Contents

Foreword, 2nd Edition XIII Foreword, 1st Edition XV V

1 Introduction 1

- 1.1 Reliability, Security, Economy 1
- 1.2 Legal, Political and Social Restrictions 2
- 1.3 Needs for Power System Planning 4
- 1.4 Basic, Development and Project Planning 5
- 1.4.1 Basic Planning 5
- 1.4.2 System Development Planning 7
- 1.4.3 Project Planning 7
- 1.5 Instruments for Power System Planning 7
- 1.6 Further Tasks of Power System Engineering 10

2 Power System Load 11

- 2.1 General 11
- 2.2 Load Forecast with Load Increase Factors 12
- 2.3 Load Forecast with Economic Characteristic Data 13
- 2.4 Load Forecast with Estimated Values 14
- 2.5 Load Forecast with Specific Loads and Degrees of Electrification 14
- 2.6 Load Forecast with Standardized Load Curves 17
- 2.7 Typical Time Course of Power System Load 20
- 2.8 Smart Grid and Smart Domestic Appliances 23
- 3 Planning Principles and Planning Criteria 27
- 3.1 Planning Principles 27
- 3.2 Basics of Planning 30
- 3.3 Planning Criteria 34
- 3.3.1 Voltage Band According to IEC 60038 34
- 3.3.2 Voltage Criteria 35
- 3.3.2.1 Low-Voltage Systems 35
- 3.3.2.2 Medium-Voltage Systems 36

VI Contents

3.3.2.3 3.3.3 3.3.4	High- and Extra-High-Voltage Systems 36 Loading Criteria 37 Stability Criteria 38
4 4 1	Economic Consideration and Loss Evaluation 41 Present Value and Annuity Method 41
4.2	Evaluation of Losses 42
4.2.1	Energy Losses 43
4.2.2	Power Losses 44
5	Topologies of Electrical Power Systems 49
5.1	Development of Power Systems 49
5.2	Recommended Voltage Levels 51
5.3	Topology of Power Systems 52
5.3.1	Radial Systems 52
5.3.2	Ring-Main Systems 54
5.3.2.1	Ring-Main System-Simple Topology 54
5.3.2.2	Ring-Main System with Remote Station (Without Supply)
5.3.2.3	Ring-Main System with Reserve Line 57
5.3.2.4	Ring-Main System with Feeding Remote Station 60
5.3.2.5	Ring-Main System as Tuple System 61
5.3.2.6	Ring-Main System with Cross-Link 62
5.3.2.7	Ring-Main System with Base Station 63
5.3.2.8	Special-Spare Cable System 64
5.3.2.9	Double-T Connection 65
5.3.3	Meshed Systems at HV and MV Levels 66
5.3.3.1	HV Transmission Systems 66
5.3.3.2	Meshed MV Systems 68
5.3.4	Meshed Systems at the LV Level 69
5.3.4.1	Meshed System Supplied Station-by-Station 69
5.3.4.2	Single-Line Supply 69
5.3.4.3	Multiple-Line Supply 69
5.4	Special Operating Considerations 71
6	Arrangement in Gridstations and Substations 73
6.1	Busbar Arrangements 73
6.1.1	General 73
6.1.2	Single Busbar without Separation 73
6.1.3	Single Busbar with Sectionalizer 75
6.1.4	Special H-Arrangement 75
6.1.5	Double Busbar Arrangement 76
6.1.6	Double Busbar with Reserve Busbar 77
6.2	Arrangement in Switchyards 78
6.2.1	Breakers and Switches 78

56

- 6.2.2 Incoming and Outgoing Feeders 79
- 6.2.3 Current Transformers 79
- 6.2.4 Voltage Transformers 82

