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1
Molecular Description

1.1
Mechanics of Continuous Media and Its Restriction

Rarefied gas flows can be modeled by many methods dependent on the flow
regime. Under certain conditions, a gas can be considered as a continuous
medium and then the hydrodynamic equations (see Section 6.1) are successfully
applied. These equations provide a description of gas flows in terms of the so-
calledmacroscopic quantities such as density, pressure, temperature, and velocity.
Analytical and numerical methods of the mechanics of continuous media are well
elaborated and described in numerous books, handbooks, and textbooks so that
they are widely used in practical calculations. However, the consideration of gas
as a continuous medium imposes some conditions and, consequently, restricts
the application of the hydrodynamic equations. What are these restrictions?
The first restriction is based on the assumption that a characteristic size of gas

flow (or macroscopic size) must be significantly larger than the so-called molec-
ular mean-free-path (or microscopic size), that is, a path that a gaseous particle
flies between two successive intermolecular collisions. What is the characteris-
tic size? When macroscopic variables change slowly and smoothly, the charac-
teristic size is a typical distance between boundaries of the gas flow. However,
the macroscopic variables can change significantly over the mean-free-path, and
then the assumption on the continuousness of the medium is broken at least in
the region of the significant change. For instance, if a gas has a stepwise tem-
perature distribution, continuous mechanics does not work near the temperature
step.
The second restriction is related to nonstationary flows, namely, the continuous

mechanics is valid if a significant change ofmacroscopic variable happens during a
time interval significantly larger than themean-free-time of gaseous particles. For
instance, if an oscillation frequency of solid surface is close to the intermolecular
collision frequency, a gas flow near this surface cannot be described by continu-
ous mechanics even if the first assumption is fulfilled. Another example when the
second assumption is not fulfilled is a sudden motion of a solid surface or sudden
variation of its temperature.
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Thus, if at least one of the above-mentioned assumptions is not fulfilled, con-
tinuous mechanics cannot be applied, but a modeling should be done at a micro-
scopic level, that is, a gas must be considered as rarefied. This branch of fluid
mechanics is called rarefied gas dynamics.The aim of this field is to obtain macro-
scopic characteristics based on microscopic behavior of gaseous particles. Such a
behavior involves two kinds of interactions, namely, intermolecular collisions and
gas–surface interaction. In this chapter, basic information about the intermolec-
ular interaction is given.

1.2
Macroscopic State Variables

In this section, we will define main macroscopic quantities used in fluid mechan-
ics. Consider a portion of gas occupying a volume .The amount of the gas can be
measured by its mass M or by the number of particles N . Themass of one particle
is given as

m ∶= M
N

. (1.1)

If the number of particles is equal to the Avogadro number NA (see Table A.1),
then the amount of gas is one mole. The mass of one mole is called atomic weight
and is calculated as

 ∶= mNA. (1.2)

The atomic weight is usually given in grams permole. Its values for the noble gases
are given in Table A.2. The gas amount can also be measured in the number of
moles as

𝜈 ∶= N
NA

= M
 . (1.3)

The quantities characterizing the gas amount, for example, volume  , mass
M, the number of particles N , or the number of moles, are called extensive.
It is common to write equations in terms of specific variable given as a ratio
of two extensive quantities. For instance, the specific mass, or mass density, is
defined as

𝜌 ∶= M
 . (1.4)

The number of particles per gas volume, or number density, is defined as

n ∶= N
 . (1.5)

The mass density and number density are related via the molecular mass as

𝜌 = mn, (1.6)

which follows from Eqs. (1.1), (1.4), and (1.5).
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Any gas occupying a container of volume  produces a pressure p on its walls,
which is defined as a force F acting on an area A unity

p ∶= F
A
. (1.7)

The unit of pressure in the International System of Units (SI) is given by newtons
(N) per square meter (m2) and is called pascal (Pa).
The pressure of gas depends on its amount, volume, and also on its temperature

T , which is measured in kelvins (K). The definition of this quantity in the frame
of equilibrium thermodynamics can be found in many textbooks, for example,
Ref. [1]. Later the temperature definition will be given via the velocity distribution
function.

