜎n connecting E0 to JD is known as the conductivity. The
mobility 𝜇n and conductivity 𝜎n are the key transport coefficients.

1.3
Maxwell’s Equations and EMWaves

Maxwell’s equations are the foundations of the electromagnetism and are sum-
marized as follows. When the charge and current density 𝜌 and J are spatially
distributed and vary in time, the electric E(r,t) and magnetic B(r,t) fields are gen-
erated and coupled to each other according to Maxwell’s equations:

∇ × E = −
∂B
∂t

(1.21)

∇ × H = J +
∂D
∂t

(1.22)

∇ ⋅ E = 𝜌

𝜀
(1.23)

∇ ⋅ B = 0 (1.24)

Thedisplacement vectorsD andB are correlated toE and themagnetic field inten-
sity H via the permittivity 𝜀 and the permeability 𝜇 of the medium as

D = 𝜀E, B = 𝜇H (1.25)
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The addition of the continuity or charge conservation equation renders Maxwell’s
equations self-contained:

∂𝜌
∂t

+ ∇ ⋅ J = 0 (1.26)

As well known, Eq. (1.21) is Faraday’s law of induction, specifying B(r,t) as the
source of generating E, while Eq. (1.22) is Ampere’s circuital law describing J as
the source for generating B. Also Eq. (1.23) represents Coulomb’s law and Eq.
(1.24) is the theoretical statement of the fact that nomagnetic monopole has been
observed. Ampere’s circuital law, Eq. (1.22), was complemented by Maxwell, who
introduced ∂D∕∂t, called the displacement current. The modification was neces-
sitated by the fact that the curl of any vector, ∇ × A, should be solenoidal, that is,
∇ ⋅ ∇ × A ≡ 0, as can be readily verified.With D thus introduced, the requirement
that H in Eq. (1.22) is solenoidal is satisfied, because the divergence operation on
the right-hand side of Eq. (1.22) reduces the equation to the continuity equation
to become zero.Maxwell’s equations are rooted in the observed laws of nature and
have successfully undergone the test of time and have been the source of unceasing
applications.

Wave Equation

The electric and magnetic fields E and H coupled inherently via the two laws
Eqs. (1.21) and (1.22) can be decoupled and examined separately. Thus, consider
a medium free of charge 𝜌 and J . Then, the curl operations on both sides of Eq.
(1.21) lead to

∇ × ∇ × E ≡ [
∇∇ ⋅ −∇2]E = −∇2E; ∇ ⋅ E ∝ 𝜌 = 0 (1.27a)

∇ ×
(
−
∂B
∂t

)
= −𝜇 ∂

∂t

(
J + 𝜀

∂
∂t
E
)
= −𝜇𝜀 ∂2

∂t2
E, J = 0 (1.27b)

where a vector identity and Ampere’s law have been used in Eqs. (1.27a) and
(1.27b), respectively. Hence, by equating Eqs. (1.27a) and (1.27b), there results
the wave equation:

∇2E − 1
v2

∂2
∂t2

E = 0, 1
v2

≡ 𝜇𝜀 = 𝜇0𝜀0𝜇r𝜀r =
1

(c∕n)2
(1.28)

Here, v is the velocity of light in the medium in which 𝜇r = 1 and is specified in
terms of the velocity of light in the vacuum 1∕𝜇0𝜀0 and the index of refraction n
via 𝜀r = n2,with 𝜀r denoting the dielectric constant. Clearly, D is indispensable in
bringing out the wave nature of the electromagnetic field. We can likewise derive
the identical wave equation for H.

PlaneWaves andWave Packets

A typical solution of the wave equation (1.28) is the plane wave

E (z, t) = x̂E0e−i(𝜔t−kz), 𝜔 = k√
𝜇𝜀

(1.29)
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Figure 1.4 Spatial profiles of electric and magnetic fields traveling in the z-direction. Also
shown is the Poynting vector, accompanying the propagation with the power.

propagating in the z-direction, for example, with the wave vector k = 2𝜋∕𝜆
obeying the dispersion relation as given in Eq. (1.29). The amplitude E0 has to be
taken perpendicular to k, say in the x-direction so that ∇ ⋅ E ∝ ẑ ⋅ x̂ = 0 in accor-
dance with Coulomb’s law. In this case, the H-field is obtained from Eqs. (1.21)
and (1.29) as

H = ŷ
√
𝜀∕𝜇E0e−i(𝜔t−kz), ŷ = ẑ × x̂ (1.30)

Therefore, E, H, and k are mutually perpendicular, and the complex Pointing vec-
tor E × H∗ represents the power flow in the z-direction, as shown in Figure 1.4.

Wave Packets

The wave equation (1.28) is linear, so that the linear superposition of plane waves
is also the solution:

E (z, t) = Re
∑

n
Ene−i(𝜔nt−knz) = Re∫

∞

−∞
dkE (k) e−i(𝜔t−kz) (1.31)

The wave packet can be put into a compact form by Taylor expanding 𝜔 at k0:

𝜔 (k) = 𝜔
(

k0
)
+ vg

(
k − k0

)
+ 𝛼

(
k − k0

)2 + · · · ; vg ≡ ∂𝜔
(

k0
)

∂k
(1.32)

In a linear medium 𝛼 = 0, vg = c∕n, and by using Eq. (1.32), we can express Eq.
(1.31) as

E (z, t) = Ree−i(𝜔0t−k0z)∫
∞

−∞
dkE (k) ei(z−vg t)(k−k0) (1.33)

and represent the wave packet in terms of two components: (i) the mode func-
tion oscillating with the carrier frequency 𝜔0 and propagating with the phase
velocity 𝜔0∕k0 and (ii) the envelope contributed by superposed plane waves
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Figure 1.5 Spatial profile of the field intensity in the z-direction (a) and power spectrum
versus the wave vector (b).