7 Transformers 85

- 7.1 General 85
- 7.2 Utilization and Construction of Transformers 85
- 7.2.1 Utilization of Transformers 85
- 7.2.2 Oil-Immersed Transformers and Dry-Type Transformers 87
- 7.2.3 Characteristic Data of Transformers 90
- 7.3 Operation of Transformers 90
- 7.3.1 Voltage Drop 90
- 7.3.2 Permissible Loading of Transformer Neutral 92
- 7.4 Thermal Permissible Loading 92
- 7.4.1 Temperature Models 92
- 7.4.2 Maximum Permissible Loading of Oil-Immersed Transformers 99
- 7.4.2.1 General 99
- 7.4.2.2 Continuous Loading 102
- 7.4.2.3 Normal Cyclic Load 102
- 7.4.2.4 Long-Time and Short-Time Emergency Operation 104
- 7.4.3 Maximal Permissible Loading of Dry-Type Transformers 106
- 7.5 Economical Operation of Transformers 109
- 7.6 Short-Circuit Strength 110
- 8 Cable Systems 115
- 8.1 General 115
- 8.2 Construction Details 116
- 8.3 Electrical Parameters of Cables 118
- 8.4 Losses and Permissible Current 120
- 8.4.1 General 120
- 8.4.2 Calculation of Losses 122
- 8.4.3 Soil Characteristics 124
- 8.4.4 Thermal Resistances of Cables 127
- 8.4.5 Calculation according to VDE 0276-1000 128
- 8.4.6 Determination of Maximal Permissible Loading by Computer Programs 130
- 8.5 Planning and Design of Cable Routes and Trenches 131
- 8.5.1 Coordination with Other Cables and Pipes 131
- 8.5.2 Effect of Thermally Unfavorable Areas 133
- 8.5.3 Influence of Other Parameters 134
- 8.6 Short-Circuit Withstand Capability 136
- 8.6.1 General 136
- 8.6.2 Rating of Cable Screens 138

VIII Contents

9	Overhead Lines 141
9.1	General 141
9.2	Permissible Loading (Thermal) Current 141
9.2.1	Design Limits 141
9.2.2	Losses 142
9.2.3	Heating by Solar Radiation 144
9.2.4	Heat Dissipation by Radiation and Convection 146
9.2.5	Examples for Permissible Thermal Loading 149
9.3	Electric Field Strength 149
9.4	Sag, Tensions and Minimum Distances 152
9.4.1	Minimal Length of Insulation 152
9.4.2	Conductor Sag and Span Length 154
9.5	Short-Circuit Thermal Withstand Strength 155
9.6	Right-of-Way (ROW) and Tower Arrangement 157
9.7	Cost Estimates 160
9.8	High-Temperature Conductors 162
9.8.1	General 162
9.8.2	Thermal Alloy Conductor Steel Reinforced (TACSR) 162
9.8.3	Zirconium Alloy Conductor Invar Steel Reinforced
	(ZACIR) 163
9.8.4	Gap Thermal Resistant Aluminum Alloy Steel Reinforced
	(GTACSR) 163
9.8.5	Annealed Aluminum Conductor Steel Supported (ACSS) 164
9.8.6	Aluminum Conductor Composite Core (ACCC) 164
9.8.7	Aluminum Conductor Composite Reinforced (ACCR) 164
	- , , ,
10	Flexible AC Transmission Systems (FACTS) 165
10.1	Basics of Transmission of Power through Lines 165
10.2	Parallel Compensation of Lines 169
10.3	Serial Compensation of Lines 171
10.4	Phase-Shifting Equipment 172
10.5	Improvement of Stability 174
10.6	Basics of Flexible AC Transmission Systems (FACTS) 177
10.7	HVDC-Transmission (High-Voltage-Direct-Current) 178
10.7.1	General 178
10.7.2	Converter Stations and Related Equipment 179
10.7.3	Breakers, Reactors, Electrodes and other Equipment 179
11	Load-Flow and Short-Circuit Current Calculation 181
111	Load-Flow Calculation 181
11.1	Calculation of Short-Circuit Currents 183
11 2 1	General 183
11 2 2	Initial Short-Circuit Current $(AC) = 187$
11.2.2	Peak Short-Circuit Current 187
11.2.J	Uniform or Smallest P/V Patio (Method A) 100
11.2.3.1	Omornion Sinalest N/A Ratio (Method A) 190