1.3
Dilute Gas

A relation of gas pressure to its amount, volume, and temperature is called state
equation. This book is restricted only to the so-called diluted gas obeying the fol-
lowing state equation:

p = 𝜈Rg T , (1.8)

where Rg is the molar (or universal) gas constant (see Table A.1). The state
equation in the form (1.8) is given in most of textbooks on thermodynamics, but
in statistical physics it is usually written in terms of the number density n or mass
density 𝜌 as

p = nkBT , p = 𝜌

m
kBT , (1.9)

where kB is the Boltzmann constant (see Table A.1), which is related to the molar
gas constant Rg and Avogadro number NA as

kB =
Rg

NA
. (1.10)

The combination of this equation with (1.2) yields the relation

kB
m

=
Rg

 , (1.11)

which is quite useful because the kinetic theory deals with the molecu-
lar mass m, while in many practical fields, the atomic weight  is more
preferable.
A relation of internal energy E of gas to its state variables is called the energy

equation. For a dilute monatomic gas, the internal energy is proportional to its
temperature and is given as

E = 3
2

NkBT , or E = 3
2
𝜈Rg T . (1.12)
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The specific internal energy e, or energy per mass unity, is defined as

e ∶= E
M

(1.13)

so by using (1.1) the energy equation (1.12) is transformed to

e = 3
2

kBT
m

. (1.14)

The state equation (1.9) and energy equation (1.14) work well for the atmo-
spheric pressure and for any lower pressure. Consequently, all results of the book
are valid for this range of the pressure.

1.4
Intermolecular Potential

1.4.1
Definition of Potential

In case of dilute gas, the intermolecular interactions do not affect the state and
energy equations, but they are important to describe the transport phenomena in
gases, like mass, heat, and momentum transfers. In this section, main models of
intermolecular interactions are given.
The intermolecular potential U(r) is defined so that the potential energy of two

particles separated by a distance r is equal to U . If this potential is known, then
the interaction force F between these two particles is calculated as

F(r) = − dU(r)
dr

. (1.15)

An exact calculation of the potential U(r) is a very hard task, that is whymanysim-
plified models were proposed.

1.4.2
Hard Sphere Potential

Themost simple potential is the hard sphere (HS) model given as

U(r) =
{
∞ at r < d,
0 at r > d, (1.16)

where d is the sphere diameter. Physically, it means that two particles cannot be
closer than their diameter, but when they are separated by a distance r > d then
the interaction force is zero. In many applications, this model works pretty well,
that is why it is widely used in practical calculations. The molecular diameter can
be extracted from the transport coefficients such as viscosity and thermal con-
ductivity. However, if one calculates the diameter d from the gas viscosity at two
different temperatures, one obtains two different values of the diameter. It means
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that we cannot calculate the diameter once at one temperature and then use it for
any other temperature.

1.4.3
Lennard-Jones Potential

As will be shown later, see Section 6.4.1, the dynamic viscosity 𝜇 of gas com-
posed of hard spheres is proportional to the square root of the temperature T ,
𝜇 ∝

√
T , while empirical data, see for example, the review by Kestin et al. [2],

indicate a different dependence of viscosity on the temperature. Such a discrep-
ancy is explained by the neglect of attractive force between particles when they
are separated by a distance r > d. Moreover, the repulsive force arising at a short
distance is really large but not infinite as for the HS potential. These two factors
are taken into account by the Lennard-Jones (LJ) potential given as

U(r) = 4𝜀

[(
d
r

)12

−
(

d
r

)6
]
, (1.17)

where 𝜖 is the potential well depth. This potential contains two fitting parameters
d and 𝜖 that allow us to describe better the dependence of transport coefficients
on the temperature. The values of d and 𝜀 vary from one bibliography source to
another because they are extracted from different coefficients. Some numerical
values of the LJ potential parameters extracted from viscosity experimental data
reported in the book by Hirschfelder et al. [3] are given in Table 1.1. The books in
[4, 5] provide very similar data.

1.4.4
Ab initio Potential

Recently, a calculation of the potential ab initio (AI) became possible. A technique
to calculate the AI potentials is well elaborated and the corresponding data for

Table 1.1 Parameters 𝜀∕kB and d for LJ and AI potentials.

𝜺∕kB (K) d (nm)

Gas a b a b

He 10.22 10.997898 0.2576 0.2640950
Ne 35.7 41.152521 0.2789 0.27612487
Ar 124.0 143.123 0.3418 0.335741
Kr 190 193 0.361 0.363
Xe 229 0.4055

a) LJ, extracted from viscosity, Ref. [3].
b) AI, Refs [6–9].
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Table 1.2 Parameters of ab initio potential given by (1.18).