and propagating with the group velocity vg. For the Gaussian spectral density
centered at k0,

E (k) =
E0e−(k−k0)2∕2𝜎2

√
2𝜋𝜎

(1.34)

the integration of Eq. (1.33) yields

E (z, t) = ReE0e−i(𝜔0t−k0z)e[−𝜎2(z−vg t)2∕2] (1.35)

The wave packet in this case consists of a Gaussian envelope propagating with the
group velocity vg, while the mode function rapidly oscillates within the envelope
and propagates with the phase velocity 𝜔0/k0.
Shown in Figure 1.5 are the spatial profile of the wave packet Eq. (1.35) at t = 0

and the power spectrum. The bandwidth of the power spectrum Δk is often
defined by the width between two 1/e points from its peak, that is, Δk = 2𝜎. The
spatial extent of the intensity envelope is likewise specified by Δz = 2∕𝜎 = 4∕Δk.
Given Δk, the frequency band width is given from the dispersion relation by
Δ𝜔 = vgΔk = 2vg𝜎. Finally, the time duration of the wave packet is given by
Δt = Δz∕vg = 4∕Δ𝜔. Therefore, the wave packet is characterized by the basic
relation

Δz ∝ 1
Δk

, Δt ∝ 1
Δ𝜔

(1.36)

where the proportionality constants are of the order of unity and depends on the
dispersion relation occurring in the power spectrum.The relationship (Eq. (1.36))
is of fundamental importance in quantum mechanics and is followed up in due
course.

The Interference

The interference effect is a signature of the wave and was demonstrated by Young
with his classic double-slit experiment as shown in Figure 1.6. In this experiment,
two plane waves emanating from a distant source are passed through two slits.
The two beams are detected on a screen L distance away from the slits. At a point



10 1 Review of Classical Theories

S
d

S1

S2

(a) (b)

E1(r1,t)

E2(r2,t)

A

θ

θ

P

L

y

d sinθ ≈ d tanθ

Figure 1.6 (a) Young’s double-slit experimental scheme and (b) the observed fringe
pattern.

P on the screen, the total field registered consists of the two plane waves:

E
(

r, t
)
=

2∑
j=1

ReE0e−i
(
𝜔t−kj⋅rj

)
(1.37)

The detected time-averaged intensity is thus given by

I =
⟨(

E1 + E2
)
⋅
(
E∗
1 + E∗

2
)⟩

t = ||E1
||2 + |||E2

|||2 + (
E1 ⋅ E

∗
2 + E2 ⋅ E

∗
1
)

(1.38)

and consists of two background and interference terms, respectively. Naturally,
the latter two terms depend on the difference in optical paths the two beams have
traversed before reaching P. The resulting phase difference is given in the far-field
approximation by kd sin 𝜃 (Figure 1.6), and therefore I reads as

I = 2|||E0
|||2 (1 + cos𝜑) , 𝜑 = kd sin 𝜃 ≃

(2𝜋
𝜆

)
d
( y

L

)
(1.39)

where d and y are the space between two slits and the height of P on the screen,
respectively. For L ≫ y, sin 𝜃 ≃ tan 𝜃 ≃ y∕L. Obviously, the interference term adds
to or subtracts from the background, depending on the relative phase between the
two beams.Themaximum andminimum intensities are attained for 𝜑 = 2n𝜋 and
𝜑 = 2𝜋 (n + 1∕2), respectively, with n denoting an integer. Therefore, bright and
dark strips appear at yn = (𝜆L∕d) n and yn = (𝜆L∕d) (n + 1∕2), respectively.

Problems

1.1 TheH2 molecule consists of two protons coupled via an effective spring with
the spring constant k. The 1D Hamiltonian is given by (Figure 1.7)

H = 1
2

m1ẋ21 +
1
2

m2ẋ22 +
1
2

k
(

x1 − x2
)2

k

x1

m1 m2

x2

Figure 1.7 Two particles coupled via a spring with spring
constant k.
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(a) Introduce the center of mass and relative coordinates as

X = x1 + x2, x = x1 − x2
and express theHamiltonian in terms of X and x and interpret the result.

(b) Write down the equations ofmotion for the center ofmassX and relative
displacement x and interpret the equations of motion.

1.2 Find the thermal velocity of (a) electron, (b) proton, (c) H2 molecule, and (d)
particle of mass 1 g at T = 10, 300, and 1000K.

1.3 .(a) Show that the electric field given in Eq. (1.29) is the solution of the wave
equation, provided 𝜔, k satisfy the dispersion relation, 𝜔2 = v2k2 with k
denoting the wave vector.

(b) Show that the magnetic field intensity H given in Eq. (1.30) and E in Eq.
(1.29) satisfy Faraday’s law of induction and Ampere’s circuital law in a
medium free of charge and current.

(c) Derive the wave equation of H.
1.4 Given the wave packet Eq. (1.35), find variance of ||E (z, t)||2 at t = 0

(Δz)2 =
⟨
(z − ⟨z⟩)2⟩ ; ⟨a⟩ ≡ ∫

∞

−∞
dza|E (z, 0)|2

1.5 By using the relations

x̂ ⋅ x̂ = ŷ ⋅ ŷ = ẑ ⋅ ẑ = 1, x̂ ⋅ ŷ = ŷ ⋅ ẑ = ẑ ⋅ x̂ = 0,

x̂ × ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ

show that all vectors are solenoidal, that is, ∇ ⋅ ∇ × A ≡ 0.
1.6 By combining Eqs. (1.23), (1.25), and (1.26), show that H in Eq. (1.22) is

solenoidal.
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