- 11.2.3.2 *R*/*X* Ratio of the Short-Circuit Impedance at the Short-Circuit Location (Method B) *190*
- 11.2.3.3 Equivalent Frequency f_c (Method C) 190
- 11.2.4 Symmetrical Short-Circuit Breaking Current 190
- 11.2.5 Steady-State Short-Circuit Current 191
- 11.2.6 Influence of Synchronous and Asynchronous Motors 191
- 11.3 Short-Circuit Withstand Capability 193
- 11.4 Limitation of Short-Circuit Currents 195
- 11.4.1 General 195
- 11.4.2 Measures in Power Systems 196
- 11.4.2.1 Selection of Nominal System Voltage 196
- 11.4.2.2 Operation as Separate Subsystems 197
- 11.4.2.3 Distribution of Feeding Locations 198
- 11.4.2.4 Coupling of Power System at Busbars with Low Short-Circuit Level 200
- 11.4.2.5 Restructuring of the Power System 201
- 11.4.3 Measures in Installations and Switchgear Arrangement 201
- 11.4.3.1 Multiple Busbar Operation 201
- 11.4.3.2 Busbar Sectionalizer in Single-Busbar Switchgear 201
- 11.4.3.3 Short-Circuit Current Limiting Equipment 202
- 11.4.4 Measures Concerning Equipment 207
- 11.4.4.1 Impedance Voltage of Transformers 207
- 11.4.4.2 Short-Circuit Limiting Reactor 207
- 11.4.4.3 Earthing Impedances 208
- 11.4.4.4 Increased Subtransient Reactance of Generators 209

12 Connection of "Green-Energy" Generation to Power Systems 213

- 12.1 General 213
- 12.2 Conditions for System Connection 216
- 12.2.1 General 216
- 12.2.2 Calculation of Power System Impedance at Point of Common Coupling 218
- 12.2.2.1 Structure of Power System 218
- 12.2.2.2 Parallel Resonances in Electrical Power Systems 219
- 12.2.2.3 Typical Resonances in Power Systems 222
- 12.2.3 Short-Circuit Currents and Protective Devices 224
- 12.2.4 Voltage Control and Reactive Power Supply under Steady-State Conditions 225
- 12.2.4.1 Generation Connected to Low-Voltage Systems 225
- 12.2.4.2 Generation Connected to Medium-Voltage Systems 225
- 12.2.4.3 Generation Connected to High-Voltage Systems $(U_n=110 \text{ kV})$ 226
- 12.2.4.4 Generation Connected to Extra-High-Voltage Systems $(U_n \ge 110 \text{ kV})$ 228
- 12.2.5 Frequency Control and Active Power Reduction 230

X Contents

12.3	Fault-Ride-Through (FRT) Conditions and Dynamic Voltage Control 232
12.3.1	Types of Generation Units 232
12.3.2	Conditions for Generation Units of Type 1 232
12.3.3	Conditions for Units of Type 2 234
12.4	Assessment of System Perturbations of Generation Plants 235
12.4.1	General 235
12.4.2	Voltage Increase 236
12.4.3	Rapid Voltage Change due to Switching Operations 237
12.4.4	Flicker Caused by Switching 239
12.4.5	Flicker at Normal Operating Conditions 240
12.4.6	Harmonic and Interharmonic Currents and Voltages 242
12.4.6.1	LV and MV System 242
12.4.6.2	Generation Connected to HV and EHV System 244
12.4.6.3	Superposition of Harmonics and Interharmonics 246
12.4.7	Asymmetry and Voltage Unbalance 247
12.4.8	Commutation Dips 247
12.4.9	Effects on Ripple-Control and Line-Carrier Systems 247
13	Protection of Equipment and Power System Installations 249
13.1	Faults and Disturbances 249
13.2	Criteria for Operation of Protection Devices 250
13.3	General Structure of Protective Systems; Transducers 252
13.4	Protection of Equipment 254
13.5	Protection of Lines (Overhead Lines and Cables) 255
13.5.1	General 255
13.5.2	Overcurrent Protection 256
13.5.3	Distance (Impedance) Protection 258
13.5.4	Differential Protection of Lines 263
13.5.5	Ground-Fault Protection 263
13.6	Protection of Transformers 265
13.6.1	General 265
13.6.2	Differential Protection 265
13.6.3	Overcurrent Protection, Distance Protection, Ground-Fault
	Protection 266
13.6.4	Buchholz Protection 267
13.7	Protection of Busbars 268
13.7.1	Current Criteria for Busbar Protection 268
13.7.2	Impedance Criteria for Busbar Protection 269
13.8	Protection of Other Equipment 269
13.9	Reference List of IEC-Symbols and ANSI-Code-Numbers 269
14	Overvoltages and Insulation Coordination 271
14.1	General; Definitions 271
14.2	Procedure of Insulation Coordination 273