Param. Unit Value

Ne, Ref. [7] Ar, Ref. [8]

A K 4.02915058383 × 107 4.61330146 × 107
a1 (nm)−1 −4.28654039586 × 101 −2.98337630 × 101
a2 (nm)−2 −3.33818674327 −9.71208881
a3 nm −5.34644860719 × 10−2 2.75206827 × 10−2
a4 (nm)2 5.01774999419 × 10−3 −1.01489050 × 10−2
b (nm)−1 4.92438731676 × 101 4.02517211 × 101
C6 K (nm)6 4.40676750157 × 10−2 4.42812017 × 10−1
C8 K (nm)8 1.64892507701 × 10−3 3.26707684 × 10−2
C10 K (nm)10 7.90473640524 × 10−5 2.45656537 × 10−3
C12 K (nm)12 4.85489170103 × 10−6 1.88246247 × 10−4
C14 K (nm)14 3.82012334054 × 10−7 1.47012192 × 10−5
C16 K (nm)16 3.85106552963 × 10−8 1.17006343 × 10−6

many gases and mixtures can be found in numerous works, see for example,
Refs [6–14]. The main advantage of the AI potentials is the absence of any
parameters to be extracted from experimental data. Numerical results on the AI
potential usually are given in terms of interpolating formulas. One of them has a
form: [7, 8]

U(r)
kB

= A exp
[

a1r + a2r2 +
a3
r

+
a4
r2

]

−
8∑

n=3

C2n

r2n

(
1 − e−br

2n∑
k=0

(br)k

k!

)
. (1.18)

The numerical values of the interpolating coefficients for neon and argon reported
in Refs [7, 8] are reproduced in Table 1.2.The expressions of the potential U(r) for
helium and krypton have slightly different form and can be found in Refs [6] and
[9], respectively.
The well depth 𝜀 for the AI potentials and the distance corresponding to the

zero point

U(d) = 0, (1.19)

are compared with those for the LJ potential extracted from viscosity in Table 1.1.
As is expected, the values obtained by two quite different methodologies are close
to each other. Both LJ and AI potentials are plotted on Figure 1.1, which shows
that they are only slightly different, but qualitatively they are quite similar to each
other. Thus, the LJ potential with the parameters 𝜖 and d extracted from viscosity
provides very reliable description of the intermolecular interaction.
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Figure 1.1 Potential U versus intermolecu-
lar distance r.

1.5
Deflection Angle

Once the intermolecular potential is known, the binary collision problem can be
solved. Let us consider two particles of the same mass m moving with velocities 𝒗
and 𝒗∗ before collisions and changing their velocities to 𝒗

′ and 𝒗
′
∗ after the colli-

sion. The relative velocities before and after the collision are denoted as

gr = 𝒗 − 𝒗∗, g′r = 𝒗
′ − 𝒗

′
∗, (1.20)

respectively. If the collision is elastic, the vector of their relative velocity changes
only its direction, that is, |g′r| = |gr|. The angle 𝜒 between the vectors gr and g′r
is called the deflection angle. Thus, when this angle is known, the post-collision
velocities 𝒗′ and 𝒗

′
∗ are easily related to the pre-collisions velocities 𝒗 and 𝒗∗.

To calculate the angle 𝜒 , a binary collision is considered in the reference frame
related to one of the particles, while the other particle moves with a velocity gr as
is shown in Figure 1.2. From this scheme, one can easily calculate the deflection
angle 𝜒 for the HS potential determined by the impact parameter b as

𝜒 = 2 arccos(b∕d). (1.21)

For an arbitrary potential U(r), the deflection angle is determined not only by
the parameter b but also by the kinetic energy of the relative motion related to the
relative motion speed gr as

Er =
mg2r
4

. (1.22)

ρ0

gr

g ′
r

χb

Figure 1.2 Scheme of binary collision.
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Figure 1.3 Deflection angle 𝜒 versus
impact parameter b for LJ potential.

The calculation of 𝜒 can be performed numerically following a procedure
described in many textbooks on classical mechanics, see for example, Ref. [15],
and those on kinetic theory [3–5, 16–20]. Some details on the numerical scheme
is given in Ref. [21].
In case of the LJ potential, the deflection angle 𝜒 is usually calculated in terms

of the dimensionless quantities Er∕𝜀 and b∕d because the function 𝜒(Er∕𝜀, b∕d)
once calculated can be used for the LJ potential with any numerical values of the
parameters d and 𝜖. It is not possible to do the same with the AI potential, which
requires calculations of the deflection angle 𝜒 for each combination of Er and b.
Typical plots of 𝜒 on b∕d based on the data reported in Ref. [21] are depicted on
Figure 1.3 for three values of the energy ratio Er∕𝜀 = 0.1, 1, and 10. In contrast
to the hard spheres (1.21), the dependence of 𝜒 on b∕d for the LJ potential is not
monotone, but it reaches zero, then it increases and then vanishes at 𝛽∕d → ∞.