- 14.3 Determination of the Representative Overvoltages 274
- 14.3.1 Continuous Power-Frequency Voltage and Temporary Overvoltages 274
- 14.3.2 Slow-Front Overvoltages 275
- 14.3.3 Fast-Front Overvoltages 277
- 14.3.3.1 General 277
- 14.3.3.2 Simplified Approach 277
- 14.3.3.3 Detailed Calculation; Parameters of Lightning Current 278
- 14.3.3.4 Direct Strokes to the Phase Conductor 281
- 14.4 Determination of the Coordination Withstand Voltage and the Required Withstand Voltage 284
- 14.5 Selection of the Rated Voltage 286
- 14.6 Application Example 289
- 15 Influence of Neutral Earthing on Single-Phase Short-Circuit Currents 295
- 15.1 General 295
- 15.2 Power System with Low-Impedance Earthing 296
- 15.3 Power System Having Earthing with Current Limitation 300
- 15.4 Power System with Isolated Neutral 302
- 15.5 Power System with Resonance Earthing (Petersen Coil) 307
- 15.5.1 General 307
- 15.5.2 Calculation of Displacement Voltage 311
- 15.5.3 Tuning of the Petersen Coil 314
- 15.5.4 Residual Current Compensation 316
- 15.5.4.1 Residual Current Compensation by Shifting of the Neutral-Point Displacement Voltage 318
- 15.5.4.2 Residual Current Compensation by Injection of Current into the Neutral *318*
- 15.6 Earthing of Neutrals on HV Side and LV Side of Transformers 319
- 16 Tendering and Contracting 325
- 16.1 General (Project Definition) 325
- 16.2 Terms of Reference (TOR) 327
- 16.2.1 Background 327
- 16.2.2 Objective 327
- 16.2.3 Scope of Engineering Activities 328
- 16.3 Project Funding 329
- 16.4 Form of Tendering 329
- 16.4.1 International Tendering 330
- 16.4.2 Prequalification 330
- 16.4.3 Short Listing 331
- 16.5 Planning and Design 331
- 16.6 Tender Structure 333
- 16.6.1 General 333

XII Contents

16.6.2	Tender Set-Up 334
16.6.2.1	General, Common Sections 334
16.6.2.2	Sections Specific to Each Lot or Package 336
16.6.3	General Technical Specifications 336
16.6.3.1	General Rules and Provisions Related to the Design 337
16.6.3.2	High-Voltage Metal-Clad SF ₆ -Insulated Switchgear 337
16.6.3.3	Medium-Voltage Switchgear 339
16.6.3.4	Control, Supervision and Protection 340
16.6.3.5	Overhead Lines 340
16.6.3.6	Power and Auxiliary Cable 342
16.6.3.7	Telecommunication System 342
16.6.3.8	Transformers and Reactors 342
16.6.3.9	Auxiliary Equipment 343
16.6.3.10	Civil Works for Substations 344
16.7	Scope of Work and Supply 344
16.7.1	General 344
16.7.2	380 kV Switchgear 344
16.7.3	123 kV Switchgear 345
16.7.4	Transformers and Reactors 345
16.7.5	Telecommunication System 346
16.8	Technical Data Sheets 346
16.9	Tendering Period and Evaluation of Tender 348
16.9.1	Tendering Period 348
16.9.2	Bid Evaluation 353
16.10	Contracting 353

 Appendix
 357

 References
 365

 Index
 371