1.6
Differential Cross Section

The kinetic equation will be given on terms of the so-called differential cross
section (DCS) 𝜎d(Er, 𝜒). If we imagine a beam of particles uniformly distributed
in the space andmoving with the same velocity equal to gr relative to a fixed target
particle, then the number of the beam particles scattered into the angle interval
[𝜒, 𝜒 + d𝜒] will be proportional to 𝜎d(Er, 𝜒) sin𝜒 d𝜒 . On the other hand, for a
given energy Er , the deflection angle is determined only by the impact parameter
b. Since the particles are distributed uniformly, the number of particles having
the impact parameter in the interval [b, b + db] is proportional to b so that the
DCS can be defined as

𝜎d(Er, 𝜒) sin𝜒 d𝜒 = b db. (1.23)

If the parameter b is expressed in terms of 𝜒 , the DCS can be calculated from
(1.23). For the HS potential, the function b = d cos(𝜒∕2) is obtained from (1.21)
and the DCS takes the form

𝜎d(Er, 𝜒) =
b

sin𝜒
db
d𝜒

= d2

4
for HS. (1.24)
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For a potential such as LJ, several values of b can correspond to the same value
of 𝜒 , see Figure 1.3, so that all these values must be included in the expressions of
the DCS, that is, more generally it is defined as

𝜎d(Er, 𝜒) ∶=
1

sin𝜒
∑

i
bi
||||𝜕bi
𝜕𝜒

|||| , (1.25)

where bi are all values of the impact parameter corresponding to the deflection
angle𝜒 . A detailed information about theDCS and its calculation for the LJ poten-
tial is given in the paper [21].

1.7
Total Cross Section

The total cross section (TCS) 𝜎t is defined via the integration of the DCS over the
whole interval of the deflection angle variation

𝜎t ∶= 2𝜋 ∫
𝜋

0
𝜎d(Er, 𝜒) sin𝜒 d𝜒. (1.26)

Substituting (1.24) into (1.26), the TCS for the hard spheres is obtained as the area
of circle with a radius d

𝜎t = 𝜋d2 for HS. (1.27)

The TCS also can be treated as the area of the circle around the target particle
containing only those beam particles that undergo a collision.
If a potential is not zero at any distance, the TCS is infinite because all beam

particles undergo collision with the target particle. In order to avoid such a non-
sense result, an angle cut-off should be done, that is, we assume that a deflection
within the small interval [0, 𝜒0] (𝜒0 ≪ 1) is not considered as a collision, then the
TCS becomes a finite value given as

𝜎t(Er) = 2𝜋 ∫
𝜋

𝜒0

𝜎d(Er, 𝜒) sin𝜒 d𝜒 , (1.28)

which depends on the energy Er of the relative motion.
Using the definition (1.23), the TCS can be calculated by integrating with

respect to the impact parameter b. Again, to avoid the infinite TCS, the potential
should be cut-off. Let us assume that U(r) = 0 if r > bM, that is, a collision
happens only if the impact parameter is smaller than bM, then the TCS is
given as

𝜎t = 2𝜋 ∫
bM

0
b db = 𝜋b2

M (1.29)

that is the area of circle of a radius bM. In this case, the TCS is independent of the
collision energy Er .
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1.8
Equivalent Free Path

The concept of mean-free-path (MFP) is quite important in rarefied gas dynam-
ics. It is defined as a mean distance traveled by a particle between two successive
collisions and inversely proportional to the number density n and TCS 𝜎t so that

MFP ∝ (n𝜎t)−1. (1.30)

A more exact calculation of the MFP made for a gas being in equilibrium leads to
the expression

MFP =
(√

2n𝜎t

)−1
. (1.31)

The derivation of this formula can be found, for example, in Section 2.4 of the
book [4] or in Section 4.3 of the book [17].
According to Eq. (1.27), the TCS of hard sphere is determined by their diame-

ter d so that the MFP is a quite definite quantity for this potential. However, for
a potential without a cut-off, the TCS is infinite and hence the MFP calculated
by (1.31) is zero. Evidently, if a potential is nonzero at any distance theoretically,
all particles are always colliding with each other. In other words, they never move
freely. If a potential is cut-off at somedistance bM, then according to Eqs. (1.29) and
(1.31), the MFP will be inversely proportional to b2

M. On the other hand, macro-
scopic properties of gas should not depend on the cut-off distance bM, but they
should converge by increasing bM. Thus, the use of the MFP concept to describe
nonequilibrium phenomena in gases is not appropriate, but some equivalent free
path (EFP) independent of the cut-off should be used.
The gas viscosity 𝜇 when calculated for the LJ potential or for some similar one

converges to a fixed value by increasing the cut-off distance bM.Therefore, the EFP
defined via the viscosity coefficient 𝜇 as

𝓁 ∶=
𝜇𝑣m

p
(1.32)

is not affected by the cut-off distance and is suitable to treat transport phenomena
calculated for different intermolecular potentials. Here, 𝑣m is the most probable
molecular speed defined in Section 2.4.

1.9
Rarefaction Parameter and Knudsen Number

In order to choose an appropriate numerical or analytical method to calculate
rarefied gas flows, the rarefaction regime should be checked. Let us denote a char-
acteristic size of gas flow as a, then the regime of flow is determined by the ratio

Kn ∶= MFP
a

, (1.33)
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which is called Knudsen number. However, it is very usual to use the rarefaction
parameter to characterize the gas rarefaction defined via the EFP as

𝛿 ∶= a
𝓁

=
ap
𝜇𝑣m

. (1.34)

The rarefaction parameter is inversely proportional to the Knudsen number
because EFP is proportional to MFP. Since most of theoretical papers report
the results in terms of the rarefaction parameter, it will be used in this book to
characterize the gas rarefaction.
It is possible to distinguish several regimes of gas flows with respect to the

rarefaction parameter. When 𝛿 → 0, the EFP becomes significantly larger than
the characteristic size, 𝓁 ≫ a, and molecules move without any collision between
them. This regime is called free-molecular or collisionless. It is relatively easy for
numerical or analytical calculations. The book by Saksaganskii [22] contains a lot
of examples of solutions for many problems of rarefied gases in this regime. Few
examples of free-molecular flows will be considered in Chapters 11–16.
In the opposite limit 𝛿 → ∞, the EFP is quite smaller than a characteristic size

of gas flow, 𝓁 ≪ a. Under this condition, the continuous mechanics equations are
applicable that is why this regime is usually called continuous or hydrodynamic.
There are numerous books dedicated to this regime, see for example, Refs [23, 24],
so that this regime will be described very briefly in this book. Several examples
of hydrodynamic flows given in Chapters 11–16 demonstrate the use of the so-
called velocity slip and temperature jump boundary conditions, which extend an
application of the hydrodynamic equations to lower values of the rarefaction 𝛿.
Our main interest will be the so-called transitional regime when the rarefaction

parameter is not small to neglect the intermolecular collisions, but it is not so large
in order to apply the hydrodynamic equations, that is, when 𝛿 ∼ 1.

Exercises

1.1 Verify that Eq. (1.9) is equivalent to Eq. (1.8).
Hint: Use Eqs. (1.3), (1.5), and (1.10).

1.2 Calculate the mass of one atom of helium and xenon.
Solution: Using (1.2), we obtain m = ∕NA. Then m = 6.646 × 10−27 kg for
helium and m = 2.180 × 10−25 kg for xenon.

1.3 Estimate the EFP 𝓁 of helium (𝑣m = 1.1 × 103 m/s, 𝜇 = 19 𝜇Pa s) and xenon
(𝑣m = 1.9 × 102 m/s, 𝜇 = 21 𝜇Pa s) under standard conditions, that is, T =
273.15 K and p = 1 atm (see Table A.1).
Solution: Substituting the given data into Eq. (1.32), we obtain 𝓁 = 0.21 𝜇m
for helium and 𝓁 = 0.039 𝜇m for xenon.
Comments: Two different species of gas can have quite different EFPs under
the same conditions. If one deals with a macroscopic size of flow of about
few centimeters, the mechanics of continuous medium is applicable, but for
a microflow, when its size is about few microns, the flow is transitional.
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1.4 Estimate the EFP 𝓁 for helium under typical conditions of rough vacuum
p = 1 Pa and high vacuum p = 10−7 Pa. Assume T = 273.15 K.
Solution: Substituting the given data into Eq. (1.32), we obtain 𝓁 = 2.1 cm at
p = 1 Pa; 𝓁 = 2.1 × 105 m at p = 10−7 Pa.
Comments: Assuming a typical size in vacuum systems to be about few cen-
timeters, it can be said that the flow regime is transitional for rough vacuum
and it is free molecular for high vacuum.

1.5 Calculate the Loschmidt constant, that is, the number of particles per cubic
meter under standard conditions, using the state equation (1.9). Compare it
with the value given in Table A.1.
Solution: NL = 2.69 × 1025 m−3.
Comments: The number is huge so that the statistical approach is justified.

1.6 Calculate the number of particles contained in 1 m3 under the ultrahigh vac-
uum condition p = 10−10 Pa at T = 300 K.
Solution: N = 2.4 × 1010.
Comments: Even for the high vacuum conditions, the number of particles is
still huge.


